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Abstract. In the universe of finite groups the description
of τ -closed totally saturated formations with Boolean sublattices
of τ -closed totally saturated subformations is obtained. Thus, we
give a solution of Question 4.3.16 proposed by A. N. Skiba in his
monograph "Algebra of Formations" (1997).

Introduction

All groups considered are finite. Used notations and terminology are
standard (see [1]–[4]). Recall that a formation F is called saturated if
G/Φ(G) ∈ F always implies G ∈ F. It is known [4] that if F is a non-
empty saturated formation, then F = LF (f), i. e., F has a local satellite
f .

Every group formation is considered as 0-multiply saturated [5]. For
n ≥ 1, a formation F 6= ∅ is called n-multiply saturated [5], if it has a
local satellite f such that every non-empty value f(p) of f is a (n − 1)-
multiply saturated formation. A formation is called totally saturated [5]
if it is n-multiply saturated for all natural n.

Let τ be a function such that for any group G, τ(G) is a set of
subgroups of G, and G ∈ τ(G). Following [3] we say that τ is a subgroup
functor if for every epimorphism ϕ : A → B and any groups H ∈ τ(A)
and T ∈ τ(B) we have Hϕ ∈ τ(B) and Tϕ−1

∈ τ(A).
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A group class F is called τ -closed if τ(G) ⊆ F for all G ∈ F. The set
lτ∞ of all τ -closed totally saturated formations is a complete lattice [3].

A τ -closed totally saturated formation F is called Hτ
∞-critical (or a

minimal τ -closed totally saturated non-H-formation) if F 6⊆ H but all
proper τ -closed totally saturated subformations of F are contained in H.

If F and M are lτ∞-formations such that M ⊆ F, then F/τ
∞M denotes

the lattice of lτ∞-formations between M and F. In particular, if M = (1) is
the formation of identity groups, then Lτ

∞(F) denotes the lattice F/τ
∞(1).

In this paper we prove the following.

Theorem 1. Let F and X be τ -closed totally saturated formations, F 6⊆
X ⊆ N. Then the following conditions are equivalent:

1) the lattice F/τ
∞F ∩ X is Boolean;

2) F = (F ∩ X) ∨τ
∞ (∨τ

∞(Hi|i ∈ I)), where {Hi|i ∈ I} is the set of all
Xτ
∞-critical subformations of F;

3) every subformation of F of the form (F ∩ X) ∨τ
∞ H is lτ∞-comple-

mented in F/τ
∞F ∩ X, where H is some Xτ

∞-critical subformation of F;

4) any Xτ
∞-critical subformation of F has an Xτ

∞-complement in F.

Note that if in this theorem X = N and τ is the trivial subgroup
functor (i. e., τ(G) = {G} for all groups G) we obtain the main result
in [6]. In another special case (X = (1) and F is soluble) we obtain the
main result of Section 4.3 in [3]. In particular, we give a solution of
Question 4.3.16 in [3].

1. Definitions and Notations

Let X be a set of groups. Then lτ∞formX is the τ -closed totally satu-
rated formation generated by X, i.e., lτ∞formX is the intersection of all
τ -closed totally saturated formations containing X. If X = {G}, then the
formation lτ∞formG is called a one-generated τ -closed totally saturated
formation.

We denote by π(F) the set of prime divisors of orders of groups in F.

For any two τ -closed totally saturated formations M and H, we write
M ∨τ

∞ H = lτ∞form(M ∪ H).

For any set X of groups, we put Xτ
∞(p) = lτ∞form(G/Fp(G)|G ∈ X),

if p ∈ π(X), and Xτ
∞(p) = ∅ if p 6∈ π(X).

If F is an arbitrary τ -closed totally saturated formation, then the
symbol Fτ

∞ denotes the minimal lτ∞-valued local satellite of F.

For an arbitrary sequence of primes p1, p2, . . . , pn and any set X of
groups, the class of groups Xp1p2...pn is defined as follows:

1) Xp1 = (A/Fp1
(A)|A ∈ X);
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2) Xp1p2...pn = (A/Fpn
(A)|A ∈ Xp1p2...pn−1).

A sequence of primes p1, p2, . . . , pn is called suitable for X if p1 ∈ π(X)
and for any i ∈ {2, . . . , n} we have pi ∈ π(Xp1p2...pi−1).

