On one class of algebras Yuliia V. Zhuchok

Communicated by V. I. Sushchansky

ABSTRACT. In this paper a g-dimonoid which is isomorphic to the free g-dimonoid is given and a free n-nilpotent g-dimonoid is constructed. We also present the least n-nilpotent congruence on a free g-dimonoid and give numerous examples of g-dimonoids.

1. Introduction

Recall that a dialgebra (dimonoid) [1] is a vector space (set) with two binary operations \dashv and \vdash satisfying the axioms $(x \dashv y) \dashv z = x \dashv (y \dashv z)$ (D1), $(x \dashv y) \dashv z = x \dashv (y \vdash z)$ (D2), $(x \vdash y) \dashv z = x \vdash (y \dashv z)$ (D3), $(x \dashv y) \vdash z = x \vdash (y \vdash z)$ (D4), $(x \vdash y) \vdash z = x \vdash (y \vdash z)$ (D5). In our time dimonoids are standard tool in the theory of Leibniz algebras. So, for example, free dimonoids were used for constructing free dialgebras and for studying a cohomology of dialgebras. There exist papers devoted to studying structural properties of dimonoids (see, e.g., [2 - 4]). If in the definition of a dialgebra delete the axioms (D1), (D3), (D5), then we obtain a 0-dialgebra which was considered in [5]. Algebras obtained from the definition of a dimonoid by deleting the axioms (D2) and (D4) were considered in [6]. In the last paper the free object in the corresponding variety was constructed. Observe that dimonoids are closely connected with restrictive bisemigroups considered by B.M. Schein [7]. In [8–11] the notions of interassociativity, respectively,

²⁰¹⁰ MSC: 08B20, 20M10, 20M50, 17A30, 17A32.

Key words and phrases: dimonoid, g-dimonoid, free g-dimonoid, free n-nilpotent g-dimonoid, semigroup, congruence.

strong interassociativity, related semigroups and doppelalgebras which are naturally connected with dimonoids were considered. Another reason for interest in dimonoids is their connection with n-tuple semigroups which were used in [12] for studying properties of n-tuple algebras of associative type. If in the definition of a dimonoid delete the axiom (D3), then we obtain an algebraic system which is called a g-dimonoid (see [13, 14]).

In this paper g-dimonoids are studied. In Section 2 we give numerous examples of g-dimonoids. In Section 3 we suggest a new concrete representation of a free g-dimonoid using the construction of a free g-dimonoid from [14]. The main result of this section was announced in [13]. In Section 4 the construction of a free g-dimonoid is given. Moreover, here we characterize the least g-nilpotent congruence on a free g-dimonoid.

2. Examples of g-dimonoids

In this section we give different examples of g-dimonoids.

- a) Obviously, any dimonoid is a g-dimonoid.
- b) Let X be an arbitrary nonempty set, |X| > 1 and let X^* be the set of all finite nonempty words in the alphabet X. Denoting the first (respectively, the last) letter of a word $w \in X^*$ by $w^{(0)}$ (respectively, by $w^{(1)}$), define operations \dashv and \vdash on X^* by $w \dashv u = w^{(0)}$, $w \vdash u = u^{(1)}$ for all $w, u \in X^*$. From the proof of Theorem 2 [2] it follows that (X^*, \dashv, \vdash) is a g-dimonoid but not a dimonoid.
- c) Let $\{D_i\}_{i\in I}$ be a family of arbitrary g-dimonoids D_i , $i\in I$, and let $\overline{\prod}_{i\in I}D_i$ be a set of all functions $f:I\to\bigcup_{i\in I}D_i$ such that $if\in D_i$ for any $i\in I$.

It is easy to prove the following lemma.

Lemma 1. $\overline{\prod}_{i \in I} D_i$ with multiplications defined by

$$i(f_1 \dashv f_2) = if_1 \dashv if_2, \ i(f_1 \vdash f_2) = if_1 \vdash if_2,$$
 (1)

where $i \in I$, $f_1, f_2 \in \overline{\prod}_{i \in I} D_i$, is a g-dimonoid.

The obtained algebra is called the Cartesian product of g-dimonoids D_i , $i \in I$. If I is finite, then the Cartesian product and the direct product coincide. The Cartesian product of a finite number of g-dimonoids D_1 , D_2 , ..., D_n is denoted by $D_1 \times D_2 \times ... \times D_n$. In particular, the Cartesian power of a g-dimonoid can be defined as follows. Let V be an arbitrary g-dimonoid and X be any nonempty set. Denote by Map(X;V) the set of

all maps $X \to V$. Define operations \dashv and \vdash on Map(X; V) by (1) for all $f_1, f_2 \in Map(X; V)$ and $i \in X$. Then $(Map(X; V), \dashv, \vdash)$ is a g-dimonoid which is called the Cartesian power of V.

d) As usual, N denotes the set of all positive integers.

Let F[X] be the free semigroup in an alphabet X. We denote the length of a word $w \in F[X]$ by l(w). Fix $n \in \mathbb{N}$ and define operations \dashv and \vdash on $F[X] \times \mathbb{N}$ by

$$(w_1, m_1) \dashv (w_2, m_2) = (w_1 w_2, n),$$

 $(w_1, m_1) \vdash (w_2, m_2) = (w_1 w_2, l(w_1) + m_2)$

for all (w_1, m_1) , $(w_2, m_2) \in F[X] \times \mathbb{N}$. Denote the algebra $(F[X] \times \mathbb{N}, \dashv, \vdash)$ by $X\mathbb{N}_n$.

Lemma 2. The algebra $X\mathbb{N}_n$ is a g-dimonoid but not a dimonoid.

