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General formal local cohomology modules
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ABSTRACT. Let (R,m) be a local ring, ® a system of ideals
of R and M a finitely generated R-module. In this paper, we define
and study general formal local cohomology modules. We denote
the i-th general formal local cohomology module M with respect to
® by §4 (M) and we investigate some finiteness and Artinianness
properties of general formal local cohomology modules.

Introduction

Throughout this paper, R is a commutative Noetherian ring with
identity, a is an ideal of R, ® a system of ideals of R and M is an R-
module. Recall that the ¢-th local cohomology module of M with respect to
a is denoted by H(M). There are some generaliztions of local cohomology
theory. The following one is given in [2|. A system of ideals of R is
a non-empty set ® of ideals of R such that, whenever a,b € ®, there
exists ¢ € ® with ¢ C ab. For such a system, there is a ®-torsion functor
I's : C(R) — C(R) (where C(R) denotes the category of R-modules and
R-homomorphisms) such that for every R-module M,

I'e(M) :={zx € M :ax =0 for some a in ®}.

In [2], T'g(—) is called the "general local cohomology functor with respect
to ®". For each ¢ > 0, the i-th right derived functor of I's(—) is denoted

by Hy ().
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For more details about general local cohomology modules see [2], [3].

Let a be an ideal of a local ring (R, m) and M a finitely generated
R-module. For each i > 0; §i(M) := Jim Hi (M/a"M) is called the i-th
formal local cohomology of M with respect to a.

The formal local cohomology modules have been studied by several
authors; see for example [1], [4], [6], [9] and [10]. The purpose of this
paper is to make a generalization of formal local cohomology theory as
above. There are some generalization of formal local cohomology theory
(see [7] and [11]). Here, we give a new generalization in terms of a system
of ideals.

Let (R, m) be a local ring, ® a system of ideals of R and M a finitely
generated R-module. For each ¢ > 0; we define i-th general formal local
cohomology of M with respect to ® by

(M) = lim H}, (M/aM).
aed

Clearly, for an ideal a of R, if we put ® := {a’|i € N} then the above
definition coincides with the original definition F%(M).

In this paper, we get some results on Artinianness, vanishing and other
properties of general formal local cohomology modules. Among other
things, we will prove that, for any finitely generated R-module M we have:

inf{i € N: F5(M) is not representable}
= inf{i € N: F (M) is not Artinian}

and

sup{i € N : §4(M) is not representable}
= sup{i € N: §5(M) is not Artinian}.

Also, we study the structure of 0-th general formal local cohomology
module and we will prove that for a complete local ring (R, m),

Assp F9(M) = {p € Assp(M) : dim R/(a +p) = 0 for all a € ®}.
Recall that, Asshr(M) denotes the set {p € Ass M : dim R/p = dim M }.

We show that 2™ (M) is Artinian and there exists an ideal a in ® such
that Attg §% (M) = Asshp(M) N V(a).
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1. Results

Assume that (R, m) is a local ring and that M is a finitely generated
R-module. We investigate a generalization of formal local cohomology
theory in terms of a system of ideals. A system of ideals of R is a non-
empty set ® of ideals of R such that, whenever a,b € &, there exists
¢ € ® with ¢ C ab. We define the relation < on ® by: a < b if and only
if b C a. It is easy to see that ® is a direct set by this relation. Now, let
a,b € ® such that a < b, M be an R-module.Then for each integer n > 0,
the R-homomorphism M/bM — M /aM induces the R-homomorphism
Y8 HE(M/oM) — H(M/aM). Thus {H? (M /aM),} forms an inverse
system of R-modules and R-homomorphisms over ®. Now we are ready
to give the following definition.

Definition 1. Let (R, m) be a local ring, ® a system of ideals of R and M a
finitely generated R-module. For each i > 0; §4 (M) := Hm o Hi (M /aM)
is called the i-th general formal local cohomology of M with respect to ®.