Let p1, p2, . . . , pn be a suitable sequence for F. Then the lτ∞-valued
local satellite Fτ

∞p1p2 . . . pn is defined as follows:

1) Fτ
∞p1 = (Fτ

∞(p1))∞;

2) Fτ
∞p1 . . . pn = (Fτ

∞p1 . . . pn−1(pn))τ
∞.

A group G is called a τ -minimal non-H-group (or an Hτ -critical group)
if G 6∈ H but every proper τ -subgroup of G belongs to H.

A τ -closed totally saturated formation F is called an lτ∞-irreducible
formation if F 6= lτ∞form(∪i∈IXi) = ∨τ

∞(Xi|i ∈ I), where {Xi|i ∈ I} is the
set of all proper τ -closed totally saturated subformations of F. Otherwise,
F is called an lτ∞-reducible τ -closed totally saturated formation.

Let M and H be some τ -closed totally saturated subformations of F,
X be a class of groups. Then H is called an Xτ

∞-complement to M in F

if F = lτ∞form(M ∪ H) and M ∩ H ⊆ X. A subformation of F is called
Xτ
∞-complemented in F if it has an Xτ

∞-complement in F. In addition,
the (1)τ

∞-complement to M in F is called an lτ∞-complement to M in F,
and in this case M is called lτ∞-complemented in F. A subformation M

of F is called complemented in F if F = form(M ∪ H) and M ∩ H = (1)
for some subformation H of F.

For a set π of primes, we use Nπ and Sπ to denote the class of all
nilpotent π-groups and the class of all soluble π-groups, respectively.

2. Used Results

Lemma 1. [7, 8]. Let F be a non-soluble τ -closed totally saturated for-
mation. Then F has at leat one Sτ

∞-critical subformation.

Lemma 2. [7, 8]. Let F be a τ -closed totally saturated formation. Then
F is a minimal τ -closed totally saturated non-soluble formation if and
only if F = lτ∞formG, where G is a monolithic τ -minimal non-soluble
group with a non-abelian minimal normal subgroup R such that G/R is
soluble.

Lemma 3. [7, 8]. Let G be a monolithic group with a non-abelian socle
R. Then F = lτ∞formG has a unique maximal lτ∞-subformation M =
Sπ(R)l

τ
∞form({G/R}

⋃
X), where X is the set of all proper τ -subgroups

of G. In particular, Sπ(R) ⊆ M ⊂ F.

Lemma 4. [9]. The lattice lτ∞ of τ -closed totally saturated formations is
distributive.
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Lemma 5. [10]. For any two τ -closed totally saturated formations M

and F we have

M ∨τ
∞ F/τ

∞M ≃ F/τ
∞M ∩ F.

Lemma 6. [7, 11] The lattice lτ∞ is algebraic.

3. Main Results

Lemma 7. [7]. Let F, X be τ -closed totally saturated formations such
that F 6⊆ X ⊆ N. The formation F is an Xτ

∞-critical formation if and
only if either of the following conditions is satisfied:

1) F = Np, where p /∈ π(X);

2) F = NpNq for some different primes p and q in π(X).

Proof. Necessity. Let F be an Xτ
∞-critical formation. Suppose that there

exists p ∈ π(F) such that p /∈ π(X). Since Np ∈ lτ∞, Np ⊆ F \ X, (1) is
the unique lτ∞-subformation of Np and (1) ⊆ X, we have that F = Np.
So, F satisfies 1).

Assume that π(F) ⊆ π(X). We show that F is soluble.

Assume that F 6⊆ S. Then by Lemma 1, F contains at least one
Sτ

∞-critical subformation L. By Lemma 2, L = lτ∞formL, where L is
a monolithic τ -minimal non-soluble group with a non-abelian minimal
normal subgroup N such that group L/N is soluble. It follows from
Lemma 3 that Sπ ⊂ L, where π = π(N). Since N is non-abelian, we
have that |π| ≥ 3. But by hypothesis the formation F is an Xτ

∞-critical
formation. Hence Sπ ⊆ X ⊆ N, a contradiction. Therefore, F is soluble.