Proof. One can directly verify that $X\mathbb{N}_n$ is a g-dimonoid. Show that it is not a dimonoid. For all $(w_1, m_1), (w_2, m_2), (w_3, m_3) \in X\mathbb{N}_n$ obtain

$$((w_1, m_1) \vdash (w_2, m_2)) \dashv (w_3, m_3) = (w_1 w_2, l(w_1) + m_2) \dashv (w_3, m_3) =$$

$$= (w_1 w_2 w_3, n) \neq (w_1 w_2 w_3, l(w_1) + n) = (w_1, m_1) \vdash (w_2 w_3, n) =$$

$$= (w_1, m_1) \vdash ((w_2, m_2) \dashv (w_3, m_3)).$$

e) Let S be an arbitrary semigroup, $a, b \in S$. By E_S denote the set of all idempotents of S. Define operations \dashv and \vdash on S by

$$x\dashv y=ax,\quad x\vdash y=by$$

for all $x, y \in S$. Denote the algebra (S, \dashv, \vdash) by S(a, b).

Lemma 3. Let S be an arbitrary right cancellative semigroup, $a, b \in E_S$.

- (i) If a and b are non-commuting, then S(a,b) is a g-dimonoid but not a dimonoid.
 - (ii) If a and b are commuting, then S(a,b) is a dimonoid.

Proof. (i) The axioms (D1), (D2), (D4), (D5) are checked directly. Besides,

$$(x \vdash y) \dashv z = by \dashv z = aby, \quad x \vdash (y \dashv z) = x \vdash ay = bay$$

for all $x, y, z \in S$. Suppose that aby = bay. Then, using the right cancellability, obtain ab = ba. Thus, we arrive at a contradiction, i.e., the

assumption that aby = bay does not hold. Consequently, S(a, b) is not a dimonoid.

- (ii) If a and b are commuting, then, obviously, all axioms of a dimonoid hold.
- f) Let S be an arbitrary semigroup, $a,b \in S$. Define operations \dashv and \vdash on S by

$$x \dashv y = xa, \quad x \vdash y = yb$$

for all $x, y \in S$. Denote the algebra (S, \dashv, \vdash) by S[a, b].

Similarly to Lemma 3, the following lemma can be proved.

Lemma 4. Let S be an arbitrary left cancellative semigroup, $a, b \in E_S$.

- (i) If a and b are non-commuting, then S[a,b] is a g-dimonoid but not a dimonoid.
 - (ii) If a and b are commuting, then S[a,b] is a dimonoid.
- g) Let S be an arbitrary semigroup, $a,b\in S.$ Define operations \dashv and \vdash on S by

$$x \dashv y = axb, \quad x \vdash y = ayb$$

for all $x, y \in S$. Denote the algebra (S, \dashv, \vdash) by S(a, b].

The following lemma could be proved immediately.

Lemma 5. If $a, b \in E_S$, then S(a, b] is a dimonoid.

h) Let Y be an arbitrary nonempty set, $S = S_Y$ be some monoid defined on the set of finite words in the alphabet Y and $\theta \in S$ be an empty word which is a unit of S. Denote the operation on S by * and the length of a word $w \in S$ by l(w). By definition $l(\theta) = 0$, $u^0 = \theta$ for all $u \in S$. Fix elements $a, b \in Y, k \in \mathbb{N} \cup \{0\}$ and define operations \exists and \vdash on S, assuming

$$u_1 \dashv u_2 = u_1 * a^{l(u_2)+k}, \qquad u_1 \vdash u_2 = u_2 * b^{l(u_1)+k}$$

for all $u_1, u_2 \in S$. The obtained algebra will be denoted by $S_a^b(k)$.

Lemma 6. Let T be the free monoid in the alphabet Y. Then for any $a, b \in Y$, $k \in \mathbb{N} \cup \{0\}$ the algebra $T_a^b(k)$ is a g-dimonoid. If $a \neq b$, then it is not a dimonoid.

Proof. Let $u_1, u_2, u_3 \in T_a^b(k)$. In order to prove that $T_a^b(k)$ is a g-dimonoid we consider the following cases.

Case 1. Let
$$u_1 \neq \theta$$
, $u_2 \neq \theta$, $u_3 \neq \theta$. Then
$$u_1 \dashv (u_2 \dashv u_3) = u_1 \dashv (u_2 * a^{l(u_3) + k}) =$$

$$= u_1 * a^{l(u_2 a^{l(u_3) + k}) + k} = u_1 * a^{l(u_2) + l(u_3) + 2k} =$$

$$= u_1 * a^{l(u_2) + k} * a^{l(u_3) + k} = (u_1 * a^{l(u_2) + k}) \dashv u_3 = (u_1 \dashv u_2) \dashv u_3,$$

$$u_1 \dashv (u_2 \vdash u_3) = u_1 \dashv (u_3 * b^{l(u_2) + k}) =$$

$$= u_1 * a^{l(u_3 b^{l(u_2) + k}) + k} = u_1 * a^{l(u_3) + l(u_2) + 2k},$$

$$u_1 \vdash (u_2 \vdash u_3) = u_1 \vdash (u_3 * b^{l(u_2) + k}) =$$

$$= u_3 * b^{l(u_2 b^{l(u_1) + k}) + k} = u_1 * a^{l(u_3) + l(u_1) + 2k} =$$

$$= u_3 * b^{l(u_2 b^{l(u_1) + k}) + k} = (u_2 * b^{l(u_1) + k}) \vdash u_3 = (u_1 \vdash u_2) \vdash u_3,$$

$$(u_1 \dashv u_2) \vdash u_3 = (u_1 * a^{l(u_2) + k}) \vdash u_3 =$$

$$= u_3 * b^{l(u_1 a^{l(u_2) + k}) + k} = u_3 * b^{l(u_1) + l(u_2) + 2k}.$$
Case 2. Let $u_1 = u_2 = u_3 = \theta$. Then
$$\theta \dashv (\theta \dashv \theta) = \theta \dashv (\theta * a^{l(\theta) + k}) = \theta \dashv a^k = \theta * a^{l(a^k) + k} = a^{2k} =$$

