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ABSTRACT. A ballean (or a coarse structure) is a set en-
dowed with some family of subsets which are called the balls. The
properties of the family of balls are postulated in such a way that
a ballean can be considered as an asymptotical counterpart of a
uniform topological space.

We prove that every ballean of bounded geometry is coarsely
equivalent to a ballean on some set X determined by some group
of permutations of X.

1. Ball structures and balleans

A ball structure is a triple B = (X, P, B), where X, P are nonempty
sets and, for any z € X and o € P, B(z,«) is a subset of X which is
called a ball of radius e around x. It is supposed that = € B(x, o) for all
x € X,a € P. The set X is called the support of B, P is called the set of
radii. Given any x € X, A C X, € P we put

B*(z,a) ={y€ X :z € B(y,a)}, B(A,«a) = U B(a, )
acA

A ball structure is called

e lower symmetric if, for any «, 3 € P, there exist o/, 3’ such that,
for every z € X,

B*(z,d') € B(x,a), B(z,5) C B*(z,B);
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e upper symmetric if, for any a, 3 € P, there exist o/, 3’ such that,
for every z € X,

B(z,a) C B*(z,d), B*(z,8) € B(x,');

e lower multiplicative if, for any «, 3 € P, there exists v € P such
that, for every z € X,

B(B(x,7),7) € B(z,a)N B(z, §);

o upper multiplicative if, for any «, 3 € P, there exists v € P such
that, for every z € X,

B(B(z, ), 3) € B(x,7)-

Let B = (X, P, B) be a lower symmetric and lower multiplicative ball
structure. Then the family

{U B(z, ) xB(x,a):ozGP}

zeX

is a base of entourages for some (uniquely determined) uniformity on X.
On the other hand, if Y C X x X is a uniformity on X, then the ball
structure (X,U, B) is lower symmetric and lower multiplicative, where
B(z,U) = {y € X : (z,y) € U}. Thus, the lower symmetric and lower
multiplicative ball structures can be identified with the uniform topolog-
ical spaces.

We say that a ball structure B is a ballean if B is upper symmetric and
upper multiplicative. In this paper we follow terminology from [6, 7]. A
structure on X, equivalent to a ballean, can also be defined in terminology
of entourages. In this case it is called a coarse structure [8] or a uniformly
bounded space [5]. For motivations to study balleans see also [1, 2, 4].

2. Morphisms

Let By = (X1, P, By), Bs = (X2, Py, By) be balleans. A mapping f :
X1 — Xj is called a <-mapping if, for every a € Py, there exists G € P,
such that, for every z € X7,

f(Bl(CE,Oé)) - B2(f(x)7/8)

A bijection f: X7 — Xy is called an asymorphism between Bi and By if
f and f~! are <-mappings.
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Let B = (X, P, B) be a ballean, S be a set. Two mappings f, f': S —
X are called close if there exists a € P such that f'(s) € B(f(s),«) for
every s € S.

Two balleans By = (X1, P1, B1) and By = (X2, Pe, Ba) are called
coarsely equivalent if there exist the <-mappings f1 : X1 — Xo, fo :
X9 — X7 such that f; o fo, fo o fi are close to the identity mappings
idx,, idx,.

Let B = (X, P, B) be a ballean. Every non-empty subset ¥ C X
determines the subballean By = (Y, P, By ), where By (y,a) = B(Y,a)N
Y,yeY,a e P. AsubsetY is called large if there exists v € P such that
B(Y,y) = X. If Y is large, then By and B are coarsely equivalent. We
shall use also the following observations. Two balleans B = (X1, P1, By)
and By = (Xa, Py, By) are coarsely equivalent if and only if there exist
the large subsets Y7 C X;,Y> C X5 such that the subballeans By, and
By, are asymorphic.

3. Density and capacity

Let B = (X,P,B) be a ballean, Y C X, S CY, a € P. We say that
a subset S is a-dense in Y if Y C B(S,a). An a-density of Y is the
cardinal

den(Y) = min{|S| : S'is an o — dense subset of Y'}.

