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Introduction

One of the foundations of the theory of modules over group rings is group
theory. Modules evolved in group theory in a natural way. Let G be
a group. Suppose that G includes an abelian normal subgroup A. If
H = G/A, then H acts on A in the following way: if ℎ = gA ∈ H
and a ∈A, then we define aℎ = ag = g−1ag. Since A is an abelian
subgroup, this definition depends only on ℎ. If n ∈ Z, then we put
anℎ = (an)ℎ = (aℎ)n. Every element x ∈ ZH can be expressed as a sum

x = n1y1 + ...+ nkyk

where nj ∈ Z, yj = gjA, j = 1, ..., k. Then we put

a(n1y1 + ...+ nkyk) = (ag1)n1 ...(agk)nk .

It is easy to see that this transforms A into a ZH-module. If A is a
periodic group, then quite often we may replace A by one of its primary
p-components. This allows us to assume that A is a p-subgroup where p
is a prime. Thus we arrive to a p-module over the ring ZH. In this case,
the structure of the lower layer

P1 = Ω1(A) = {a ∈ A∣pa = 0}



Jo
u
rn

al
 A

lg
eb

ra
 D

is
cr

et
e 

M
at

h
.98 Theory of modules over group rings

of A significantly influences the structure of A. Since P1 is an elementary
abelian p-subgroup, we may think of P1 as a module over the ring FpH
where Fp is a prime field of order p. If A is a torsion-free group, then we
can consider a divisible envelope E = A⊗ZQ of ZH-module A. Naturally,
the action of H on A can be uniquely extended to the action of H on E.
In this case, we come to a module FG where F is a field. This shows that
the case when a scalar ring of the group ring is a field is a major one.
The described approach allows to employ module- and ring- theoretical
methods for characterization of considered groups. This relatively old
idea has shown itself to be very efficient in finite groups. The progress
made in finite groups naturally led to the implementation of this approach
to infinite groups that are closely related to finite groups, namely, to
infinite groups with some finiteness conditions. It is well known that
many significant results of ring theory are related to finiteness conditions,
especially the classical minimal and maximal conditions. That is why,
artinian and noetherian rings form two largest and richest branches of
ring theory.

Naturally, a progress in study of noetherian and artinian modules
stimulated investigations of similar objects in other fields of algebra.
Thus, intensive investigations of infinite groups with the minimal and
maximal conditions have been initiated by S.N. Chernikov and R. Baer
whose researches play a key role there. The study of groups with the min-
imal and maximal conditions is carried out by methods of group theory.
This study does not require implementation of other methods. However
investigation of soluble groups with the maximal and minimal condition
on normal subgroups (Max-n and Min-n) was impossible without seri-
ous implementation of module theory. The classical papers of P. Hall
([10], [11], [12]) played a key role in the employing of both module- and
ring- theoretical methods in study of soluble groups. The investigation of
abelian-by-nilpotent groups satisfying the maximal condition for normal
subgroups led P. Hall to consideration of noetherian modules over a ring
of the form ZH where H is a finitely generated nilpotent group. Main
basic connections between groups, rings and modules are established due
to the following result of P. Hall: if R is a noetherian ring and G is a
polycyclic-by-finite group, then the group ring RG is likewise noetherian.
This result stimulated the further development of the theory of group
rings of polycyclic-by-finite groups as well as the theory of modules over
polycyclic-by-finite groups ( see, for example, the following surveys and
books D.R. Farkas [7], K.W.Gruenberg [9], D. Passman ([38], [39], [40]),
J.E. Roseblade [43]). Investigation of soluble groups with the minimal
condition for normal subgroups began significantly later. This investiga-
tion requires the study of artinian modules over a ring of the type ZH
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where H is a Chernikov group. B. Hartley and D. McDougal [14] ob-
tained a description of such modules and metabelian groups satisfying
the minimal condition for normal subgroups. This paper was also an
origin for investigation of artinian modules over group rings. It is very
important to note that a group ring of a Chernikov group is not artinian.
This fact essentially complicates the consideration of modules over group
rings of Chernikov groups. Therefore, properties of group rings don’t play
here such a significant role as in the theory of modules over polycyclic-
by-finite groups. First and foremost, some other properties come out
here. These properties pertaining to the existence of complements, the
structure of injective envelopes, and others. The theory of modules over
group rings has its own themes for research. We discuss some important
recent development in this area.

§1. Just infinite modules

Consider first just infinite modules. Investigation of these modules is
particularly important in connection with generalized soluble groups with
the weak minimal and maximal conditions for normal subgroups [20].
These modules arise in the following way. Let A be an infinite noetherian
module over a ring R, ℳ = {C∣C is an R - submodule of A such that
A/C is infinite}. Then ℳ has a maximal element M . Put V = A/M . If
U is a non- zero submodule of V then V/U is finite. The following two
cases are possible here:

(i) V includes a non-zero simple submodule S;
(ii) the intersecton of the family of all non-zero submodules of V is

zero.
Consider the first case. The submodule S is infinite and V/S is finite.

Therefore, it could be reduced to the cases of infinite simple modules
and finite modules. Moreover, for some types of rings R the module
V is exactly a simple module; for example, if R = ZG, where G is a
hypercentral ( even an FC-hypercentral) group. Hence the second case
here is the main one.

Let R be a ring. An R-module A is said to be just infinite if it satisfies
the following conditions:

(JI 1) for every submodule B of A the factor-module A/B is finite;
(JI 2) the intersection of the family of all non-zero submodules of A

is zero.
The term “just infinite modules” belongs to D. J. S. Robinson and J. S.

Wilson [42]. These modules have appeared under the name “the minimal
infinite modules” in [50]. Further researches have shown that these mod-
ules play an important role in the study of groups whose proper factor-
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groups belong to some class X of groups (just non-X -groups). Just infi-
nite modules play a crucial role in the study of generalized soluble groups
with the weak maximal and minimal conditions for normal subgroups and
in some other important investigations. Furthemore, in study of different
types of noetherian modules the reduction to just infinite modules allows
us to obtain their description and establish their important properties.