Let h is the canonical local satellite of X. By Theorem 2.5.2 [3, p.
94], F = lτ∞formG, where G is a group of minimal order in F \ X with
the socle R = GX such that for all p ∈ π(R) the formation Fτ

∞(p) is
(h(p))τ

∞-critical. Since by Theorem 1.3.14 [3, p. 33] Nτ
∞(p) = (1), we

have h(p) = Np. Hence, Fτ
∞(p) = lτ∞form(G/Fp(G)) is an (Np)

τ
∞-critical

formation. Therefore, |π(Fτ
∞(p))| = 1 and Fτ

∞(p) = Nq, for some prime
q 6= p. Since G is soluble, it follows that R is a p-group and Fp(G) = R.
Hence, π(G) = {p, q} and F = NpNq. Thus, F satisfies 2).

Sufficiency. Let F be a formation satisfying 1) or 2). Then F is a
hereditary totally saturated formation. Hence, F is a τ -closed formation,
for any subgroup functor τ . If F = Np, then (1) is a unique maximal
lτ∞-subformation of F. But (1) ⊆ X 6= Ø. Hence, F is an Xτ

∞-critical
formation.

Let F = NpNq. Then by Theorem 2.5.3. [3, p. 94] mathfrakF is an
Nτ

∞-critical formation. Since N{p,q} ⊆ X, it follows that F is a minimal
τ -closed totally saturated non-X-formation.
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Lemma 8. [7]. Let F and X be lτ∞-formations such that F 6⊆ X ⊆ N.
Then F has at least one Xτ

∞-critical subformation.

Proof. Assume that π(F) 6⊆ π(X) and p ∈ π(F)\π(X). Then according to
Lemma 6, Np is a required Xτ

∞-critical formation. Now we assume that
π(F) ⊆ π(X), and let A be a group of minimal order in F\X. Then A is a
monolithic τ -minimal non-X-group with the socle R = AX. Let p ∈ π(R)
and L = lτ∞formA. Assume that R is non-abelian. Then by Lemma 3,
Sπ(R) ⊆ L. Since |π(R)| ≥ 3, there exists a prime q 6= p, q ∈ π(R), such
that

M = NpNq ⊂ Sπ(R) ⊂ F.

Since N{p,q} ⊆ X, from Lemma 6 it follows that M is a required Xτ
∞-

critical formation.
Suppose now that R is an abelian p-group. Since R 6⊆ Φ(A), we have

R = Op(A) = Fp(A) and A = [R]B for some maximal subgroup B in A.
By Theorem 1.3.14 [3, p. 33],

Lτ
∞(p) = lτ∞form(A/Fp(A)) = lτ∞formB.

Let q ∈ π(B) \ {p}, and Q be a group of prime order q. Since Lτ
∞(p)

is totally saturated, Q ∈ Lτ
∞(p). Denote by V an exact irreducible Fp[Q]-

modul, and let F = [V ]Q. Then

F/Op(F ) ≃ Q ∈ Lτ
∞(p).

Therefore, by Lemma 8.2 [2, p. 78], F ∈ L. But

F = lτ∞formF = NpNq.

Hence, by Lemma 6, F is a required Xτ
∞-critical formation.

Lemma 9. Let X, M and F be τ -closed totally saturated formations such
that M ⊆ X ⊆ N, and F = M ∨τ

∞ (∨τ
∞(Hi|i ∈ I)), where {Hi|i ∈ I} is

some set of Xτ
∞-critical formations. If H is an Xτ

∞-critical subformation
of F, then H ∈ {Hi|i ∈ I}.

Proof. Let H be a Xτ
∞-critical subformation of F. By Lemma 6, H satisfies

either of the following conditions:
1) H = Np, where p /∈ π(X);
2) H = NpNq for some primes p 6= q in π(X).
Assume that H satisfies 1). Since H ⊆ F, we have by Corollary 1.3.10

[3, p. 31] that Hτ
∞ ≤ Fτ

∞. Therefore, Hτ
∞(p) ⊆ Fτ

∞(p). By Theo-
rem 1.3.14 [3, p. 33], we have Hτ

∞(p) = (1). Hence, (1) ⊆ Fτ
∞(p) 6= ∅.

By Lemma 4.1.2 [3, p. 152],

Fτ
∞(p) = Mτ

∞(p) ∨τ
∞ (∨τ

∞(Hτ
i∞(p)|i ∈ I)).
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Since p /∈ π(X), it follows that p /∈ π(M) and Mτ
∞(p) = ∅. Hence,

Fτ
∞(p) = ∨τ

∞(Hτ
i∞(p)|i ∈ I).