Theorem 1. Let (R, m) be a local ring, ® a system of ideals of R and M
a finitely generated R-module. For each i > 0; Sz £_ - Fu(M

Proof. Let a,b € ® such that a < b. If n is an integer then the nat-
ural homomorphism M/b"M — M/a"M induces the homomorphism
H (M/6" M) — HE (M /a™M) for any integer i > 0. On the other hand,
if n < m we have the following commutative diagram:

Hi (M/6"M) — H (M /a™ M)

T T

H (M /6™ M) — H, (M/a™ M)
From the above diagram we get a homomorphism

A : Lim Hy, (M/0" M) — Lim H{, (M /6" M)

and so, we have ' '

Aa  By(M) = Fo(M).
This shows that {F% (M), A}aes is an inverse system of R-modules and R-
homomorphisms over the directed set ®. Thus we may form @lae o Fi(-).

But, for each integer k € N and any ideal a € ® there exists an ideal
b € ® such that b C a*. Thus, by using a proof similar to the proof
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of [12, Lemma 3.8] for each integer k we have

lim HY, (M /aM) ~ Jim Hi, (M /a* M)
acd acd

and so

i §5(0) 2l 1, (Mo 0) > ol T (0101

acd acd k acd
~ lim Hi, (M /aM) = §y (M), 0
acd

Let (R, m) be a local ring, ® a system of ideals of R and M a finitely
generated R-module. Let z denotes a system of elements of R such that
m = Rad(zR). Let Cv’£ denotes the Ceech complex of R with respect to z.
For an R-module M and an ideal a, it is easy to see that there exists an
inverse system of R—complexes {é ® M/aM }qce. Hence, we may form
the inverse limit L w @ M /aM). By a proof similar to the proof
of [12, proposition 3. 2] we obtam the next result.

Theorem 2. With the previous notation, there is an isomorphism

Fo(M) ~ H'(l

€

B

(Ce ® M/aM))

=

a
o

for alli € Z.

Proof. 1t follows by a straightforward modification of the proof of [12,
proposition 3.2]. O

Theorem 3. Let (R, m) be a local ring, ® a system of ideals of R and M
a finitely generated R-module. Then Fi(M) =0 for all i > dim(M).

Proof. Let i > dim (M). By [12, Theorem 4.5] Fi(M) = 0 for all a € ®.

Thus §4(M) = Hm o Fi(M) = 0, as required. O

Let f: R — R be a homomorphism of Noetherian commutative rings.
Set ®R :={aR :ac ®}. Then ®R’ is a system of ideals of R'. Now by
using this notation we give the following result:

Theorem 4. Let (R, m) be a local ring, ® a system of ideals of R and M
a finitely generated R-module. Then §4 (M) ~ ,3” ( ) for alli € Z.

Proof. By [1/2\, Proposition 3.3], (M) =~ Sl ( ) Thus lim _ (M) ~
fm o SiE(M ). Now Theorem 1 completes the proof. O
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Recall that a dualizing complex D7, for a local ring (R, m) is a bounded
complex of injective R-modules whose cohomology modules Hi(D'R) are
finitely generated R-modules for all i € Z. For more details see [13]. It
is well known that R possesses a dualizing complex if and only if R is
the factor ring of a Gorenstein ring. The next result is an expression of
the general formal local cohomology in terms of a certain general local
cohomology of the dualizing complex.

Theorem 5. Let (R,m) be a local ring possessing a dualizing complex
Dy, @ a system of ideals of R and M a finitely generated R-module. Then

S (M) ~ Homp(Hg' (Homp (M, D)), E(R/m)),
foralli e Z.
Proof. By Local Duality Theorem there are the isomorphisms
H},(M/aM) ~ Homp(H ™" (Homp(M/aM, Dg)), E(R/m)),

for all « € Z and a € ®. Thus we have

=

lim H, (M /aM) ~ HomR(H—i(hg Hompg(M/aM, Dy)), E(R/m)),
€ acd

.