$$= a^k * a^{l(\theta) + k} = a^k \dashv \theta = (\theta * a^{l(\theta) + k}) \dashv \theta = (\theta \dashv \theta) \dashv \theta,$$

$$\theta \dashv (\theta \vdash \theta) = \theta \dashv (\theta * b^{l(\theta) + k}) = \theta \dashv b^k = \theta * a^{l(b^k) + k} = a^{2k},$$

$$\theta \vdash (\theta \vdash \theta) = \theta \vdash (\theta * b^{l(\theta) + k}) = \theta \vdash b^k = b^k * b^{l(\theta) + k} = b^{2k} =$$

$$= \theta * b^{l(b^k) + k} = b^k \vdash \theta = (\theta * b^{l(\theta) + k}) \vdash \theta = (\theta \vdash \theta) \vdash \theta,$$

$$(\theta \dashv \theta) \vdash \theta = (\theta * a^{l(\theta) + k}) \vdash \theta = a^k \vdash \theta = \theta * b^{l(a^k) + k} = b^{2k}.$$
Case 3. Let $u_1 = \theta$, $u_2 \neq \theta$, $u_3 \neq \theta$. Then
$$\theta \dashv (u_2 \dashv u_3) = \theta \dashv (u_2 * a^{l(u_3) + k}) = \theta * a^{l(u_2 a^{l(u_3) + k}) + k} = a^{l(u_2) + l(u_3) + 2k} =$$

$$= a^{l(u_2) + k} * a^{l(u_3) + k} = (\theta * a^{l(u_2) + k}) \dashv u_3 = (\theta \dashv u_2) \dashv u_3,$$

$$\theta \dashv (u_2 \vdash u_3) = \theta \dashv (u_3 * b^{l(u_2) + k}) = \theta * a^{l(u_2) + k} + k = a^{l(u_2) + l(u_3) + 2k},$$

$$\theta \vdash (u_2 \vdash u_3) = \theta \vdash (u_3 * b^{l(u_2) + k}) = u_3 * b^{l(u_2) + k} + k = a^{l(u_2) + l(u_3) + 2k},$$

$$\theta \vdash (u_2 \vdash u_3) = \theta \vdash (u_3 * b^{l(u_2) + k}) = u_3 * b^{l(u_2) + k} + k = a^{l(u_2) + l(u_3) + 2k},$$

$$\theta \vdash (u_2 \vdash u_3) = \theta \vdash (u_3 * b^{l(u_2) + k}) = u_3 * b^{l(u_2) + k} + k = a^{l(u_2) + l(u_3) + 2k}.$$

$$\theta \vdash (u_2 \vdash u_3) = \theta \vdash (u_3 * b^{l(u_2) + k}) = u_3 * b^{l(u_2) + k} + k = u_3 * b^{l(u_2) + 2k}.$$

$$\theta \vdash (u_2 \vdash u_3) = \theta \vdash (u_3 * a^{l(u_2)$$

Case 4. Let $u_1 = \theta$, $u_2 \neq \theta$, $u_3 = \theta$. Then

$$\theta \dashv (u_2 \dashv \theta) = \theta \dashv (u_2 * a^{l(\theta) + k}) = \theta \dashv (u_2 * a^k) = \theta * a^{l(u_2 * a^k) + k} = a^{l(u_2) + 2k} =$$

$$= a^{l(u_2) + k} * a^{l(\theta) + k} = (\theta * a^{l(u_2) + k}) \dashv \theta = (\theta \dashv u_2) \dashv \theta,$$

$$\theta \dashv (u_2 \vdash \theta) = \theta \dashv (\theta * b^{l(u_2) + k}) = \theta * a^{l(b^{l(u_2) + k}) + k} = a^{l(u_2) + 2k},$$

$$\theta \vdash (u_2 \vdash \theta) = \theta \vdash (\theta * b^{l(u_2) + k}) = b^{l(u_2) + k} * b^{l(\theta) + k} = b^{l(u_2) + 2k} =$$

$$= \theta * b^{l(u_2 * b^k) + k} = (u_2 * b^{l(\theta) + k}) \vdash \theta = (\theta \vdash u_2) \vdash \theta,$$

$$(\theta \dashv u_2) \vdash \theta = (\theta * a^{l(u_2) + k}) \vdash \theta = \theta * b^{l(a^{l(u_2) + k}) + k} = b^{l(u_2) + 2k}.$$

The cases $u_1 \neq \theta$, $u_2 = \theta$, $u_3 \neq \theta$; $u_1 \neq \theta$, $u_2 \neq \theta$, $u_3 = \theta$; $u_1 = u_2 = \theta$, $u_3 \neq \theta$; $u_1 \neq \theta$, $u_2 = u_3 = \theta$ are considered in a similar way.

Thus, $T_a^b(k)$ is a g-dimonoid.

Finally, show that $T_a^b(k)$ is not a dimonoid when $a \neq b$. For $u_1 \neq \theta$, $u_2 \neq \theta$ and $u_3 \neq \theta$ we have

$$(u_1 \vdash u_2) \dashv u_3 = (u_2 * b^{l(u_1)+k}) \dashv u_3 = u_2 * b^{l(u_1)+k} * a^{l(u_3)+k} =$$

$$= u_2 b^{l(u_1)+k} a^{l(u_3)+k} \neq u_2 a^{l(u_3)+k} b^{l(u_1)+k} =$$

$$= u_2 * a^{l(u_3)+k} * b^{l(u_1)+k} = u_1 \vdash (u_2 * a^{l(u_3)+k}) = u_1 \vdash (u_2 \dashv u_3)$$

The following lemma gives an answer on the question when $S_a^b(k)$ is a dimonoid.

Lemma 7. Let M be the free commutative monoid in the alphabet Y. For any $a, b \in Y$, $k \in \mathbb{N} \cup \{0\}$ algebras $M_a^b(k)$ and $T_a^a(k)$ are dimonoids.