Suppose that p /∈ π(Hi) for all i ∈ I. Then from Theorem 1.3.14 [3, p.
33] it follows that Hτ

i∞(p) = ∅ for all i ∈ I. Therefore, Fτ
∞(p) = ∅, a

contradiction. So, there exists i ∈ I such that p ∈ π(Hi). Since Hi is an
Xτ
∞-critical formation and p /∈ π(X), we see that Hi = Np. Thus, Hi = H.

Assume that H satisfies 2). Then p, q is a suitable sequence for H and
F. By Corollary 1.3.10 and Theorem 1.3.14 [3], we obtain that

Hτ
∞(p) ⊆ Fτ

∞(p) and Hτ
∞p(q) = (1) ⊆ Fτ

∞p(q) 6= ∅.

From Lemma 4.1.2 [3, p. 152] it follows that

Fτ
∞p(q) = Mτ

∞p(q) ∨τ
∞ (∨τ

∞(Hτ
i∞p(q)|i ∈ I)).

Suppose that q ∈ π(Mτ
∞(p)). Since Mτ

∞(p) is a saturated formation,
we have that Nq ⊆ Mτ

∞(p). By Theorem 1.3.12 [3, p. 32],

NpM
τ
∞(p) ⊆ M.

Hence,
H = NpNq ⊆ NpM

τ
∞(p) ⊆ M ⊆ X.

But H is an Xτ
∞-critical formation. We have a contradiction. Therefore,

q /∈ π(Mτ
∞(p)), Mτ

∞p(q) = ∅ and

Fτ
∞p(q) = (∨τ

∞(Hτ
i∞p(q)|i ∈ I)).

If Hτ
i∞p(q) = ∅ for all i ∈ I, then Fτ

∞p(q) = ∅. It is impossible. There-
fore, there exists i ∈ I such that Hτ

i∞p(q) 6= ∅. Hence, q ∈ π(Hτ
i∞(p))

and Nq ⊆ Hτ
i∞(p). But by Theorem 1.3.12 [3] we have NpH

τ
∞(p) ⊆ Hi.

Therefore,
H = NpNq ⊆ NpH

τ
i∞(p) ⊆ Hi.

Since Hi is an Xτ
∞-critical formation, we see that Hi = H.

Lemma 10. я Let X, M, L, and F be τ -closed totally saturated forma-
tions such that X ⊆ M ⊆ L ⊆ F. If H is an lτ∞-complement to M in
F/τ

∞X, then H ∩ L is an lτ∞-complement to M in L/τ
∞X.

Proof. Let H1 = H∩L. Since M is lτ∞-complemented in the lattice F/τ
∞X

by H, it follows that M ∩ H = X and M ∨τ
∞ H = F. From Lemma 4 it

follows that

M ∨τ
∞ H1 = M ∨τ

∞ (H ∩ L) = (M ∨τ
∞ H) ∩ (M ∨τ

∞ L) = F ∩ L = L.
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Besides,

M ∩ H1 = M ∩ (H ∩ L) = M ∩ H = X.

But then H1 is an lτ∞-complement to M in L/τ
∞X.

Lemma 11. Let X and F be τ -closed totally saturated formations, H be
some Xτ

∞-critical subformation of F. Then H has an Xτ
∞-complement in

F if and only if H ∨τ
∞ (F ∩ X) has an lτ∞-complement in F/τ

∞F ∩ X.

Proof. Let M be an Xτ
∞-complement to H in F. Then by definition H ∩

M ⊆ X and H∨τ
∞M = F. Put M1 = M∨τ

∞(F∩X) and H1 = H∨τ
∞(F∩X).

Then M1 and H1 are elements of the lattice F/τ
∞F ∩ X. By Lemma 4,

H1 ∩ M1 = H1 ∩ (M ∨τ
∞ (F ∩ X)) = (H1 ∩ M) ∨τ

∞ (H1 ∩ (F ∩ X)) =

(H∨τ
∞ (F∩X))∩M)∨τ

∞ (F∩X) = (H∩M)∨τ
∞ (M∩X)∨τ

∞ (F∩X) = F∩X.

Besides,

H1 ∨
τ
∞ M1 = H ∨τ

∞ (F ∩ X) ∨τ
∞ M ∨τ

∞ (F ∩ X) = F.