=
o

for all ¢ € Z. But ligHomR(]M/aM7 Dy)) ~ I's(Homp (M, D)) and so
acd

lim H! (M/aM) ~ Hompg(H " (T'y(Homp (M, D)), E(R/m)),
aced

for all ¢ € Z. Therefore
§o (M) =~ Homp(Hy' (Homp (M, Dy)), E(R/m)),
for all ¢ € Z, as required. O

Theorem 6. Let (R, m) be a local ring, ® a system of ideals of R and
0> A — B — C — 0 a short exact sequence of finitely generated
R-modules. Then there is a long exact sequence

= Fo(A) = Fo(B) = Fo(C) = Fg 1 (A) = -+

Proof. It follows by an argument similar to the proof of [12, Theorem 3.11].
O]
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Theorem 7. Let (R, m) be a local ring, ® a system of ideals of R and M
a finitely generated R-module. If w := max{dim(M/aM)|a € ®} is finite
then FL(M) # 0 and F(M) =0 for all i > w.

Proof. Let i > w. Since i > dim (M /aM) for all a € ®, [12, Theorem 4.5]
implies that §4(M) = 0 for all a € ®. Thus §5 (M) = Hm o (M) = 0.
On the other hand, since w is finite there exists an ideal b € ® such
that dim (M/bM) = w. Now, put ¥ = {¢ € ® | ¢ C b}. Then ¥ is
cofinal in ®. Thus we may assume that a C b for all a € ®. Let ¢ € .
It is easy to see that dim (bM/cM) < dim M/cM < w and so the exact
sequence 0 — bM/cM — M/cM — M/bM — 0 induces Hy (M /cM) —
Hy (M/bM) — 0. Now for each 9 € ® with ? < ¢ i.e ¢ C d we have the
following commutative diagram:

HY (M /oM) L~ HY (M /6 M) —— 0

T |

HY (M /eM) —= H2 (M /bM) — 0

The family of R-modules {ker f;}.ca, as a family of Artinian R-modules,
satisfies the Mittag-Leffler condition. Hence the above diagram induces
an exact sequence mH#}l(M/CM) — HY(M/bM) — 0. By Theorem 1

ced
we get §§(M) — HE(M/bM) — 0. By Grothendieck’s non-vanishing
Theorem HY (M /bM) # 0. Therefore §y (M) # 0, as required. O

Theorem 8. Let (R, m) be a local ring, ® a system of ideals of R and M a
finitely generated R-module of dimension d. Then S%(M) 18 homomorphic
image of HL(M), and so F&(M) is Artinian.

Proof. Let a € ®. We have dim aM < dim M, so that, by the Grothen-
dieck’s Vanishing Theorem, the short exact sequence

0—aM — M — M/aM — 0
induces an exact sequence
He Pa ryd
w(M) — Hy(M/aM) — 0.

The family of R-modules {ker ¢q}qca, as a family of Artinian R-modules,
satisfies the Mittag-Leffler condition. Therefore, the above exact sequence

induces an exact sequence lim__ HE (M) — %H%(M/aM) — 0 and
ac



260 GENERAL FORMAL LOCAL COHOMOLOGY MODULES

so we have the exact sequence H% (M) — §4 (M) — 0, and the proof is
complete. ]

In the next result, we investigate the 0-th general formal local cohomol-
ogy module. Let a be an ideal of R and M a finitely generated R-module.
For a submodule N of M we denote the ultimate constant value of the
increasing sequence

NCN:yaCNiya?C---CN:ya C---

by N :ps {a). Let 0 = ﬂ?’zl ();j denotes a reduced primary decomposition
of the zero submodule 0 in M and Q) is a p;j-primary submodule of M, for
all j=1,--- ,n.Put T(a, M) :={p € Assg M : dim R/(a + p) > 0} and
upn (@) 2= Ny, er(a,nr) @i also T(®, M) :={p € Assg M : there exists a €
® such that dim R/(a+p) > 0} and up(®) = (e, 1) Qi- With these

notations we have:

Theorem 9. Let (R, m) be a local ring, ® a system of ideals of R and M
a finitely generated R-module. Then
1) Moo unr(a) = up (P),
) 1y (®) = (e (@M 22y (),
iii) F3(M) ~ uy, (PR).
Proof. 1) It is easy to see that

ﬂuM(a): ﬂ ﬂ Qi = m Qi = upn (P).