The following important structural theorem is the basic theorem for
just infinite modules over many important natural types of groups. In
the case when a scalar ring R is a principal ideal domain, it was obtained
in the paper [15]. In other papers, the main case was often the case when
a scalar ring R is a principal ideal domain. Just infinite modules were
studied in ([8], [24], [28], [29], [30], [31], [36], [50]). In [25] all results were
etanded to the case when a scalar ring R is a Dedekind domain. Here we
adduce the results in a more general form.

An infinite Dedekind domain D is said to be a Dedekind Z0-domain,
if for every maximal ideal P of D the factor-ring D/P is finite.

Theorem 1.1. Let D be a Dedekind Z0-domain, G be a group, A be
a just infinite DG-module, which is a D-torsion-free, CG(A) =< 1 >.
Then D is embedded in a principal ideal domain J and DG-module A is
embedded in a JG-module V with the following properties:

(1) V is a free J-module;
(2) V is a finitely generated module as J-module;
(3) CG(V ) =< 1 >;
(4) V is a just infinite JG-module.

This theorem makes possible a reduction to the case of a simple mod-
ule. The following corollary justifies this fact.

Corollary 1.2. Let D be a Dedekind Z0-domain, G be a group, A be
a a DG-module which is a D-torsion-free, CG(A) =< 1 >. If A is a
just infinite DG-module, then there exists a field F ≥ D and a simple
FG-module B ≥ A such that CG(B) =< 1 > and dimF(B) is finite.

Corollary 1.3. Let D be a Dedekind Z0-domain, G be a locally radical
group, A be a DG-module which is a D-torsion-free, CG(A) =< 1 >. If
A is a just infinite DG-module then G is an abelian-by-finite group.

The statements 1.1 - 1.3 slightly generalize the main result of [15].
The following theorem describes the structure of just infinite DG-

module A when A is a D-torsion-free.

Theorem 1.4. Let D be a Dedekind Z0-domain, G be an FC-hypercentral
group, A be a just infinite DG-module which is D-torsion-free. If CG(A) =<
1 > then G includes a normal torsion-free abelian subgroup of finite index.
Moreover, if char(D) = p > 0 then Op(G) =< 1 >.
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In the case when a scalar ring D is a principal ideal domain, this
theorem was proved in [8].

Corollary 1.5. Let D be a Dedekind Z0-domain, G be an FC-group, A
be a just infinite DG-module which is D-torsion-free. If CG(A) =< 1 >,
then G/�(G) is finite. Moreover, a center �(G) includes a torsion-free
subgroup of finite index. If char(D) = p > 0, then Op(G) =< 1 >.

Corollary 1.6. Let D be a Dedekind Z0-domain, G be a locally rad-
ical group, A be a just infinite DG-module which is D-torsion-free. If
CG(A) =< 1 >, then G includes a normal abelian torsion-free subgroup
of finite index. Moreover, if char(D) = p > 0, then Op(G) =< 1 >.

The next result shows that in some special cases a reduction to a
torsion-free case is possible.

Proposition 1.7. Let D be a Dedekind Z0-domain, G be a group, x be
an element of infinite order of a center �(G), A be a just infinite DG-
module, CG(A) =< 1 >. If A is D-periodic, then AnnD(A) = P is a
maximal ideal of D. If F = D/P , then A is F < x >-torsion-free.

Corollary 1.8. Let D be a Dedekind Z0-domain, G be an FC-hypercentral
( respectively locally radical ) group, the center of which contains elements
of infinite order, A be a just infinite DG-module, CG(A) =< 1 >. If A
is D-periodic module, then AnnD(A) = P is a maximal ideal and G in-
cludes a normal abelian torsion-free subgroup of finite index. Moreover,
Op(G) =< 1 > where p = char(D/P ).

Under the condition when the 0-rank of a group is finite, it is possible
to obtain some additional specific information about both the group G
and the structure of just infinite modules over G.

A group G is said to have finite 0− rank r0(G) = r if it has a finite
subnormal series with exactly r infinite cyclic factors, being the others
periodic. We note that every refinement of one of these series has only
r factors which are infinite cyclic; any two finite subnormal series have
isomorphic refinements. This allows us to convince ourselves that the 0-
rank is independent of the series. This numerical invariant is also known
as the torsion-free rank of G .

We shall need some assumptions on the underlying ring of coefficients.
A Dedekind Z0-domain D is called a Dedekind Z1-domain if the set
of all maximal ideals of D is infinite.

The description of just infinite modules over groups of finite 0-rank
falls into two parts depending on a characteristic of a scalars ring.

Theorem 1.9. Let D be a Dedekind Z1-domain of characteristic 0, G
be an FC-hypercentral group of finite 0-rank and A be a just infinite
DG-module which is D-torsion-free, CG(A) =< 1 >. Then A has finite
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D-rank and G includes a torsion-free abelian normal subgroup of finite
index. Moreover, if K is the field of fractions of D, then G is isomorphic
to an irreducible subgroup of GLn(K) where n is a D-rank of A.

A module A is called a minimax module if it possesses a finite series of
submodules with either artinian or noetherian factors. An abelian group
A is called minimax, if it is minimax as a Z-module.

If R is a noetherian ring and A is a minimax R-module, then it is not
hard to show that A includes a noetherian submodule B such that A/B
is artinian.

Corollary 1.10. Let G be an FC-hypercentral group of finite 0-rank and
A be a torsion-free just infinite ZG-module with CG(A) =< 1 >. Then
the following assertions hold:

(i) G is a finitely generated abelian-by-finite group.
(ii) The additive group of A is minimax.

Corollary 1.11 [15]. Let G be a locally radical group of finite 0-rank and
A be a torsion-free just infinite ZG-module with CG(A) =< 1 >. Then
the following assertions hold:

(i) G is a finitely generated abelian-by-finite group.
(ii) The additive group of A is minimax.