Therefore, M1 is an lτ∞-complement to H1 in the lattice F/τ
∞F ∩ X.

Conversely, assume that H1 has an lτ∞-complement M in the lattice
F/τ

∞F∩X. Then H1∩M = F∩X and H1∨
τ
∞M = F. Hence, by definition,

M is an Xτ
∞-complement to H1 in F.

Proof of Theorem 1. For an arbitrary lτ∞-formation L, we denote by
Ω(L) the set of all its Xτ

∞-critical subformations.
Assume that for F Condition 1) is true, and M = (F∩X)∨τ

∞(∨τ
∞(H|H ∈

Ω(F))). Assume that M 6= F. Since F ∩ X ⊆ M ⊆ F, M is an element
of the lattice F/τ

∞F∩X. Let L be an lτ∞-complement to M in the lattice
F/τ

∞F ∩ X. Then M ∨τ
∞ L = F and M ∩ L = F ∩ X. If L ⊆ X, then

L ⊆ F∩X ⊆ M and F = M∨τ
∞L = M, which contradicts to our assump-

tion. Therefore, L 6⊆ X. Hence, by Lemma 8, the formation L contains
at least one Xτ

∞-critical subformation H. Since H ⊆ L ⊆ F, we have that
H ∈ Ω(F) ⊆ M. But then H ⊆ L ∩ M = F ∩ X, a contradiction. Hence,
M = F.

Now we show that Condition 2) implies Condition 3). Let H1 be an
Xτ
∞-critical subformation of the formation F, Σ = Ω(F) \ {H1},

L = (F ∩ X) ∨τ
∞ H1 and M = (F ∩ X) ∨τ

∞ (∨τ
∞(H|H ∈ Σ)).

Then L∨τ
∞ M = F. Suppose that L∩M 6= F∩X. Since F∩X ⊆ L∩M,

we have L ∩ M 6⊆ F ∩ X, i.e., L ∩ M 6⊆ X. Then by Lemma 8, L ∩ M

contains some Xτ
∞-critical subformation H2. Since H2 ⊆ L, it follows
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from Lemma 9 that H2 = H1. But H2 ⊆ M. Hence by Lemma 9, H2 ∈ Σ,
a contradiction. Thus, L ∩M = F ∩X. It means that the formation L is
lτ∞-complemented in the lattice F/τ

∞F∩X. So, Condition 3) is true for F.
Now we assume that for F Condition 3) is true. We show that Con-

dition 1) is true. By Lemma 4, the lattice F/τ
∞F ∩ X is distributive.

Therefore, it is enough to establish that F/τ
∞F ∩ X is a complemented

lattice.
Let M be an lτ∞-irreducible τ -closed totally saturated subformation

of F, M 6⊆ X. We prove that M is an Xτ
∞-critical formation. Suppose

that it is false, and let M1 be a maximal lτ∞-subformation in M. Since M

is non-Xτ
∞-critical, M1 6⊆ X. Hence, by Lemma 8 the formation M1 has

at least one Xτ
∞-critical subformation H. Let L = H ∨τ

∞ (F ∩ X). Then
L is an element of the lattice F/τ

∞F ∩X. Let R be an lτ∞-complement to
L in F/τ

∞F ∩ X. Then F = R ∨τ
∞ L and R ∩ L = F ∩ X. By Lemma 11,

R ∩ (M ∨τ
∞ (F ∩X)) is an lτ∞-complement to L in the lattice M ∨τ

∞ (F ∩
X)/τ

∞F ∩ X. Therefore,

(R ∩ (M ∨τ
∞ (F ∩ X))) ∨τ

∞ L = M ∨τ
∞ (F ∩ X)).

By Lemma 4,

R ∩ (M ∨τ
∞ (F ∩ X)) = (R ∩ M) ∨τ

∞ (F ∩ X).

It means that

R ∩ (M ∨τ
∞ (F ∩ X)) ⊆ M1 ∨

τ
∞ (F ∩ X).

Since L ⊆ M1 ∨
τ
∞ (F ∩ X) we have that

(R ∩ (M ∨τ
∞ (F ∩ X))) ∨τ

∞ L ⊆ M1 ∨
τ
∞ (F ∩ X).