acd ac® p;eT(a,M) P €T(P,M)

ii) By [12, Lemma 4.1(a)], up(a) = (5, (@™ M :p7 (m)). Thus

upr(®) = (Y uar(a) = () () (@M s (m)) € () (aM :pr (m)).
acd acdn>1 acd

Conversly, let x € (,cq(aM :pr (m)). Let a € ® be an ideal. Then there
exists an integer v such that zm* C aM. For any integer k, there exists
an ideal b € @ such that b C a*. Since x € (bM :3; (m)) there exists
an integer ¢ such that zm? C bM C o*M. Hence z € (a*M :p; (m))
and so x € [, (a"M :p (m)) for each ideal a € ®. Therefore x €
Naca N1 (@M (M) = up (D).

iii) By Theorem 4 we may assume that M = M and R = R. Let b be
a proper ideal of R such that b € ®. It is easy to see that [ ,cq aM C
(N0 6" M. Thus Krull’s intersection theorem implies that (.4 aM = 0.

Now the proof is a straightforward modification of the proof of [12, Lemma
4.1(c)]. O
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Corollary 1. Let (R,m) be a complete local ring, ® a system of ideals of
R and M a finitely generated R-module. Then

Assp T (M) = {p € Assg M : dim R/(a+p) = 0 for all a € ®}.
Proof. By |12, Lemma 2.7| Assg up(®) = Assg M\ T'(®, M). But
Assp M\ T(®, M) = {p € Assg M : dim R/(a+p) =0 for all a € ®}
and §3(M) = up(®) by Theorem 9(iii) and this finishes the proof. [

Corollary 2. Let (R,m) be a local ring, ® a system of ideals of R ancAl M
a finitely generated R-module. Then F%(M) = 0 if and only if Assp M =
T(®R, M).

Proof. By Theorem 3(iii) §%(M) = 0 if and only if uM(q)fx’) = 0. But
Assp uM(<I>JA%) = ASSRM\T((I)RA, ]\A{) by [12, Lemma 2.7]. Thus uM(<I>JA%) =
0 if and only if Assp M = T(®R, M) and the proof is complete. O

The next theorem gives a result for representable general formal local
cohomology modules.

Theorem 10. Let (R, m) be a local ring, ® a system of ideals of R and
M a finitely generated R-module. Let i be an integer such that 3&,(M)
is nonzero and representable. Then there exists an ideal a € ® such that

a Cp for all p € Attg F5(M).

Proof. Let §5(M) =Sy + S2 + ... + Sy, be a minimal secondary represen-
tation of §4 (M) where S; is non-zero and p;-Secondary for j = 1,2, ..., n.

Let 1 < j < n. Since S; # 0, there exists 0 # a = (a;) € S; C
54 (M) = lim _ Hi,(M/aM).

Let ag be the first nonzero component of a. Thus there exists an
ideal a; € ® such that a, € Hi(M/apM). We claim a;, C p;. If not,
then there exists u € a;p\p;. Since v ¢ p;, we have uS; = §;. Thus
a € 8; = uS; C uFy(M) But uHL(M/apM) = 0 and so the k-th
component of each element of ug (M) is zero. But a € ug% (M) and the
k-th component of a is not zero. It follows that a; C p; where a; € ©.
Hence, we proved that for each integer j € {1,...,n} there exists an ideal
bj € ® such that b; C p;. Since ® is a system of ideals there exists an
ideal a € ® such that a C biby---b, C p; for all j € {1,...,n}, this
completes the proof. O
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Corollary 3. Let (R,m) be a local ring, ® a system of ideals of R and
M a finitely generated R-module. Let i be an integer such that F4 (M)
is monzero and representable. Then there exists an ideal a € ® such that

aFs (M) = 0.

Proof. By [5, 7.2.11] ﬂpeAtt%(M)p = 4/(0:3%(M)). Thus by Theo-
rem 10 we conclude that there exists an ideal b in ® and an integer n
such that, b"F% (M) = 0. Since @ is a system of ideals, there exists an
ideal a in ® such that a C b". Therefore anb(M ) = 0, as desired. O

Let R be a ring, ¢ a system of ideals of R and M an R-module. Recall

that
Ie(M) :={x € M : ax =0 for some a in ®}.

We say that M is ®-torsion if M =I'¢(M) and that M is ®-torsion-free if
I's(M) = 0. For a finitely generated R-module M, it is easy to see that M
is ®-torsion-free if and only if, for each a € ®, a contains a non-zero-divisor
on M.