A subset S of X is called a-separated if B(x,a) N B(y,a) = & for all
distinct z,y € S. An a-capacity of Y is the cardinal

capa(Y) = sup{|S| : S is an a — separated subset of Y'}.

Let B = (X, P,B) be an arbitrary ballean. Replacing every ball
B(z,a) to B'(z,a) = Bz, ) N B*(z, ), we get the asymorphic ballean
B' = (X, P,B’) with (B')* = B’. Thus, in what follows we may suppose
that B*(z,a) = B(z,a) for all x € X, a € P.

Lemma 1. Let B = (X,P,B) be a ballean, Y C X, a,f € P and
B(B(z,«)) C B(x,8) for every x € X. Then the following statements
hold

(i) deng(Y) < capa(Y) < deng(Y);

(it) if Z C X and Y C B(Z,«), then deng(Y') < |Z].

Proof. (1) Let S be an a-separated subset of Y, D be an a-dense subset
of Y. Then every ball B(z,«), x € D has at most one point of S. Since

SCY C | B(zx,a), we have |S| < |D|, so capa(Y) < deng(Y').
€D
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Let S be a maximal by inclusion a-separated subset of Y. Then every
ball B(x,«), z € Y meets at least one ball B(y,«), y € S. It follows that
Y C U B(x,8),s0 S is B-dense in Y and deng(Y) < capa(Y).

zes

(ii) Weput 72/ = {2z € Z: B(z,a) NY # &} and, for every z € 7/,
pick some point y, € B(z,«) NY. Then the subset {y, : z € Z'} of Y is
B-dense in Y, so deng(Y) < |Z'| < |Z|. O

4. Locally finite balleans

A ballean B = (X, P, B) is called locally finite if every ball B(z, ), x € X,
« € P is finite.

Let B = (X,P,B), B = (X', P',B’) be balleans, f : X — X’ be
an injective <-mapping. If B’ is locally finite then B is locally finite. In
particular, every ballean asymorphic to a locally finite ballean is locally
finite.

We say that a ballean B is coarsely locally finite if B is coarsely equiv-
alent to some locally finite ballean.

Proposition 1. A ballean B = (X, P, B) is coarsely locally finite if and
only if there exists 3 € P such that 3-capacity of every ball B(z,v),x € X,
v € P is finite.

Proof. Let B = (X', P', B') be a locally finite ballean coarsely equivalent
to B. Then there exist the large subsets Y C X, Y/ C X’ such that
the subballeans By and By: are asymorphic. We choose @ € P such
that B(Y,a) = X and take an arbitrary x € X, v € P. Since By
is locally finite then the subset Z = B(B(z,7),a) NY is finite. Since
B(z,v) € B(Z,«), by Lemma 1 (ii), deng(B(z,v)) < |Z|. Since Z is
finite, by Lemma 1(i), B-capacity of B(x,~) is finite.

On the other hand, let [-capacity of every ball B(z,~) is finite. We
choose a maximal by inclusion (3-separated subset Y of X. Clearly, Y is
large in X, so By is coarsely equivalent to B. Since capgB(x,7) is finite,
then B(x,v) NY is finite. Hence, By is locally finite. O

Every metric space (X,d) determines the metric ballean B(X,d) =
(X,R*, By), where By(a,7) = {y € X : d(x,y) < r}. For criterion of
metrizability of balleans see |7, Theorem 2.1.1]. A metric space is called
proper if every ball By(x,r) is compact.

Corollary 1. Let (X,d) be a proper metric space. Then the metric bal-
lean B(X,d) is coarsely locally finite.

Proof. Tt suffices to note that an 1-capacity of every ball in (X, d) is finite,
and apply Proposition 1. ]
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5. Uniformly locally finite balleans

A ballean B = (X, P, B) is called uniformly locally finite if there exists a
function h : P — w such that |B(z,a)| < h(a) for all z € X, a € P.