But (R ∩ (M ∨τ
∞ (F ∩ X))) ∨τ

∞ L = M ∨τ
∞ (F ∩ X). Hence,

M ∨τ
∞ (F ∩ X) ⊆ M1 ∨

τ
∞ (F ∩ X).

The inverse inclusion is obvious. Therefore,

M ∨τ
∞ (F ∩ X)) = M1 ∨

τ
∞ (F ∩ X).

But by Lemma 5 we have a lattice isomorphism

M∨τ
∞(F∩X)/τ

∞M1∨
τ
∞(F∩X) = M∨τ

∞(M1∨
τ
∞(F∩X))/τ

∞M1∨
τ
∞(F∩X) ≃

≃ M/τ
∞M ∩ (M1 ∨

τ
∞ (F ∩ X)) = M/τ

∞(M ∩ M1) ∨
τ
∞ (M ∩ F ∩ X)) =

= M/τ
∞M1 ∩ (M ∩ X) = M/τ

∞M1.
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Therefore, M1 ∨τ
∞ (F ∩ X) is a maximal τ -closed totally saturated sub-

formation of the formation M ∨τ
∞ (F ∩ X). We obtain a contradiction.

Hence, M is an Xτ
∞-critical formation.

We show now that for any lτ∞-formation R in F/τ
∞F∩X such that the

set of all its Xτ
∞-critical subformations is finite, the following equality is

true:

R = (F ∩ X) ∨τ
∞ (∨τ

∞(H|H ∈ Ω(R))). (α)

We shall prove (α) by induction on |Ω(R)|. If R is an lτ∞-irreducible
formation, then from above we know that R is a Xτ

∞-critical formation,
and (α) is true. Let R be an lτ∞-reducible formation. Since R 6⊆ X, we
have by Lemma 8 that R contains some Xτ

∞-critical formation H. Let
H1 = H ∨τ

∞ (F ∩ X). By hypothesis, H1 has an lτ∞-complement M in the
lattice F/τ

∞(F ∩ X).

By Lemma 11, M∩R is a complement to H1 in the lattice R/τ
∞(F∩X).

Then

(M ∩ R) ∩ H1 = F ∩ X and (M ∩ R) ∨τ
∞ H1 = R.

Since H 6⊆ M, the number of Xτ
∞-critical subformations of M ∩ R is

less than the number of Xτ
∞-critical subformations in R. Therefore, by

induction we can conclude that

M ∩ R = (F ∩ X) ∨τ
∞ (∨τ

∞(B|B ∈ Ω(M ∩ R))).

Hence,

R = (M ∩ R) ∨τ
∞ H1 =

= ((F ∩ X) ∨τ
∞ (∨τ

∞(B|B ∈ Ω(M ∩ R)))) ∨τ
∞ (H ∨τ

∞ (F ∩ X)) =

= (F ∩ X) ∨τ
∞ (∨τ

∞(B|B ∈ Ω(R))),

i.e., (α) is true.

Let now M be an lτ∞-subformation of F/τ
∞F ∩ X. Assume that

L = (F ∩ X) ∨τ
∞ (∨τ

∞(H|H ∈ Ω(F) \ Ω(M))).

We show that L is an lτ∞-complement to M in the lattice F/τ
∞F ∩ X.

It is obvious that F∩X ⊆ M∩L. If M∩L 6⊆ F∩X, then by Lemma 8,
M ∩ L has at least one Xτ

∞-critical subformation H. But then, using
Lemma 9, we have that H ∈ Ω(M)∩ (Ω(F)\Ω(M)) = ∅, a contradiction.
Hence, M ∩ L = F ∩ X.

Let F1 = L ∨τ
∞ M. Suppose that F1 6= F and G is a group in F \ F1.

Since π(G) is a finite set, by Lemma 7 the set of all Xτ
∞-critical

subformations of the formation R = lτ∞formG is finite. Denote by R1

the formation R ∨τ
∞ (F ∩ X). By Lemma 9, the set of all Xτ

∞-critical
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subformations of the formation R1 is finite. Therefore, by (α) we have
that

R1 = (F ∩ X) ∨τ
∞ (∨τ

∞(H|H ∈ Ω(R))).

Since Ω(R1) ⊆ Ω(F) = Ω(L) ∪ Ω(M) and F ∩ X ⊆ F1, it follows that
R1 ⊆ F1. Therefore, G ∈ F1, a contradiction. So, F = F1, and F/τ

∞F∩X

is a complemented lattice.
In particular, if X = (1), from Theorem 1 we deduce the following

result.