Theorem 1.12. Let D be a Dedekind Z1-domain with char(D) = p > 0,
G be an abelian-by-finite group of finite 0-rank, A be an just infinite DG-
module, CG(A) =< 1 >. If A is D-torsion-free and p ∕∈ Sp(G), then A
has finite D-rank n. Moreover, G is isomorphic to an irreducible subgroup
of GLn(K) where K is the field of fractions for D.

Theorem 1.13. Let F be a finite field, < x > be an infinite cyclic group,
D = F < x >, G be an FC-hypercentral group of finite 0-rank and A be
a just infinite DG-module which is D-torsion-free, CG(A) =< 1 >. Then
the following assertions hold:

(i) G is a finitely generated abelian-by-finite group.
(ii) A is D-minimax.

Corollary 1.14 [15]. Let F be a finite field, < x > be an infinite cyclic
group, D = F < x >, G be a locally radical group of finite 0-rank and A
be a D-torsion-free just infinite DG-module with CG(A) =< 1 >. Then
the following assertions hold:

(i) G is a finitely generated abelian-by-finite group.
(ii) A is D-minimax.

Corollary 1.15. Let D be a Dedekind Z0-domain, G be an FC-hypercentral
group whose center contains an element x of infinite order and A be a D-
periodic just infinite DG-module with CG(A) =< 1 >. Then the following
assertions hold:



Jo
u
rn

al
 A

lg
eb

ra
 D

is
cr

et
e 

M
at

h
.V. V. Kirichenko, O. Yu. Dashkova 103

(i) G is a finitely generated abelian-by-finite group.

(ii) AnnD(A) = P is a maximal ideal of D.

(iii) A is a torsion-free F < x >-minimax module, where F = D/P .

§2. Strong Noetherian modules

If A is a just infinite RG-module, then a scalar ring R must have finite
homomorphic images. But not every ring has this property. Natural gen-
eralization of finite modules is noetherian and artinian modules. In [34]
it was introduced a natural generalization of just infinite modules. Let R
be a noetherian ring, G be a group, A be a noetherian RG-module. If A
is noetherian as an R-module, then A is finitely generated over R. This
situation is rather well investigated for many types of noetherian rings,
especially, in representation theory. Suppose that A is non-noetherian
R-module. Let ℳ = {B∣B is an RG-submodule of A such that A/B is
not noetherian as R-module }.

Since < 0 >∈ ℳ, then ℳ ∕= ∅. Since A is a noetherian RG-module,
the ordered by inclusion set ℳ has a maximal element M . If E ≥ M
and E ∕= M , then the factor-module A/E is noetherian as an R-module.

Let R be a noetherian ring, G be a group, A be an RG-module.
Following [34], we say that A is a strong noetherian RG-module if A is
not noetherian R-module but every its proper factor-module (that is a
factor-module by a non-zero submodule) is noetherian as an R-module.

Thus, every noetherian RG-module which is not noetherian as an R-
module has a strong noetherian factor-module. This shows that the study
of the strong noetherian RG-modules is one of the important stages in
the process of investigation of noetherian RG-modules. The following
two cases appeared for strong noetherian RG-module À:

(NM) The intersection of all non-zero RG-submodules is zero.

(M) A includes the least non-zero RG-submodule B ( i.e. A is a
monolithic RG-module with the monolith B).

Consequently, the study of the strong noetherian RG-modules splits
into two natural cases: the cases of non-monolithic and monolithic mod-
ules. The non-monolithic strong noetherian RG-modules have been in-
vestigated in the papers of L.A. Kurdachenko and I.Ya. Subbotin ([33],
[34]). Consider the following useful result on existence of complements in
modules.

Proposition 2.1 [34]. Let H be a commutative algebra with identity
over a field, F be a field and let A be an H-module. Suppose that B is
an H-submodule of A satisfying the following conditions:

(i) dimF(A/B) is finite;
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(ii) B has a finite composition H-series, every factor of which has an
infinite dimension over F .

Then there exists a submodule C of A (necessary isomorphic to A/B)
such that A = B ⊕ C.

Let R be an integral domain, A be an R-module which is R-torsion-
free. A submodule B is said to be R− pure , if A/B is R-torsion-free.

If R is a noetherian integral domain, G is a group, A is a strong
noetherian RG-module, then put ℬ(A) = {B ∣B is the non-zero R-pure
RG-submodule of A }.

Naturally, the following two situations arise:

∩ℬ(A) ∕=< 0 > and ∩ℬ (A) =< 0 >.

In the first case we have

Proposition 2.2 [34]. Let R be a noetherian integral domain, G be an
FC-hypercentral group, A be a strong noetherian RG-module which is R-
torsion-free. If A has an infinite R-rank and ∩ℬ(A) = C ∕=< 0 > then
A = C. In particular, A⊗R F is a simple FG-module where F is a field
of fractions for a ring R.

The following result is useful in the reduction to the case when a
scalar ring is a field.

Proposition 2.3 [34]. Let R be a noetherian integral domain, G be
a group, A be a strong noetherian RG-module which is R-torsion-free,
CG(A) =< 1 >. Suppose that ∩ℬ(A) =< 0 >. If F is a field of frac-
tions for a ring R then an FG-module E = A ⊗R F has the following
properties:

(i) every proper FG-factor-module of E has a finite F -dimension;

(ii) CG(E) =< 1 >.

The next our step is a consideration of the case of strong noetherian
FG-modules where F is a field. This case is a main one. In [33] the
structure of a hypercentral group G for which a faithful non-monolithic
strong noetherian FG-module exists was described. This description was
extended to the case of FC-hypercentral group in [34].