Proof. From Lemma 6 it follows that $M_a^b(k)$ satisfies the axioms (D1), (D2), (D4), (D5). Show that the axiom (D3) also holds.

Let $u_1, u_2, u_3 \in M_a^b(k)$. Consider the following eight cases.

Case 1. Let $u_1 \neq \theta$, $u_2 \neq \theta$, $u_3 \neq \theta$. Then

and so, the axiom (D3) of a dimonoid does not hold.

$$(u_1 \vdash u_2) \dashv u_3 = (u_2 * b^{l(u_1)+k}) \dashv u_3 = u_2 * b^{l(u_1)+k} * a^{l(u_3)+k} =$$

$$= u_2 * a^{l(u_3)+k} * b^{l(u_1)+k} = u_1 \vdash (u_2 * a^{l(u_3)+k}) = u_1 \vdash (u_2 \dashv u_3).$$

Case 2. Let $u_1 = u_2 = u_3 = \theta$. Then

$$(\theta \vdash \theta) \dashv \theta = (\theta * b^{l(\theta)+k}) \dashv \theta = b^k \dashv \theta = b^k * a^{l(\theta)+k} = b^k * a^k = b^k + b^k$$

 $= a^k * b^k = a^k * b^{l(\theta)+k} = \theta \vdash a^k = \theta \vdash (\theta * a^{l(\theta)+k}) = \theta \vdash (\theta \dashv \theta)$

Case 3. Let $u_1 = \theta$, $u_2 \neq \theta$, $u_3 \neq \theta$. Then

$$(\theta \vdash u_2) \dashv u_3 = (u_2 * b^{l(\theta) + k}) \dashv u_3 = u_2 * b^{l(\theta) + k} * a^{l(u_3) + k} = u_2 * b^k * a^{l(u_3) + k} = u_2 * a^{l(u_3) + k} * b^k = u_2 * a^{l(u_3) + k} * b^{l(\theta) + k} = \theta \vdash (u_2 * a^{l(u_3) + k}) = \theta \vdash (u_2 \dashv u_3) \, .$$
 Case 4. Let $u_1 \neq \theta$, $u_2 = \theta$, $u_3 \neq \theta$. Then
$$(u_1 \vdash \theta) \dashv u_3 = (\theta * b^{l(u_1) + k}) \dashv u_3 = b^{l(u_1) + k} * a^{l(u_3) + k} = a^{l(u_3) + k} * b^{l(u_1) + k} = u_1 \vdash (\theta * a^{l(u_3) + k}) = u_1 \vdash (\theta \dashv u_3) \, .$$
 Case 5. Let $u_1 \neq \theta$, $u_2 \neq \theta$, $u_3 = \theta$. Then
$$(u_1 \vdash u_2) \dashv \theta = (u_2 * b^{l(u_1) + k}) \dashv \theta = u_2 * b^{l(u_1) + k} * a^{l(\theta) + k} = u_2 * b^{l(u_1) + k} * a^k = u_2 * a^k * b^{l(u_1) + k} = u_1 \vdash (u_2 * a^{l(\theta) + k}) = u_1 \vdash (u_2 \dashv \theta) \, .$$
 Case 6. Let $u_1 = u_2 = \theta$, $u_3 \neq \theta$. Then
$$(\theta \vdash \theta) \dashv u_3 = (\theta * b^{l(\theta) + k}) \dashv u_3 = b^k \dashv u_3 = b^k * a^{l(u_3) + k} = a^{l(u_3) + k} * b^k = a^{l(u_3) + k} * b^{l(\theta) + k} = \theta \vdash (\theta * a^{l(u_3) + k}) = \theta \vdash (\theta \dashv u_3) \, .$$
 Case 7. Let $u_1 \neq \theta$, $u_2 = u_3 = \theta$. Then
$$(u_1 \vdash \theta) \dashv \theta = (\theta * b^{l(u_1) + k}) \dashv \theta = b^{l(u_1) + k} * a^{l(\theta) + k} = b^{l(u_1) + k} * a^k = a^k * b^{l(u_1) + k} = u_1 \vdash a^k = u_1 \vdash (\theta * a^{l(\theta) + k}) = u_1 \vdash (\theta \dashv \theta) \, .$$
 Case 8. Let $u_1 = \theta$, $u_2 \neq \theta$, $u_3 = \theta$. Then
$$(\theta \vdash u_2) \dashv \theta = (u_2 * b^{l(\theta) + k}) \dashv \theta = u_2 * b^k * a^{l(\theta) + k} = u_2 * b^k * a^k = u_2 * a^k * b^k = u_2 * a^k * b^{l(\theta) + k}) \dashv \theta = u_2 * b^k * a^{l(\theta) + k} = u_2 * b^k * a^k = u_2 * a^k * b^k = u_2 * a^k * b^{l(\theta) + k}) \dashv \theta = u_2 * b^k * a^{l(\theta) + k} = \theta \vdash (u_2 \dashv \theta) \, .$$
 Thus, $M_a^b(k)$ is a dimonoid. A proof is the same for $T_a^a(k)$.

Note that independence of axioms of a g-dimonoid follows from independence of axioms of a dimonoid (see [2], Theorem 2).

3. Free g-dimonoids

In this section we construct a g-dimonoid which is isomorphic to the free g-dimonoid of an arbitrary rank and consider separately free g-dimonoids of rank 1.

A nonempty subset A of a g-dimonoid (D, \dashv, \vdash) is called a g-subdimonoid, if for any $a, b \in D$, $a, b \in A$ implies $a \dashv b$, $a \vdash b \in A$.

Note that the class of all g-dimonoids is a variety as it is closed under taking of homomorphic images, g-subdimonoids and Cartesian products. A g-dimonoid which is free in the variety of all g-dimonoids is called a free g-dimonoid.

In order to prove the main result of this section we need the construction of a free g-dimonoid from [14].