Theorem 2. Let F be a τ -closed totally saturated formation. Then the
following conditions are equivalent:

1) the lattice Lτ
∞(F) is Boolean;

2) F = Nπ(F);
3) every subformation of the form Np in F is complemented in F.

Proof. By Lemma 7, any (1)τ
∞-critical formation H has a form H = Np,

where p is a prime. Therefore by Theorem 1,

F = ∨τ
∞(Np | p ∈ π(F)) = Nπ(F).

Thus, Conditions 1) and 2) are equivalent to Conditions 1) and 2) of
Theorem 1.

Now we show that any subformation Np of F has a complement in F.
By Theorem 1, Condition 2) is equivalent to the following: every subfor-
mation Np of F has an lτ∞-complement. Let M be an lτ∞-complement
to Np in F. Then Np ∨τ

∞ M = F and Np ∩ M = (1). By Theo-
rem 1.3.16 [3, p. 34], F = form(∪q∈π(F)NqF

τ
∞(q)). Since F ⊆ N, we

have by Theorem 1.3.14 [3, p. 33] that Fτ
∞(q) = (1). It means that

F = form(∪q∈π(F)Nq). Since M is contained in N and is an lτ∞-formation,
we have by Theorem 1.3.16 [3, p. 34] that

M = form(∪q∈π(M)Nq) = Nπ(F)\{p}.

Hence,
F = form(Np ∪ (∪q∈π(F)\{p}Nq)) =

= form(Np ∪ form(∪q∈π(F)\{p}Nq)) = form(Np ∪ M).

Thus, M is a complement to Np in F.
Let L be a complement to Np in F. Then Np∨L = F and Np∩L = (1).

We show that L is an lτ∞-complement to Np in F. Let M = lτ∞formL.
Suppose that M 6⊆ L, and let A be a group of minimal order in M \ L.
Then A is a monolithic group, and R = Soc(A) = AL. Since A ∈ N, we
conclude that A is a p-group. If A 6= R, then from A/R ∈ L we have
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Np ∩L 6= (1), a contradiction. It means that A = R, and A is a group of
order p. By Theorem 1.1.5 [3, p. 14], π(M) = π(L). Therefore, p ∈ π(L).
Since L ⊆ N, we have Np ∩ L 6= (1), a contradiction. Hence, M = L.
Thus, L is an lτ∞-complement to Np in F.

Theorem 2 gives the answer to Question 4.3.16 [3, p. 178].
In the case when τ(G) = S(G) is the set of all subgroups of G, from

Theorem 1 we have the following.

Corollary 1. Let F be a hereditary totally saturated formation. Then the
following conditions are equivalent:

1) the lattice LS
∞(F) is Boolean;

2) F = Nπ(F);
3) every subformation of the form Np in F is complemented in F.

If τ(G) = Sn(G) is the set of all normal subgroups of G, from Theorem
1 we have

Corollary 2. Let F be a normal hereditary totally saturated formation.
Then the following conditions are equivalent:

1) the lattice LSn

∞ (F) is Boolean;
2) F = Nπ(F);
3) every subformation of the form Np in F is complemented in F.

Corollary 3. [3, p. 177]. Let F be a soluble totally saturated formation.
Then the following conditions are equivalent:

1) the lattice L∞(F) is Boolean;
2) F = Nπ(F);
3) every subformation of the form Np in F is complemented in F.

Let τ be a trivial subgroup functor. Then from Theorem 1 we obtain
the following.

Corollary 4. Let F and X be totally saturated formations, F 6⊆ X ⊆ N.
Then the following conditions are equivalent:

1) the lattice F/∞F ∩ X is Boolean;
2) F = (F ∩ X) ∨∞ (∨∞(Hi|i ∈ I)), where {Hi|i ∈ I} is the set of all

X∞-critical subformations of F;
3) every subformation of the form (F∩X)∨∞ H in F is complemented

in F/∞F ∩ X, where H is some X∞-critical subformation of F;
4) any X∞-critical subformation of F has an X∞-complement in F.

Corollary 5. [12]. Let F be a totally saturated formation. Then the
following conditions are equivalent:

1) Lτ
∞(F) is a complemented lattice;
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2) F = Nπ(F);

3) the lattice Lτ
∞(F) is Boolean;

4) every subformation of the form Np in F is complemented in F.