Theorem 2.4. [34]. Let D be a Dedekind domain, G be an FC-
hypercentral locally soluble group, A be a non-monolithic strong noethe-
rian DG-module, CG(A) =< 1 >. Then either G is isomorphic to some
subgroup of GLn(F ) for some field F or the following assertions hold:

(i) G is abelian-by-finite;

(ii) the maximal normal periodic subgroup T of a group G is a p′-
subgroup of finite special rank where p =charF ;

(iii) T ∩ �(G) is a locally cyclic subgroup.
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§3. Artinian modules over group rings

The theory of artinian modules over the group rings is a large and impor-
tant part of the theory of modules over group rings. This theory is rather
well developed. It has its methodology and is rich in many interesting
results. Many important aspects of this theory are represented in the
book [26]. Therefore we consider here only some selected results. One
of the first step is the study of artinian modules over periodic groups.
B. Hartley and D. McDougall [14] considered artinian modules over a
ring having the form ZG, where G is an abelian Chernikov group. Their
results could be extended to the case of a ring of the form DG where
G is a periodic abelian group of finite special rank and D is a Dedekind
domain. Therefore the question of the structure of artinian modules over
DG where G is an non-periodic abelian group of finite special rank seems
very logical. The following principal obstacles arised here. If G is a peri-
odic abelian group of finite special rank, then the reduction to the case
when G has rank 1 is possible. If G is not periodic, then a similar re-
duction is not possible. S. A. Kruglyak [17] argued that by the theory of
representations the problem of description of finite modules (and hence
artinian modules) over a free abelian group of 0-rank at most two is wild.
The following analogy could be useful at this point. The problem of the
description of torsion-free abelian groups of finite 0-rank is also ”wild”
[47], though the Z-injective envelope of these groups is a direct sum of
finitely many copies of the full rational group Q. Thus we came to in-
jective envelopes of artinian modules over group rings, a partial case of
which is the description of simple modules over group rings. In [22] L.A.
Kurdachenko has described the injective envelope of an artinian module
over JG where J is a principal ideal domain and G is an abelian group
of finite special rank. These results can be extended (almost without
changes) to the case of a ring DG where D is some Dedekind domain
(see, [26], Chapter 14). We adduce this description here.

Before further consideration, we need to make the following remark.
Let R be a ring, A be an R-module, L =AnnR(A). We can consider A
as K-module where K = R/L. Then for an injective envelope the fol-
lowing two cases appear: we can consider a K-injective envelope E of A
and then consider E as an R-module putting L =AnnR(E). This seems
promisingr since L has no influence on the structure of A. On the other
hand, if we will consider a full injective envelope I, then AnnR(I) may
does not include L and therefore the structure of I becomes dependent
from the elements of an ideal L, which we excluded from the considera-
tion at the beginning. Since that we shall consider the first case for the
injective envelope. In fact, such way has been chosen by B. Hartley and
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D. McDougall [14]. They reduced the general situation of an artinian
module A over a group ring ZG where G is a Chernikov group to the
case in which the additive group of A is a p-group. Then the general case
is reduced to the case when G/CG(A) is a p′-group. After this they came
to the injective envelope.

A Dedekind domain D is said to be a Dedekind Z− domain, if D
satisfies the two following conditions:

(1) The set of all maximal ideals of D is infinite;
(2) If P is a maximal ideal of D, then the field D/P is locally finite.

Theorem 3.1 [22]. Let D be a Dedekind Z-domain, G be an abelian group
of finite section rank, A be an artinian DG-module, I =AnnDG(A),
Q = DG/I. If E is an Q-injective envelope of A, then E is an artinian
DG-module.

Let R be a ring, A be an artinian R-module. Then SocR(A) =
⊕j=1,...,nMj , where Mj is a minimal R-submodule of A for each j =
1, ..., n. Let Uj be an R-submodule of A which is the maximal submodule
with the respect to the properties Mj ∩ Uj =< 1 > and ⊕k ∕=jMk ≤ Uj .

Then A/Uj is a monolithic R-module with R-monolith (Mj+Uj)/Uj .
Let U =∩j=1,...,nUj , then U∩SocR(A) =< 0 >. Since A is an artinian
R-module, it follows that U =< 0 >. By Remak’s Theorem we obtain
the imbedding

A ≤ ⊕j=1,...,nA/Uj .

This show that the case of a monolithic artinian R-module is basic for
this consideration.
Proposition 3.2 [22]. Let D be a Dedekind Z-domain, G be an abelian
group of finite section rank, A be an artinian monolithic DG-module with
the DG-monolith M . Suppose that H = CG(M) includes a finitely gener-
ated torsion-free subgroup L such that H/L does not include the subgroup
of index p where p =char(D/AnnD(M)). Then G includes a subgroup
K ≥ L such that K/L is a periodic p′-group of special rank 1 and every
DK-submodule of A is likewise DG-submodule. In particular, a DK-
module A is artinian.

This result reduces the general situation to the case when G includes
a finitely generated torsion-free subgroup L ≤ CG(M) such that G/L is
a periodic p′-group of finite special rank.

Let D be a Dedekind Z-domain, G be an abelian group of finite 0-
rank, A be an artinian monolithic DG-module with the DG-monolith M .
Then AnnD(M) = P is a maximal ideal of D ( see, for example, [25],
Theorem 1.15) and D/P is a locally finite field. Let char(D/P ) = p
and H = CG(M). Then G/H is a periodic locally cyclic p′-group (see,
for example, ( [25], Theorem 2.3). Suppose that G has finite p-rank
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and choose in H a finitely generated torsion-free subgroup L such that
G/L is periodic. Let S/L be a Sylow p-subgroup of G/L, then S/L is a
Chernikov subgroup. Moreover, S ≤ H. Let U/L be a Sylow p′-subgroup
of G/L, then H ≤ U and

G/L = U/L× V/L×W/V,

where V/L is a divisible Chernikov p-subgroup, W/L is a finite p-subgroup.
Let S = UV . Then a DS-module A is artinian. In other words, we can
further suppose that a subgroup H = CG(M) includes a finitely generated
torsion-free subgroup L such that H/L does not include the subgroup of
index p.

Now we may give a description of an injective envelope.