In order to state the next result we recall the concept of Matlis dual.
Let M be an R-module and F(R/m) the injective envelope of R/m. The
module D(M) = Homp(M, E(R/m)) is called the Matlis dual of M.

Lemma 1. Let (R, m) be a complete local ring, ® a system of ideals of R
and M a finitely generated R-module. Then

(i) M is ®-adically complete (i.e M ~ l'&nueq)(M/aM)),

i) Fo(M) is finitely generated R-module.
Proof. 1) Since M is finitely generated, D(M) is Artinian and so D(M)
is m-torsion. For each i € N, there exists a € ® such that a C m*. Hence
D(M) is ®-torsion and we have

D(M) = | (0 :p(ar) @) = lim Homp(R/a, D(M)).
acd acd
Thus
M ~DD(M) ~ D(hﬂ Hompg(R/a,D(M))) ~
acd
~ @R/a@RDD(M) ~ @M/aM.
acd acd
i) By definition §4(M) = lim _, H{ (M/aM). Since Hy, (M/aM) C
M/aM for all a € @, by (i) we get
S (M) C lim(M/aM) ~ M.
acd
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Since M is finitely generated we conclude that F% (M) is finitely generated,
as required. ]

Lemma 2. Let ® be a system of ideals of R and L i> M % N be a ezact
sequence of R-modules and R-homomorphisms. Suppose that there exist
two ideal a and b in ® such that aL =0 and bN = 0. Then there exists
an ideal ¢ € ® such that ¢cM = 0.

Proof. Since bg(M) = 0, we have bM C kerg = im f. But aLL = 0, and
so a(im f) = 0. Thus abM = 0. But, there exists an ideal ¢ € ® such that
¢ C ab. Therefore ¢M = 0 and the proof is complete. O

For the following proof we need the next Lemma.

Lemma 3. Let (R,m) be a local ring, ® a system of ideals of R and M
a finitely generated R-module. Let M be an ®-torsion R-module. Then
Fo (M) =2 HL (M). Therefore §i (M) is Artinian for all i > 0.

Proof. 1t is easy to see that, since M is finitely generated and ®-torsion
there exists an ideal a in ® such that aM = 0. Weput W ={b e ® | b C a}.
Then ¥ is cofinal in ®. Thus we may assume that b C a for all b € ® and
so bM = 0 for all b € ®. Hence

§p (M) = Jim Hi, (M /6M) 2= i Hi, (M) = Hi, (M)
bed bed

for all 7 > 0, as desired. O

Theorem 11. Let (R, m) be a local ring, ® a system of ideals of R and
M a finitely generated R-module. Let t € N.Then the following statements
are equivalent:
(1) S5 (M) is Artinian for all i < t,
(ii) §5 (M) is representable for all i < t,
(iil) there exists an ideal a in ® such that, ag% (M) =0 for all i < t.

Proof. (i) =(ii); Any Artinian R-module is representable.

(ii) = (iii): By Corollary 3.

(iii) = (i): We use induction on . Since §4 (M) ~ Sfbﬁ(ﬁ) by Theo-
rem 4, we may assume that R is complete. Let t = 1. By Lemma 1(ii),
F% (M) is a finitely generated R-module. By assumption Supp p(F%(M)) C
V(a) and so by Corollary 1 we conclude that Suppg(§$(M)) C V(m).
Thus F9(M) is Artinian.



264 GENERAL FORMAL LOCAL COHOMOLOGY MODULES

Now suppose, inductively, that ¢ > 0 and §4 (M) is Artinian for all
i <t— 2. We show that F,~1(M) is Artinian. By Theorem 6, the short
exact sequence

0 —Te(M)— M — M/Te(M) —0
implies the long exact sequence

8 (Ta(M)) — 55 (M)
s 35 (M/To(M)) — Fp(Da(M)) — -

But §%(Te(M)) is Artinian for all i by Lemma 3. Thus by using the
above long exact sequence it follows that % (M) is Artinian if and only
if §5(M/Te(M)) is Artinian for all i. On the other hand, since ® is a
system of ideals, by Corollary 3 we can find an ideal b € ® such that
635 (Ta(M)) = 0 for all i < t. By assumption and lemma 2 we conclude
that there exists an ideal ¢ € ® such that ¢§% (M /Te(M)) = 0 for all i < ¢.
Therefore we can and do assume that M is an ®-torsion-free R-module.
Since a € P, it is easy to see that a contains an element r which is a
non-zerodivisor on M. The short exact sequence

0— M- M— M/rM —0
induces a long exact sequence
0= Fo(M) 5 Fo(M) = -+ = Fo(M) = Fo(M) = Fo(M/rM)—- .