In the case when X = N from Theorem 1 we have

Corollary 6. Let F be a non-nilpotent τ -closed totally saturated forma-
tion. Then the following conditions are equivalent:

1) the lattice F/τ
∞F ∩ N is Boolean;

2) F = (F ∩ N) ∨τ
∞ (∨τ

∞(Hi|i ∈ I)), where {Hi|i ∈ I} is the set of all
Nτ

∞-critical subformations of F;

3) every subformation of the form (F ∩ X) ∨τ
∞ H in F is lτ∞-comple-

mented in F/τ
∞F ∩ X, where H is some Nτ

∞-critical subformations of F.

4) every subformation of the form NpNq in F has an Nτ
∞-complement

in F.

Corollary 7. [6]. Let F be a non-nilpotent totally saturated formation.
Then the following conditions are equivalent:

1) F/∞F ∩ N is a complemented lattice;

2) formation F is soluble, and the lattice F/∞F ∩ N is algebraic; fur-
thermore, F = (F ∩ N) ∨∞ (∨∞(Hi|i ∈ I)), where {Hi|i ∈ I} is the set of
all N∞-critical subformations in F;

3) the lattice F/τ
∞F ∩ N is Boolean.

Proof. By Lemma 7, every N∞-critical formation is soluble. Then from
Condition 2) of Theorem 1 the formation F is soluble. By Lemma 6, the
lattice lτ∞ is algebraic for every subgroup functor τ . Therefore, the lattice
F/τ

∞F∩N is also algebraic (it is a sublattice of complete algebraic lattice
lτ∞). Applying Theorem 1 and Lemma 4 we conclude that Conditions 1)
and 3) are equivalent.

Corollary 8. Let F and X be hereditary totally saturated formations,
F 6⊆ X ⊆ N. Then the following conditions are equivalent:

1) the lattice F/S
∞F ∩ X is Boolean;

2) F = (F ∩ X) ∨S
∞ (∨S

∞(Hi|i ∈ I)), where {Hi|i ∈ I} is the set of all
XS
∞-critical subformations of F;

3) every subformation of the form (F∩X)∨S
∞ H in F is complemented

in F/S
∞F ∩ X, where H is some XS

∞-critical subformations of F;

4) any XS
∞-critical subformation of F has an XS

∞-complement in F.

Corollary 9. Let F and X be normal hereditary totally saturated forma-
tions, F 6⊆ X ⊆ N. Then the following conditions are equivalent:

1) the lattice F/Sn

∞ F ∩ X is Boolean;
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2) F = (F ∩ X) ∨Sn

∞ (∨Sn

∞ (Hi|i ∈ I)), where {Hi|i ∈ I} is the set of all
XSn

∞ -critical subformations of F;

3) every subformation of the form (F∩X)∨Sn

∞ H in F is complemented
in F/Sn

∞ F ∩ X, where H is some XSn

∞ -critical subformations of F;

4) any XSn

∞ -critical subformation of F has an XSn

∞ -complement in F.

Corollary 10. Let F be a non-nilpotent hereditary totally saturated for-
mation. Then the following conditions are equivalent:

1) the lattice F/S
∞F ∩ N is Boolean;

2) F = (F ∩ N) ∨S
∞ (∨S

∞(Hi|i ∈ I)), where {Hi|i ∈ I} is the set of all
NS

∞-critical subformations of F;

3) every subformation of the form (F∩N)∨S
∞H in F is complemented

in F/S
∞F ∩ N, where H is some NS

∞-critical subformations of F;

4) every subformation of the form NpNq in F has an NS
∞-complement

in F.

Corollary 11. Let F be a non-nilpotent normal hereditary totally satu-
rated formation. Then the following conditions are equivalent:

1) the lattice F/Sn

∞ F ∩ N is Boolean;

2) F = (F ∩ N) ∨Sn

∞ (∨Sn

∞ (Hi|i ∈ I)), where {Hi|i ∈ I} is the set of all
NSn

∞ -critical subformations of F;

3) every subformation of the form (F∩N)∨Sn

∞ H in F is complemented
in F/Sn

∞ F ∩ N, where H is some NSn

∞ -critical subformations of F;

4) every subformation of the form NpNq in F has an NSn

∞ -complement
in F.
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