Theorem 3.3 [22]. Let F be a locally finite field, p =charF , G be an
abelian group of finite special rank, A be an artinian monolithic FG-
module with monolith M , CG(A) =< 1 >, H = CG(M). Suppose that H
includes a torsion-free finitely generated subgroup L =Drj=1,...,n < gj >
such that G/L is a periodic p′-group. If E is an FG-injective envelope of
A, then E has a series of submodules

E = E0 ≥ E1 ≥ ... ≥ En−1 ≥ En = M

satisfying the following properties:
(i) E1 = CE(g1), E2 = CE(x1, x2), ..., En−1 = CE(x1, ..., xn−1);
(ii) Ej possesses an ascending series of submodules

Ej+1 = Mj+1,0 ≤ Mj+1,1 ≤ ... ≤ Mj+1,k ≤ ... ∪k∈N Mj+1,k = Ej

such that
Mj+1,k+1/Mj+1,k ≃ Ej+1

and
Mj+1,k+1(gj+1 − 1) = Mj+1,k

for all k ∈ N.

Theorem 3.4 [22]. Let D be a Dedekind Z-domain, G be an abelian
group of finite section rank, A be an artinian monolithic DG-module with
a monolith M , P = AnnD(M), E be a DG-injective envelope of A. Then
E satisfies the following conditions:

(i) E is artinian P -module over DG;
(ii) ΩP,1(E) is an FG-injective envelope of ΩP,1(A) where F = D/P ;
(iii) E is a D-divisible envelope of ΩP,1(E).

Corollary 3.5 [22]. Let D be a Dedekind Z-domain, G be an abelian
group of finite section rank, A be an artinian monolithic DG-module with
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a monolith M , P =AnnD(M). Then A is DG-injective if and only if A
is D-divisible and ΩP,1(A) is FG-injective where F = D/P .

Let R be a ring and A be an R-module. The submodule SocR(A)
generated by all minimal R-submodules of A is said to be the R-socle of

A . If A has no such minimal submodules, we define SocR(A) =< 0 >.
Starting from the socle, we define the upper socular series or ascending

Loewy series of A as

< 0 >= S0 ≤ S1 ≤ ...S� ≤ S�+1 ≤ ...S�

where S1 =SocR(A) and S�+1/S� =SocR(A/S�) for a given ordinal �.
Note that S� = ∪�<�S� for any limit ordinal �.

The least ordinal � such that S� = S�+1 is called the socular height
of A.

One of the important problems of artinian modules theory is the eval-
uation of their socular height. For the artinian modules over a group ring
this problem can be reformulated in the following form.

Let G be a group, D be a Dedekind domain. What can be said about
a group G if the socular height of an arbitrary artinian DG-module is at
most ! ?

More general: What can be said about a countable group G if an
arbitrary artinian DG-module has a countable set of generators as a D-
module?

Now we are in a position to deduce a result due to P. Neumann (see
B. Hartley [13]).

Theorem 3.6. An artinian module A over a commutative ring R has
socular height at most ! , the first infinite ordinal. In particular, if R is
countable so is A.

B. Hartley in [13] constructed the series of impressive examples of
uncountable artinian monolithic ZG-modules for distinct types of groups
G.

A module A is called uniserial, if the set of all submodules of A is
well ordered by inclusion. The ordinal corresponding to the order type of
the set of proper submodules of uniserial module is called the length of
this module. Clearly every uniserial module is artinian.
Proposition 3.7 [13]. Let F be an arbitrary field and G be the free
group freely generated by a countable infinite subset X. Then there exists
an uniserial module A over a group ring FG of length Ω (Ω denotes the
first uncountable ordinal).

B. Hartley [13] has constructed important examples of uncountable
artinian modules over group rings. Let p, q be the distinct primes and
Q be a quasicyclic q-group. There exists a simple FpQ-module A (see,
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for example, [25], Corollary 2.4]) such that CQ(A) =< 0 >. Consider a
natural semidirect product G = AQ, where A is a normal subgroup of G
and A ∩ Q = E. This group is called Charin group (it was constructed
by V.S. Charin [2]).

Theorem 3.8 [13].Let G be a Charin group and let r be a prime such
that r ∕∈ Π(G). Then there exists an uniserial FrG-module of length Ω.

Let D =< d >< c > be a natural semidirect product, where < d >
is a normal subgroup of D, < d > ∩ < c >= E. D is a dihedral group,
that is ∣d∣ = 4∣, ∣c∣ = 2, and dc = d−1. For every n ∈ N denote by
Dn =< dn >< cn >. Dn is a natural semidirect product. It is an
isomorphic copy of D. Put R = Drn∈NDn and E =< d2nd

−2

n+1
∣n ∈ N >,

U = R/E.

Theorem 3.9 [13]. Let F be a field of characteristic not equal 2. Then
there exists an uniserial FU -module of length Ω.

All these examples are examples of uniserial modules, in particular,
they are monolithic. We can see, that in all these examples the factor-
group G/CG(�ZG(A)) is not abelian-by-finite. Therefore the question
about the case of a (generalized) nilpotent group G when G/CG(�ZG(A))
is abelian-by-finite arises naturally. We can observe that abelian-by-finite
groups play a special role in the theory of artinian modules over group
rings. The problem of countability will be considered for fairly wide
generalization of nilpotent groups (for FC-hypercentral groups). These
results have been obtained by L.A. Kurdachenko, N.N. Semko and I.Ya.
Subbotin in [27]. We adduce the basic results of this work.

Theorem 3.10 [27]. Let G be a countable FC-hypercentral group, F be a
field and A be an artinian FG-module. If a factor-group G/CG(SocFG(A))
is abelian-by-finite, then dimFA is countable. In particular, if a field F
is countable, then A is likewise countable.

Theorem 3.11 [27]. Let G be a countable FC-hypercentral group, D be
a Dedekind domain and A be an artinian DG-module. If a factor-group
G/CG(SocDG(A)) is abelian-by-finite, then ∣A∣ ≤ ∣D∣ℵ0. In particular,
if a ring D is countable, then A is likewise countable.