Let e be an arbitrary symbol. Consider the following sets:

$$I^{1} = \{e\}, \ I^{n} = \{(\varepsilon_{1}, \dots, \varepsilon_{n-1}) \mid \varepsilon_{k} \in \{0, 1\}, 1 \leqslant k \leqslant n-1\}, \ n > 1,$$

$$I = \bigcup_{n > 1} I^{n}.$$

If l=0, we will regard the sequence $\varepsilon_1,\ldots,\varepsilon_l$ without brackets as empty, and the sequence $(\varepsilon_1,\ldots,\varepsilon_l)$ with brackets as e. Define operations \dashv and \vdash on I by

$$(\varepsilon_1, \dots, \varepsilon_{n-1}) \dashv (\theta_1, \dots, \theta_{m-1}) = (\varepsilon_1, \dots, \varepsilon_{n-1}, \underbrace{1, 1, \dots, 1}_{m}),$$
$$(\varepsilon_1, \dots, \varepsilon_{n-1}) \vdash (\theta_1, \dots, \theta_{m-1}) = (\theta_1, \dots, \theta_{m-1}, \underbrace{0, 0, \dots, 0}_{n}).$$

By Lemma 3 from [14] (I, \dashv, \vdash) is a g-dimonoid. Observe that $e \dashv e = (1)$, $e \vdash e = (0)$ and (I, \dashv, \vdash) is not a dimonoid.

Let X be an arbitrary nonempty set and F[X] be the free semigroup in the alphabet X. Define operations \dashv and \vdash on $FG = \{(w, \varepsilon) \mid w \in F[X], \varepsilon \in I^{l(w)}\}$ by

$$(w_1, \varepsilon) \dashv (w_2, \xi) = (w_1 w_2, \varepsilon \dashv \xi),$$

 $(w_1, \varepsilon) \vdash (w_2, \xi) = (w_1 w_2, \varepsilon \vdash \xi)$

for all $(w_1, \varepsilon), (w_2, \xi) \in FG$. The algebra (FG, \dashv, \vdash) is denoted by FG[X]. By Theorem 4 from [14] FG[X] is the free g-dimonoid.

Using notations from Section 2, introduce the set

$$XT_a^b(k) = \{(w, u) \in F[X] \times T_a^b(k) | l(w) - l(u) = 1\}.$$

If s = 1, we will regard the sequence $y_1y_2...y_{s-1} \in T_a^b(k)$ as θ . The main result of this section is the following.

Theorem 1. The g-dimonoid $XT_a^b(1)$ is free if |Y| = 2 and $a \neq b$.

Proof. By Lemma 1 $F[X] \times T_a^b(k)$ is a g-dimonoid. It is not difficult to check that $XT_a^b(1)$ is a g-subdimonoid of $F[X] \times T_a^b(1)$.

Let |Y|=2 and $a\neq b$. Let us show that $XT_a^b(1)$ is free. Take $(x_1x_2...x_s,y_1y_2...y_{s-1})\in XT_a^b(1)$, where $x_i\in X,\ 1\leqslant i\leqslant s,\ y_j\in Y,\ 1\leqslant j\leqslant s-1$, and define a map

$$\pi: XT_a^b(1) \to FG[X]:$$

$$(x_1x_2...x_s, y_1y_2...y_{s-1}) \mapsto (x_1x_2...x_s, y_1y_2...y_{s-1})\pi,$$

assuming

$$(x_1x_2...x_s, y_1y_2...y_{s-1})\pi = (x_1x_2...x_s, (\tilde{y}_1, \tilde{y}_2, ..., \tilde{y}_{s-1})),$$

where

$$\widetilde{y}_i = \begin{cases} 1, \ y_i = a, \\ 0, \ y_i = b \end{cases}$$

for all $1 \le i \le s-1$, $s \ne 1$, and $(\widetilde{y}_1, \widetilde{y}_2, ..., \widetilde{y}_{s-1})$ is e for s = 1. Show that π is an isomorphism.

For all

$$(x_1x_2...x_s, y_1y_2...y_{s-1}), (a_1a_2...a_m, b_1b_2...b_{m-1}) \in XT_a^b(1),$$

where $a_i \in X, 1 \leq i \leq m, b_j \in Y, 1 \leq j \leq m-1$, obtain

$$((x_{1}x_{2} \dots x_{s}, y_{1}y_{2} \dots y_{s-1}) \dashv (a_{1}a_{2} \dots a_{m}, b_{1}b_{2} \dots b_{m-1})) \pi =$$

$$= (x_{1}x_{2} \dots x_{s}a_{1}a_{2} \dots a_{m}, y_{1}y_{2} \dots y_{s-1} * a^{m}) \pi =$$

$$= \left(x_{1}x_{2} \dots x_{s}a_{1}a_{2} \dots a_{m}, (\widetilde{y}_{1}, \widetilde{y}_{2}, \dots, \widetilde{y}_{s-1}, \underbrace{\widetilde{a}, \widetilde{a}, \dots, \widetilde{a}}_{m})\right) =$$

$$= \left(x_{1}x_{2} \dots x_{s}a_{1}a_{2} \dots a_{m}, (\widetilde{y}_{1}, \widetilde{y}_{2}, \dots, \widetilde{y}_{s-1}, \underbrace{1, 1, \dots, 1}_{m})\right) =$$

$$= (x_{1}x_{2} \dots x_{s}, (\widetilde{y}_{1}, \widetilde{y}_{2}, \dots, \widetilde{y}_{s-1})) \dashv (a_{1}a_{2} \dots a_{m}, (\widetilde{b}_{1}, \widetilde{b}_{2}, \dots, \widetilde{b}_{m-1})) =$$

$$= (x_{1}x_{2} \dots x_{s}, y_{1}y_{2} \dots y_{s-1}) \pi \dashv (a_{1}a_{2} \dots a_{m}, b_{1}b_{2} \dots b_{m-1}) \pi,$$