Let B = (X,P,B), B = (X', P',B’) be balleans, f : X — X’ be
an injective <-mapping. If B’ is uniformly locally finite then so is B. In
particular, every ballean asymorphic to an uniformly locally finite ballean
is uniformly locally finite.

We say that a ballean B = (X, P, B) has bounded geometry if there
exist # € P and a function h : P — w such that capgB(z,a) < h(«) for
allz € X, a € P.

Repeating the arguments proving Proposition 1 we get the following
statements.

Proposition 2. A ballean B = (X, P, B) has bounded geometry if and
only if B is coarsely equivalent to some uniformly locally finite ballean.

Example 1. Let I'(V, E) be a connected graph with the set of vertices
V and the set of edges E. Given any u,v € V, we denote by d(u,v) the
length of a shortest path between u and v. Then we get the metric space
(V,d) associated with T'(V, E) and the metric ballean B(V,d). Clearly,
B(V,d) is uniformly locally finite if and only if there exists a natural
number r such that |Bg(v, 1)| < r for every v € V.

Example 2. Let G be a finitely generated group with the identity e, F'
be a symmetric (F = F~!) set of generators of G such that e ¢ F. The
Cayley graph Cay(G, F) is a graph with the set of vertices G and set of
edges {{u,v} : uv™! € F}. Let dr be a path metric on Cay(G, F). Then
the metric ballean B(G,dr) is uniformly locally finite.

Example 3. Let G be an arbitrary group, F. the family of all symmetric
subsets of G containing e. Then we get a ballean B(G) = (G, F., B),
where B(g, F') = Fg. Clearly, B(G) is uniformly locally finite and in the
case G is finitely generated, B(G) is asymorphic to the ballean B(G, dr)
determined in Example 2.

Example 4. Let G be a group and X be a G-space with the action
of G on X defined by (g,z) — g(x). We denote by F. the family of
all finite symmetric subsets of G containing e. Then we get the ballean
B(G,X) = (X,F.,B), where B(z,F) ={g(z): g€ F},z € X, F € Fe.
Clearly, B(G, X) is uniformly locally finite.

Example 5. Let G be a gruppoid (=inverse semigroup) of partial bi-
jections of a set X, F be a family of all finite subsets of G such that
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F = F~! for every F € F. Given any z € X and F € F, we put
B(z,F) = {z} U{g(x) : ¢ € F} and get the uniformly locally finite
ballean B(G, X).

Example 6. Let G be a locally compact topological group, C be the
family of all compact symmetric subsets of G containing e. Then, by
Proposition 5.1, the ballean B(G) = (G, C, B), where B(z,C) = Cxz, is
of bounded geometry.

Remark 1. Let G be a locally compact group. Does there exist a discrete
group D such that the balleans B(G) and B(D) are coarsely equivalent?
This is so if G is Abelian or a connected Lie group.

6. (G-space realization

Let B, B’ be balleans with the same support X. We write B < B’ if the
identity mapping id : X — X is a <-mapping from B to B'. If B < B’
and B’ < B, we identify B and B’ and write B = B'.

Let B be a uniformly locally finite ballean with the support X. Ap-
plying Lemma 4.10 from [8], one can show that there exists a gruppoid
G of partial bijections of X such that B = B(G, X) where B(G,X) is a
ballean determined in Example 5. Our next result states that instead of
the gruppoid G we can take some group of permutations of X.

Theorem 1. For every uniformly locally finite ballean B = (X, P, B),
there exists a group G of permutations of X such that B = B(G, X).

Proof. We fix an arbitrary o € P and choose § € P such that
B(B(z,a), ) C B(z, )

for each z € X. Then we define the graph I'3 with the set of vertices
X and the set of edges E defined by the rule: {z,y} € E3 if and only
if z € B(y,3). Since B is uniformly locally finite, there exists a natural
number n(c) such that the local degree of every vertex of I'g does not
exceed n(a). By [3, Corollary 12.2], the chromatic number of I'g does not
exceed n(a) + 1. It follows that we can partition X = Xy U...U X} 0)41
so that any two vertices from X; are non-adjacent, in particular, every
subset X; is a-separated.