Theorem 3.12 [27]. Let G be an FC-hypercentral group, D be a Dedekind
domain with infinite set of maximal ideals, A be an artinian monolithic
DG-module and char(D/AnnD(�DG(A))) = p. Suppose also that G sat-
isfies the following conditions:

if p > 0, then G has a finite section p-rank;
if ð = 0, then G has finite 0-rank.
If G/CG(�DG(A)) is abelian-by-finite, then each finitely generated

DG-submodule of A has finite DG-composition series. In particular, the
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socular height of A is at most !.

Corollary 3.13 [27]. Let G be an FC-hypercentral group of finite section
rank, D be a Dedekind domain with infinite set of maximal ideals and A be
an artinian DG-module. If a factor-group G/CG(SocDG(A)) is abelian-
by-finite, then each finitely generated DG-submodule of A has finite DG-
composition series. In particular, the socular height of A is at most !.

As we have seen from the adduced results there are not too many cases
in which artinian modules can be satisfactory described, although many
problems require the investigation of some specific artinian modules. We
consider one of the important types of artinian modules, namely, the
quasifinite modules. These modules appear in the following way. Let A
be an artinian DG-module and U be a family of all infinite submodules of
A. Then U has a minimal element M . Then either M is a minimal (infi-
nite) and, hence, a simple submodule of A, or M is infinite and not simple,
but every proper submodule of M is finite. D.I. Zaitcev introduced this
type of modules in connection with the study of complementability of
normal subgroups [48]. These modules also appeared in some other in-
vestigations, for instance, in the study of groups with the weak maximal
or minimal conditions for normal subgroups ([18], [19], [20], [21], [22],
[50]). In [49], D.I. Zaitcev initiated investigation of modules over integral
group rings in which all proper submodules are finite. Besides this, there
are many types of Dedekind domains for which finite modules can be
only zero modules. Therefore the condition of being a finite submodule
is reasonable to change to the condition of being a finitely generated sub-
module. In other words, we come to a module A over a group ring DG
with the following property:

every proper DG-submodule of A is finitely generated as D-

submodule.

The following two cases we meet here:

(i) A includes a proper DG-submodule B such that A/B is a simple
DG-module.

(ii) every proper DG-submodule of A is finitely generated as a D-
submodule and A is an union of its proper DG-submodules.

The first case one can reduces to the cases of finitely generated over
D modules and simple DG-modules. Therefore the second case is more
interesting. Thus we come to the following definition.

Let R be a ring, G be a group. An RG-module A is said to be a
quasifinite RG−module, if A satisfies the following conditions:

(QF1) A is not finitely generated as an R-module;

(QF2) if B is a proper RG-submodule of A, then B is finitely gener-
ated as an R-submodule:
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(QF3) A is an union of its proper RG-submodules.

As we have already noted, the case when R = F is a finite field has
been considered by D.I. Zaitsev [49], the case of arbitrary field has been
considered in the paper L.A. Kurdachenko and I.Ya. Subbotin [32] and
a case when R = D is a Dedekind domain has been considered in the
paper L.A. Kurdachenko [23].

Let D be a Dedekind domain. Put Spec(D) = {P ∣P is a maximal
ideal of D}.

If I is an ideal of D, then put

AI = a ∈ A∣aIn =< 0 > for some n ∈ N.

It is not hard to see that AI is a D-submodule of A. This submodule
AI is called the I-component of A. If À coincides with its I-component,
then we will say that A is an I-module over a ring D. If k ∈ N, we define

ΩI ,k (A) = {a ∈ A∣aI k =< 0 >}.

It is easy to see that ΩI,k(A) is an R-submodule and

ΩI,1(A) ≤ ΩI,2(A) ≤ ... ≤ ΩI,k(A) ≤ ... .

The R-submodule AI = ∩k∈NΩI,k(A) is said to be the I-component of
A. If A = AI , then A is said to be an I – module. If I = P is a prime
ideal, a P -module is generally called primary module.

Put AssD(A) = {P ∈ Spec(D)∣AP ∕=< 0 >}.

Then TorR(A) = ⊕P∈�AP where � = AssD(A) (see, for example,
[26], Corollary 6.25).

Let D be a Dedekind domain, A be a simple D-module. Then A ≃
D/P for some maximal ideal P . We observe that D/P k and P/P k+1 are
isomorphic as D-modules for any k ∈ N. In particular, the D-module
D/P k is embedded in the D-module D/P k+1, k ∈ N. Therefore we can
consider the injective limit of the family of D-modules {D/P k∣k ∈ N}.

Put CP∞ = limlnj{D/P k∣k ∈ N}.

The D-module CP∞ is called the Prüfer P -module.

By the construction CP∞ is a P -module, moreover ΩP,k(CP∞) ≃D

D/P k, k ∈ N. Furthermore,

ΩP,k+1(CP∞)/ΩP,k(CP∞) ≃ (D/P k+1)/(P/P k+1) ≃ D/P .

Hence, if C is a D-submodule of CP∞ and C ∕=CP∞ , then C =ΩP,k(CP∞)
for some k ∈ N. Similarly, if b ∕∈ ΩP,k(CP∞), then C = bD.

Observe also that a Prüfer P -module is monolithic and its monolith
coincides with ΩP,1(CP∞).
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Theorem 3.14 [23]. Let D be a Dedekind domain, which is not a field, G
be a locally soluble group, A be a quasifinite DG-module, CG(A) =< 1 >.
Suppose that A is D-periodic, then the following assertions hold:

(i) AssD(A) = P , P ∈Spec(D);

(ii) A = C1 ⊕ ...⊕ Cn, where Cj is a Prüfer P -module, j=1,...,n;

(iii) G includes a normal abelian subgroup U of finite index;

(iv) the periodic part of U has finite special rank;

(v) if charD = p > 0, then Op(G) =< 1 >.