$$((x_1 x_2 \dots x_s, y_1 y_2 \dots y_{s-1}) \vdash (a_1 a_2 \dots a_m, b_1 b_2 \dots b_{m-1})) \pi =$$

$$= (x_1 x_2 \dots x_s a_1 a_2 \dots a_m, b_1 b_2 \dots b_{m-1} * b^s) \pi =$$

$$= \left(x_1 x_2 \dots x_s a_1 a_2 \dots a_m, (\widetilde{b}_1, \widetilde{b}_2, \dots, \widetilde{b}_{m-1}, \underbrace{\widetilde{b}, \widetilde{b}, \dots, \widetilde{b}})\right) =$$

$$= \left(x_1 x_2 \dots x_s a_1 a_2 \dots a_m, (\widetilde{b}_1, \widetilde{b}_2, \dots, \widetilde{b}_{m-1}, \underbrace{0, 0, \dots, 0}_s)\right) =$$

$$= (x_1 x_2 \dots x_s, (\widetilde{y}_1, \widetilde{y}_2, \dots, \widetilde{y}_{s-1})) \vdash \left(a_1 a_2 \dots a_m, (\widetilde{b}_1, \widetilde{b}_2, \dots, \widetilde{b}_{m-1})\right) =$$

$$= (x_1 x_2 \dots x_s, y_1 y_2 \dots y_{s-1}) \pi \vdash (a_1 a_2 \dots a_m, b_1 b_2 \dots b_{m-1}) \pi.$$

So, π is a homomorphism. Obviously, π is a bijection and thus, π is an isomorphism. Hence we obtain that $XT_a^b(1)$ is the free g-dimonoid. \square

The following lemma gives one property of $S_a^b(k)$.

Lemma 8. If $S_a^b(k)$ is a dimonoid, then a^k and b^k are commuting in S.

Proof. Let $S_a^b(k)$ be a dimonoid. Then

$$(\theta \vdash \theta) \dashv \theta = (\theta * b^{l(\theta)+k}) \dashv \theta = b^k \dashv \theta = b^k * a^{l(\theta)+k} = b^k * a^k,$$

$$\theta \vdash (\theta \dashv \theta) = \theta \vdash (\theta * a^{l(\theta)+k}) = \theta \vdash a^k = a^k * b^{l(\theta)+k} = a^k * b^k$$
 and, using the axiom (D3), obtain $b^k * a^k = a^k * b^k$. \square

Now we construct a g-dimonoid which is isomorphic to the free g-dimonoid of rank 1.

Let $|Y|=2,\,a\neq b.$ Define operations \dashv and \vdash on

$$\widetilde{\mathbb{N}T}_a^b(1) = \{(m,u) \in \mathbb{N} \times T_a^b(1) \, | \, m-l(u) = 1\}$$

by

$$(m_1, u_1) \dashv (m_2, u_2) = (m_1 + m_2, u_1 * a^{l(u_2)+1}),$$

 $(m_1, u_1) \vdash (m_2, u_2) = (m_1 + m_2, u_2 * b^{l(u_1)+1})$

for all $(m_1, u_1), (m_2, u_2) \in \widetilde{\mathbb{N}T}_a^b(1)$. By Lemma 1 $(\mathbb{N}, +) \times T_a^b(1)$ is a g-dimonoid. An immediate verification shows that operations \dashv and \vdash are well-defined. Thus, $(\widetilde{\mathbb{N}T}_a^b(1), \dashv, \vdash)$ is a g-subdimonoid of $(\mathbb{N}, +) \times T_a^b(1)$. Denote it by $\mathbb{N}T_a^b(1)$.

Lemma 9. The free g-dimonoid of rank 1 is isomorphic to the g-dimonoid $\mathbb{N}T_a^b(1)$.

Proof. Let $X = \{r\}$. An easy verification shows that a map

$$\xi: XT_a^b(1) \to \mathbb{N}T_a^b(1),$$

defined by $\omega \xi = (k, u) \Leftrightarrow \omega = (r^k, u)$, is an isomorphism.

4. Free *n*-nilpotent *g*-dimonoids

In this section we construct a free n-nilpotent g-dimonoid of an arbitrary rank and consider separately free n-nilpotent g-dimonoids of rank 1. We also characterize the least n-nilpotent congruence on a free g-dimonoid.

An element 0 of a g-dimonoid (D, \dashv, \vdash) will be called zero, if $x \star 0 = 0 = 0 \star x$ for all $x \in D$ and $\star \in \{\dashv, \vdash\}$.

A g-dimonoid (D, \dashv, \vdash) with zero will be called nilpotent, if for some $n \in \mathbb{N}$ and any $x_i \in D$, $1 \leq i \leq n+1$, and $*_j \in \{\dashv, \vdash\}$, $1 \leq j \leq n$, any parenthesizing of

$$x_1 *_1 x_2 *_2 \dots *_n x_{n+1}$$
 (2)

gives $0 \in D$. The least such n we shall call the nilpotency index of (D, \dashv, \vdash) . For $k \in \mathbb{N}$ a nilpotent g-dimonoid of nilpotency index $\leq k$ is said to be k-nilpotent.

Note that from (2) it follows that operations of any 1-nilpotent g-dimonoid coincide and it is a zero semigroup.

It is not difficult to see that the class of all n-nilpotent g-dimonoids is a subvariety of the variety of all g-dimonoids. A g-dimonoid which is free in the variety of n-nilpotent g-dimonoids will be called a free n-nilpotent g-dimonoid.