Now we fix i € {1,...,n(«) + 1} and, for every vertex x € X;, enu-
merate the set B(z,a)\{z} = {z(1),...,z(ny)}, where ny < n(a). Then
we define the set S;(a) of n(a) permutations of X as follows. For each
je{l,...;n(e)} and z € X;, we put mj(x) = x(j), mj(z(j)) = x if
Jj < ng, and mj(x) = z otherwise. Then we extend m to X putting
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mj(y) =y forall y € X\ U {z,2(j)}. Since X; is a-separated, this
reX;
definition is correct. Thus, we get the set Si(a) = {m1,..., Ty} of per-

mutations of X. We put S(a) = Si(a) U...U Sy (q)+1(a) and denote by

G the group of permutations of X generated by |J S(«).
acP
At last we show that the identity mapping id : X — X is an asymor-

phism between B and the ballean B(G, X) = (X, F., B") determined in
Example 5.4. Given any « € P and z € X, we have B(z,a) C B'(z,S,).
On the other hand, let F' be a finite subset of G, g € F. Then there
exists aq, ...,y € P and s(ay) € S(an),. .., s(am) € S(am) such that
g = S(am)...s(ar). We choose 74 € P such that

B(...(B(B(z,a1),02),...),0m) € B(z,7y)

for every x € X. Then B'(z,{g}) C B(x,7y) for every x € X. Since
F' is finite, there exists v € P such that, for each z € X, we have
Bz, F) C B(z,). 0

Sticking together Proposition 1 and Theorem 1 we get the following
statement.

Theorem 2. Fvery ballean of bounded geometry is coarsely equivalent to
some ballean B(G, X) of G-space X.

We conclude our paper with two applications of Theorem 1.

Theorem 3. Let X be a set, Sx be a group of all permutations of X.
Then B(Sx,X) is the strongest uniformly locally finite ballean on X .

Proof. Let B’ be a uniformly locally finite ballean on X. Using Theorem
1, we choose a group G of permutations of X such that B = B(G, X).
Since G is a subgroup of Sx, we have B < B(Sx, X). O

A ballean B = (X, P, B) is called connected if, for any x,y € X, there
exists @ € P such that y € B(x,«a). Clearly, a ballean B(G,X) of a
G-space is connected if and only if G acts transitively on X.

Let By = (X4, P1,B1), Bo = (X2, Py, By) be balleans. A mapping
f X1 — Xy is called a =—-mapping if, for every B € P, there exists
a € Py such that Ba(f(x),3)) C f(Bi(z,a)) for each x € X;. A bijection
f: X1 — Xy is a =-mapping if and only if f~! is a <-mapping. Thus,
By and Bs are asymorphic if and only if there is a bijection f : X; — X2
which is a <-mapping and a >-mapping.

Theorem 4. For every connected uniformly locally finite ballean B on
a set X, there exist a group G of permutations of X and a surjective
mapping f : G — X which is a <-mapping and a =-mapping from B(Q)
to B.
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Proof. Applying Theorem 1, we identify B with B(G, X) for some group
G of permutations of X. Then we fix g € X and, for every g € G, put
f(g) = g(xo). Since B is connected, (G, X) is a transitive G-space, so f
is surjective. For any finite subset F' of G, we have f(Fg) = Fg(z9) =
F(g(xo)) = F(f(g)). It follows that f is a <-mapping and a =-mapping,.

Let (G, X) be a transitive G-space, xp € X. If St(zg) = {9 € G :
g(zp) = zo} is finite, applying Theorem 4, it is easy to show that the
balleans B(G) and B(G, X) are coarsely equivalent. O

Remark 2. Let (G, X) be a transitive G-space. How to detect whether
the ballean B(G, X) is asymorphic (coarsely equivalent) to the ballean
B(H) of some group H?
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