Let A be a quasifinite DG-module. It is not hard to see that either
A is D-periodic and D-divisible, or AnnD(A) = P is a maximal ideal of
D. The first case has been considered in Theorem 5.16. Therefore we
need to consider the case, when AnnD(A) = P is a maximal ideal. In
other words, we will consider the case of an FG-module where F = D/P
is a field.

Theorem 3.15 [23]. Let F be a field, G be a locally soluble group, A be
a quasifinite FG-module, CG(A) =< 1 >, S =SocFG(A). If CG(S) =<
1 >, the the following assertion holds:

(i) G includes a normal abelian subgroup U of finite index;

(ii) the periodic part of subgroup U has a finite special rank;

(iii) if charF = p > 0, then Op(G) =< 1 >;

(iv) U contains an element x of infinite order and A includes a
quasifinite FU -submodule B such that AssF<x>(B) = P for some P ∈
Spec(F < x >) and

B = C1 ⊕ ...⊕ Cn

where Cj is a Prüfer P -module, j = 1, ..., n;

(v) A = B ⊕Bg1 ⊕ ...⊕Bgt where {1, g1, ..., gt} is a transversal to U
in G.

Theorem 3.16 [23]. Let F be a field, G be a hypercentral group, A be
a quasifinite FG-module, CG(A) =< 1 >, S =SocFG(A). If CG(S) ∕=<
1 >, then

(i) G is abelian-by-finite;

(ii) the periodic part T of a group G is a p′-group of finite special rank
where p =charF ;

(iii) T ∩ �(G) is locally cyclic;

(iv) CG(S)∩ �(G) contains an element x of infinite order such that A
is F < x >-periodic and AssF<x>(A) = P where P = (x− 1)F < x >;

(v) A = C1 ⊕ ...⊕ Cn where Cj is a Prüfer P -module, j=1,...,n.

D.I. Zaitsev considered the quasifinite FG-modules where F is a finite
field. For this case it is possible to obtain more detailed information on
periodic subgroups of G.
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Theorem 3.17 [49]. Let F be a finite field, G be a group, A be a quasifi-
nite FG-module, CG(A) =< 1 >. Suppose that �(G) is infinite. Then

(i) if S is a periodic normal subgroup of G then S is finite;
(ii) if S is a periodic subgroup of G then S includes a nilpotent bounded

p-subgroup of finite index, where p =charF .

§4. Finitary modules

Let F be a field, G be a group and A be an FG-module. A group G
is called finitary if for each element g ∈ G the quotient space A/CA(g)
has finite dimension over F . In this case we say that A is a finitary
module. The theory of finitary linear groups is well established now and
many interesting results have been proved there (see [41], for example).
Some generalization of finitary groups have been considered by B.A.F.
Wehrfritz (see ([44], [45], [46]). Taking into account that finite, artinian
and noetherian modules over rings are natural extensions of finite dimen-
sional vector spaces, B.A.F. Wehrfritz introduced the following classes of
groups and modules.

Let R be a ring, G be a group and A be an RG-module. A group
G is called artinian− finitary (respectively noetherian− finitary) if
for every element g ∈ G, the factor-module A/CA(g) is artinian (respec-
tively noetherian) as an R−module. In this case we will say that A is
artinian-finitary (respectively noetherian-finitary) RG-module.

A finitary linear group G is said to be the bounded finitary linear

group, if there is a positive integer b such that dimF (A/CA(g)) ≤ b for
each element g ∈ G.

A finitary linear group can be considered as a linear analog of an
FC-group (that is, a group with finite conjugacy classes), a concept in-
troduced by R. Baer [1]. One of the first important results in the the-
ory of FC-groups was a theorem due to B. H. Neumann describing the
structure of FC-groups with boundedly finite conjugacy classes (BFC-
groups). More precisely, B.H. Neumann proved that if there exists a
positive integer b such that if ∣gG∣ ≤ b∣ for each element g ∈ G, then the
derived subgroup [G,G] is finite ([37], Theorem 3.1). Thus we can con-
sider bounded finitary group as a linear analogies of BFC-groups. Let
!RG be the augmentation ideal of the group ring RG, the two-sided
ideal of RG generated by the all elements g − 1 where g ∈ G. In our
analogy between groups with finite orbits and FC-groups, the derived

submodule A(!FG) of A is an analogy of the derived subgroup of a
group G and, in view of Neumann’s results, a natural conjecture would
be that if G is a bounded finitary group then the dimension of A(!FG) is
finite. At once, we note that this analogy is not right. The corresponding
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counterexample was constructed in [16]. However, under some natural
restrictions this analogy is possible not only for finitary groups but in
some general situations.

Let D be a Dedekind domain. If A is an artinian D-module, then
A is D-periodic and the set AssD(A) is finite. Furthermore, A = K1 ⊕
...⊕Kd ⊕B where Kj is a Prüfer submodule, j = 1, ..., d, B is a finitely
generated submodule. Observe that this decomposition is unique up to
isomorphism. It follows that a number d is an invariant of the module A.
Put d = lD(A). The submodule B has a finite series of submodules with
D-simple factors. The Jordan-Holder Theorem implies that the length of
this composition series is also an invariant of B, and hence of A. Denote
this number by lF (A).

Let D be a Dedekind domain and G be a group. The D-module A
is said to be a bounded artinian finitary, if A is artinian finitary and
there are the positive integers bF (A) =b, bD(A) =d and a finite subset
b�(A) = � ⊆ Spec(D) such that lF (A/CA(g)) ≤ b, l D(A/CA(g)) ≤
d and AssD(A/CA(g)) ⊆ b �(A). We will use the following notation:
�(A) = {p∣p = char D/P for all P ∈ b �(A)}.

The structure of bounded artinian finitary modules has been described
in [35].