Fix $n \in \mathbb{N}$ and, using notations from Section 3, assume

$$G_n = \{(w, u) \in XT_a^b(1) \mid l(w) \le n\} \cup \{0\} \quad (|Y| = 2, \ a \ne b).$$

Define operations \prec and \succ on G_n by

$$(w_1, u_1) \prec (w_2, u_2) = \begin{cases} (w_1 w_2, u_1 * a^{l(u_2)+1}), & l(w_1 w_2) \leq n, \\ 0, & l(w_1 w_2) > n, \end{cases}$$

$$(w_1, u_1) \succ (w_2, u_2) = \begin{cases} (w_1 w_2, u_2 * b^{l(u_1)+1}), & l(w_1 w_2) \leq n, \\ 0, & l(w_1 w_2) > n, \end{cases}$$

$$(w_1, u_1) \star 0 = 0 \star (w_1, u_1) = 0 \star 0 = 0$$

for all (w_1, u_1) , $(w_2, u_2) \in G_n \setminus \{0\}$ and $\star \in \{\prec, \succ\}$. The algebra (G_n, \prec, \succ) will be denoted by $G_n(X)$.

Theorem 2. $G_n(X)$ is the free n-nilpotent g-dimonoid.

Proof. Prove that $G_n(X)$ is a g-dimonoid. Let $(w_1, u_1), (w_2, u_2), (w_3, u_3) \in G_n \setminus \{0\}$. If $l(w_1w_2) > n$ or $l(w_2w_3) > n$, then the proof is straightforward. The fact that axioms of a g-dimonoid hold when $l(w_1w_2w_3) \leq n$ follows from Theorem 1. In the case $l(w_1w_2) \leq n$, $l(w_2w_3) \leq n$ and $l(w_1w_2w_3) > n$ we have

$$((w_1, u_1) *_1 (w_2, u_2)) *_2 (w_3, u_3) = 0 = (w_1, u_1) *_1 ((w_2, u_2) *_2 (w_3, u_3))$$

for $*_1, *_2 \in \{ \prec, \succ \}$. The proofs of the remaining cases are obvious. Thus, $G_n(X)$ is a g-dimonoid.

For any $(w_i, u_i) \in G_n \setminus \{0\}$, $1 \le i \le n+1$, and $*_j \in \{\prec, \succ\}$, $1 \le j \le n$, any parenthesizing of

$$(w_1, u_1) *_1 (w_2, u_2) *_2 \dots *_n (w_{n+1}, u_{n+1})$$

gives 0, hence $G_n(X)$ is nilpotent. Moreover, for any $(x_i, \theta) \in G_n \setminus \{0\}$, where $x_i \in X$, $1 \leq i \leq n$,

$$(x_1, \theta) \prec (x_2, \theta) \prec \ldots \prec (x_n, \theta) = (x_1 x_2 \ldots x_n, a^{n-1}) \neq 0.$$

It means that $G_n(X)$ has nilpotency index n.

Let us show that $G_n(X)$ is free in the variety of n-nilpotent g-dimonoids.

The g-dimonoid $(\mathcal{G}(X), \dashv, \vdash)$ which is isomorphic to FG[X] from Section 3 was constructed in [14]. The corresponding isomorphism $(\mathcal{G}(X), \dashv, \vdash) \to FG[X]$ is denoted by σ (see [14], Theorem 4). In the last paper for an arbitrary g-dimonoid $(\mathcal{D}, \dashv, \vdash)$ the homomorphism ψ_0 from $(\mathcal{G}(X), \dashv, \vdash)$ to $(\mathcal{D}, \dashv, \vdash)$ was given. We will call ψ_0 as a canonical homomorphism. Observe that ψ_0 sends an arbitrary term with elements $x_1, ..., x_n$ to the product of some n elements from \mathcal{D} .

Let (P, \dashv', \vdash') be an arbitrary n-nilpotent g-dimonoid, α be the canonical homomorphism from $(\mathcal{G}(X), \dashv, \vdash)$ to (P, \dashv', \vdash') and $\mu = \pi \sigma^{-1} \alpha$ (see Section 3). Obviously, μ is a homomorphism from $XT_a^b(1)$, where |Y| = 2, $a \neq b$, to (P, \dashv', \vdash') . Define a map

$$\delta: G_n(X) \to (P, \dashv', \vdash'): \omega \mapsto \omega \delta,$$

assuming

$$\omega\delta = \begin{cases} \omega\mu, \ \omega \in G_n \setminus \{0\}, \\ 0, \ \omega = 0. \end{cases}$$

Show that δ is a homomorphism.

Let $\omega_1 = (x_1 x_2 ... x_s, y_1 y_2 ... y_{s-1}), \ \omega_2 = (a_1 a_2 ... a_m, \ b_1 b_2 ... b_{m-1}) \in G_n \setminus \{0\}$, where $x_i \in X, 1 \leq i \leq s, y_j \in Y, 1 \leq j \leq s-1, a_i \in X, 1 \leq i \leq m, b_j \in Y, 1 \leq j \leq m-1$. Assume $s+m \leq n$. As $\omega_1 \prec \omega_2 \in G_n \setminus \{0\}$, then

$$(\omega_1 \prec \omega_2)\delta = (\omega_1 \prec \omega_2)\mu = (\omega_1 \dashv \omega_2)\mu = \omega_1\mu \dashv' \omega_2\mu = \omega_1\delta \dashv' \omega_2\delta.$$

Analogously, $(\omega_1 \succ \omega_2)\delta = \omega_1 \delta \vdash' \omega_2 \delta$. Taking into account the previous arguments, in the remaining cases the equalities

$$(\omega_1 \prec \omega_2)\delta = (\omega_1 \succ \omega_2)\delta = 0 = \omega_1 \delta \vdash' \omega_2 \delta = \omega_1 \delta \dashv' \omega_2 \delta$$

hold. Thus, δ is a homomorhism.

The proof is complete.

Now we construct a g-dimonoid which is isomorphic to the free n-nilpotent g-dimonoid of rank 1.