By assumption and the above long exact sequence and lemma 2, it follows
that there exists an ideal b € ® such that bF% (M /rM) =0 forall i < t—1.
Thus, by the inductive hypothesis, we conclude that g% *(M/rM) is
Artinian. Since T&%_I(M ) C a%fp_l(M ) = 0, the above long exact sequence
implies that § 2(M/rM) — §4 (M) — 0 is exact. But g5 *(M/rM)
is Artinian and so F,~1(M) is Artinian, as required. O

Theorem 12. Let (R, m) be a local ring, ® a system of ideals of R and M
a finitely generated R-module. Let t € N. Then the following statements
are equivalent:
(1) 3&,(M) is Artinian for all i > t,
(i) §% (M) is representable for all i > t, '
(ili) there exists an ideal a in ® such that, a§y (M) =0 for all i > t.
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Proof. (i) =(ii): It is clear.

(ii) = (iii): By Corollary 3.

(iii) = (i): The proof can be easily obtained by extending the proof
of [4, Theorem 2.9] mutatis mutandis to this general case. [

Let a be an ideal of a local ring (R, m) and M a finitely generated
R-module of dimension d. By Theorem 8 % (M) is Artinian. In the next
result we determine the set Attp §%(M).

Theorem 13. Let (R, m) be a local ring, ® a system of ideals of R and
M a finitely generated R-module of dimension d. Then there exists an
ideal a in ® such that Attg & (M) = Asshr(M) N V(a).

Proof. Let w := max{dim (M/aM) : a € ®}. If w < d then F4 (M) =0
by Theorem 7 and so there is nothing to prove. Thus we suppose that
w = d.

By Theorem 10 there exists an ideal a € ® such that Attp §4 (M) C
V(a). But by Theorem 8 and [5, 7.3.2] Attp§%(M) C Attg HL(M) =
Asshp(M). Thus Attg F4(M) C Asshr(M) N V(a).

Conversly, assume that a € ®. We show that Asshr(M) N V(a) C
Attr FE(M). Let p € Asshr(M) N V(a). By [8, 6.8], there exists a
p-primary submodule N of M such that Ass(M/N) = {p} and p =
V(0:(M/N)). Thus dim M/N = dim R/p = dim M. Since a C p we
have v/a C /(0 : (M/N)).

Thus we can see that Suppr((M/N)/a(M/N)) = Suppr(M/N) and
dim ((M/N)/a(M/N)) = dim (M /N). Now by Theorem 7, % (M /N) # 0.

Hence
¢ # Attr §§(M/N) C Attg Hg(M/N) C Ass(M/N) = {p}
Therefore we have Attg §4(M/N) = {p}. But the exact sequence
0—-N—-M-—M/N—0

induces §4(M) — F4L(M/N) — 0. Thus {p} = AttpTL(M/N) C
Attr L (M). Therefore p € Attg 4 (M). This completes the proof. [

Corollary 4. Let (R,m) be a local ring, ® a system of ideals of R and
M and N be two finitely generated R-modules of dimension d such that
Suppr M = Suppp N. Then Attp §4 (M) = Attp F4(N).
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Proof. By Theorem 13 there exist two ideals a and b in ® such that
Attr §L(M) = Asshg M NV (a) and Attg §%(N) = Asshg N NV(b). But
by assumption we have Asshy M = Asshr V. On the other hand, by using
the proof of Theorem 13,

Attp §4 (M) = Asshg M NV (a) = Asshg N NV (a) C Attr FL(N).
Similarly Attg &%(N) C Attp S%(M). This completes the proof. O
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