Theorem 4.1 [35].Let D be a Dedekind domain, G be a locally generalized
radical group, and A be a DG-module. Suppose that A is a bounded
artinian finitary module. Assume also that there exists a positive integer
r such that the section p-rank of G is at most r for all p ∈ �(A).Then

(i) the submodule A(!DG) is artinian as D-module,
(ii) the factor-group G/CG(A) has a finite special rank.

Corollary 4.2 [16]. Let F be a field, G be a locally generalized radical
group and A be an FG-module. Suppose that there exists a positive integer
r such that the section p-rank of G is at most r where p = char F . If A
is a bounded finitary modules, then

(i) the submodule A(!FG) is finite dimemsional,
(ii) the factor-group G/CG(A) has a finite special rank.

§5. Modules over grouprings with the conditions min-nad

and max-nad

The conditions of minimality and maximality on subgroups can be refered
to very classical finiteness conditions in group theory. We shall apply
these conditions to the theory of modules over group rings.

Let A be DG-module where D is Dedekind domain, G be a group. If
H ≤ G, then the quotient module A/CA(H) is called the cocentralizer
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of H in module A. If A is a DG-module such that the cocentralizer
of group G in module A is not Artinian D-module then let Lnad(G)
be a system of all subgroups of group G for which the cocentralizers in
the module A are not Artinian D-modules. Introduce on Lnad(G) the
ordering with respect to the usual inclusion of subgroups. If Lnad(G)
satisfies the maximal condition on subgroups, then we shall say that
the group G satisfies the maximal condition on subgroups for which the
cocentralizers in the module A are not Artinian D-modules or simply that
the group G satisfies the condition max − nad. If the system Lnad(G)
satisfies the minimal condition on subgroups then we shall say that the
group G satisfies the condition min− nad.

The subject of the investigation is a DG-module A where D is Dedekind
domain, CG(A) = 1, A/CA(G) is not Artinian D-module, G is a locally
soluble group. It appears that the structure of a solube group G with
max−nad depends on the fact that the system of generators of G whether
finite or infinite. Let AD(G) be a set of all elements x ∈ G, such that
the cocentralizer of group < x > in the module A is Artinian D-module.
Then AD(G) is a normal subgroup of G [3].

At first, we consider a DG-module A such that the quotient group
G/[G,G] is not finitely generated.

Theorem 5.1 [3]. Let A be a DG-module and suppose that G is a soluble
group satisfying the condition max−nad. If the quotient group G/[G,G]
is not finitely generated then G satisfies the following conditions:

(1) A has the finite series of DG-submodules

< 0 >= S0 ≤ S1 ≤ S2 ≤ S3 ≤ ... ≤ Sm = A,

such that S2/S1 is a divisible D-module, which is a direct sum of finite
number of Prüfer D-modules, every factor Si+1/Si, i = 2, ...,m − 1, is a
simple DG-module and the quotient group Q = G/CG(C1) is a Prüfer
p-group for some prime p;

(2) H = CG(S1) ∩ CG(S2/S1) ∩ ... ∩ CG(Sm/Sm−1) is a nilpotent
normal subgroup such that the cocentralizer of it in a module A is an
Artinian D-module;

(3) group G has the series of normal subgroups H ≤ L ≤ N ≤ M ≤ G
such that the quotient group G/M is finite, the quotient group M/N is
a Prüfer p-group for some prime p, the quotient group N/L is finitely
generated, L/H and H are nilpotent.

The next natutal step is the consideration of the case when group G
is finitely generated.

Theorem 5.2 [3]. Let A be a DG-module and suppose that G is a sol-
uble group satisfying the condition max − nad. If the cocentralizer of a
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subgroup AD(G) in a module A is an Artinian D-module then G has the
series of normal subgroups H ≤ L ≤ G such that the quotient group G/L
is polycyclic, L/H and H are nilpotent.

Theorem 5.3 [3]. Let A be a DG-module and suppose that G is a soluble
group satisfying the condition max − nad. If the cocentralizer of a sub-
group AD(G) in a module A is not Artinian D-module then G contains
the normal subgroup L satisfying the following conditions:

(1) The quotient group G/L is polycyclic.

(2) L ≤ AD(G) and the cocentralizer of a subgroup L in a module A
is not Artinian D-module.

(3) The quotient group L/[L,L] is not finitely generated.

Now we shall consider a structure of a locally soluble group G with
min− nad.

Theorem 5.4 [6]. Let A be a DG-module and suppose that G is a locally
soluble group satisfying the condition min−nad. Then either G is soluble
or G has an ascending series of normal subgroups 1 = W0 ≤ W1 ≤ ... ≤
W! = ∪n∈NWn ≤ G, such that the cocentralizer of subgroup Wn in a
module A is an Artinian D-module, and the factors Wn+1/Wn are abelian
for n ≥ 0. Moreover, G/W! is a soluble Chernikov group.

In the case where D = Zp∞ is a ring of p-adic integers the structure
of a locally soluble group with min− nad is sufficiently simple.

Theorem 5.5 [4]. Let A be a Zp∞G-module, G be a locally soluble group
which satisfies the condition min−nad. If the cocentralizer of a group G
in a module A is not Artinian Zp∞-module then a group G is soluble.

Theorem 5.6 [4]. Let A be a Zp∞G-module, G be a locally soluble group
which satisfies the condition min − nad. If the cocentralizer of a group
G in a module A is not Artinian Zp∞-module then a group G contains
the normal nilpotent subgroup H such that the quotient group G/H is
Chernikov group.

In the case where D = Z is a ring of integers the structure of a locally
soluble group with min− nad is the same as in the case D = Zp∞ [5].

In conclusion it should be noted that the following theorem has some
connection with Shmidt’s problem.

Theorem 5.7 [4]. Let A be a Zp∞G-module, G be a locally soluble group.
Suppose that the cocentralizer of a group G in a module A is not Artinian
Zp∞-module. If the cocentralizer of each proper subgroup of a group G in
a module A is an Artinian Zp∞-module then G ≃ Cq∞ for some prime q.
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