Assume |Y| = 2, $a \neq b$. For any $n \in \mathbb{N}$ let

$$\widetilde{\mathbb{L}}_n = \{ (m, u) \in \mathbb{N} \times T_a^b(1) \mid m - l(u) = 1, m \le n \} \cup \{0\}.$$

Define operations \dashv and \vdash on $\widetilde{\mathbb{L}}_n$ by the rule

$$(m_1, u_1) \dashv (m_2, u_2) = \begin{cases} (m_1 + m_2, u_1 * a^{l(u_2)+1}), & m_1 + m_2 \leq n, \\ 0, & m_1 + m_2 > n, \end{cases}$$

$$(m_1, u_1) \vdash (m_2, u_2) = \begin{cases} (m_1 + m_2, u_2 * b^{l(u_1)+1}), & m_1 + m_2 \leq n, \\ 0, & m_1 + m_2 > n, \end{cases}$$

$$(m_1, u_1) \star 0 = 0 \star (m_1, u_1) = 0 \star 0 = 0$$

for all (m_1, u_1) , $(m_2, u_2) \in \widetilde{\mathbb{L}}_n \setminus \{0\}$ and $\star \in \{\dashv, \vdash\}$. An immediate verification shows that axioms of a g-dimonoid hold concerning operations \dashv and \vdash . So, $(\widetilde{\mathbb{L}}_n, \dashv, \vdash)$ is a g-dimonoid. Denote it by \mathbb{L}_n .

Lemma 10. If |X| = 1, then $G_n(X) \cong \mathbb{L}_n$.

Proof. Let $X = \{r\}$. An easy verification shows that a map $\varrho : G_n(X) \to \mathbb{L}_n$, defined by

$$\omega\varrho = \left\{ \begin{array}{ll} (k,u), \ \omega = (r^k,u), \\ 0, \quad \omega = 0, \end{array} \right.$$

is an isomorphism.

We finish this section with the description of the least n-nilpotent congruence on a free g-dimonoid.

If $f: D_1 \to D_2$ is a homomorphism of g-dimonoids, then the corresponding congruence on D_1 will be denoted by Δ_f . If ρ is a congruence on a g-dimonoid (D, \dashv, \vdash) such that $(D, \dashv, \vdash)/\rho$ is an n-nilpotent g-dimonoid, then we say that ρ is an n-nilpotent congruence.

Let $XT_a^b(1)$ be the free g-dimonoid $(|Y|=2, a \neq b)$ (see Section 3). Fix $n \in \mathbb{N}$ and define a relation $\kappa(n)$ on $XT_a^b(1)$ by

$$(w_1, u_1)\kappa(n)(w_2, u_2)$$
 if and only if $(w_1, u_1) = (w_2, u_2)$ or $l(w_1) > n$, $l(w_2) > n$.

Theorem 3. The relation $\kappa(n)$ on the free g-dimonoid $XT_a^b(1)$ is the least n-nilpotent congruence.

Proof. Define a map $\tau: XT_a^b(1) \to G_n(X)$ by

$$(w,u)\,\tau = \left\{ \begin{array}{ll} (w,u)\,, & l(w) \leqslant n, \\ 0, & l(w) > n, \end{array} \right. \quad (w,u) \in XT_a^b(1).$$

Similarly to the proof of Theorem 4 from [4], the facts that τ is a surjective homomorphism and $\Delta_{\tau} = \kappa(n)$ can be proved.

References

- [1] J.-L. Loday, Dialgebras, In: Dialgebras and related operads, Lect. Notes Math. 1763, Springer-Verlag, Berlin (2001), 7–66.
- [2] A.V. Zhuchok, *Dimonoids*, Algebra and Logic **50** (2011), no. 4, 323–340.
- [3] A.V. Zhuchok, Free dimonoids, Ukr. Math. J. 63 (2011), no. 2, 196–208.
- [4] A.V. Zhuchok, Free n-nilpotent dimonoids, Algebra and Discrete Math. 16 (2013), no. 2, 299–310.
- [5] A.P. Pozhidaev, 0-dialgebras with bar-unity and nonassociative Rota-Baxter algebras, Sib. Math. J. 50 (2009) no. 6, 1070–1080.
- [6] T. Pirashvili, Sets with two associative operations, Cent. Eur. J. Math. 2 (2003), 169–183.
- [7] B.M. Schein, Restrictive bisemigroups, Izv. Vyssh. Uchebn. Zaved. Mat. 1 (44) (1965), 168–179 (in Russian).
- [8] M. Gould, K.A. Linton, A.W. Nelson, *Interassociates of monogenic semigroups*, Semigroup Forum **68** (2004), 186–201.
- [9] M. Gould, R.E. Richardson, Translational hulls of polynomially related semigroups, Czechoslovak Math. J. 33 (1983), no. 1, 95–100.
- [10] E. Hewitt, H.S. Zuckerman, Ternary operations and semigroups, Semigroups, Proc. Sympos. Detroit, Michigan 1968. (1969), 95–100.

- [11] B. Richter, Dialgebren, Doppelalgebren und ihre Homologie, Diplomarbeit, Universitat Bonn. (1997). Available at http://www.math.uni-bonn.de/people/richter/.
- [12] N.A. Koreshkov, *n-tuple algebras of associative type*, Izv. Vyssh. Uchebn. Zaved. Mat. **12** (2008), 34–42 (in Russian).
- [13] Yul. V. Zhuchok, *On one class of algebras*, International Algebraic Conference dedicated to the 100th anniversary of L.A. Kaluzhnin: Abstracts, Kyiv, Ukraine (2014), p. 91.
- [14] Y. Movsisyan, S. Davidov and Mh. Safaryan, Construction of free g-dimonoids, Algebra and Discrete Math. 18 (2014), no. 1, 138–148.

CONTACT INFORMATION

Yul. V. Zhuchok

Department of Algebra and System Analysis, Luhansk Taras Shevchenko National University, Gogol square, 1, Starobilsk, 92700, Ukraine E-Mail(s): yulia.mih@mail.ru

Received by the editors: 10.11.2014 and in final form 12.01.2015.