
Algebra and Discrete Mathematics RESEARCH ARTICLE
Volume 18 (2014). Number 2, pp. 306–320

© Journal “Algebra and Discrete Mathematics”

On one class of algebras
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Abstract. In this paper a g-dimonoid which is isomorphic
to the free g-dimonoid is given and a free n-nilpotent g-dimonoid is
constructed. We also present the least n-nilpotent congruence on a
free g-dimonoid and give numerous examples of g-dimonoids.

1. Introduction

Recall that a dialgebra (dimonoid) [1] is a vector space (set) with
two binary operations ⊣ and ⊢ satisfying the axioms (x ⊣ y) ⊣ z =
x ⊣ (y ⊣ z) (D1), (x ⊣ y) ⊣ z = x ⊣ (y ⊢ z) (D2), (x ⊢ y) ⊣ z =
x ⊢ (y ⊣ z) (D3), (x ⊣ y) ⊢ z = x ⊢ (y ⊢ z) (D4), (x ⊢ y) ⊢ z =
x ⊢ (y ⊢ z) (D5). In our time dimonoids are standard tool in the theory
of Leibniz algebras. So, for example, free dimonoids were used for con-
structing free dialgebras and for studying a cohomology of dialgebras.
There exist papers devoted to studying structural properties of dimonoids
(see, e.g., [2 – 4]). If in the definition of a dialgebra delete the axioms
(D1), (D3), (D5), then we obtain a 0-dialgebra which was considered
in [5]. Algebras obtained from the definition of a dimonoid by deleting
the axioms (D2) and (D4) were considered in [6]. In the last paper the
free object in the corresponding variety was constructed. Observe that
dimonoids are closely connected with restrictive bisemigroups considered
by B.M. Schein [7]. In [8–11] the notions of interassociativity, respectively,
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strong interassociativity, related semigroups and doppelalgebras which are
naturally connected with dimonoids were considered. Another reason for
interest in dimonoids is their connection with n-tuple semigroups which
were used in [12] for studying properties of n-tuple algebras of associative
type. If in the definition of a dimonoid delete the axiom (D3), then we
obtain an algebraic system which is called a g-dimonoid (see [13, 14]).

In this paper g-dimonoids are studied. In Section 2 we give nume-
rous examples of g-dimonoids. In Section 3 we suggest a new concrete
representation of a free g-dimonoid using the construction of a free g-
dimonoid from [14]. The main result of this section was announced in [13].
In Section 4 the construction of a free n-nilpotent g-dimonoid is given.
Moreover, here we characterize the least n-nilpotent congruence on a free
g-dimonoid.

2. Examples of g-dimonoids

In this section we give different examples of g-dimonoids.
a) Obviously, any dimonoid is a g-dimonoid.
b) Let X be an arbitrary nonempty set, |X| > 1 and let X∗ be the

set of all finite nonempty words in the alphabet X. Denoting the first
(respectively, the last) letter of a word w ∈ X∗ by w(0) (respectively, by
w(1)), define operations ⊣ and ⊢ on X∗ by w ⊣ u = w(0), w ⊢ u = u(1)

for all w, u ∈ X∗. From the proof of Theorem 2 [2] it follows that (X∗,⊣,⊢)
is a g-dimonoid but not a dimonoid.

c) Let {Di}i∈I be a family of arbitrary g-dimonoids Di, i ∈ I, and let∏
i∈IDi be a set of all functions f : I →

⋃
i∈I Di such that if ∈ Di for

any i ∈ I.
It is easy to prove the following lemma.

Lemma 1.
∏

i∈IDi with multiplications defined by

i(f1 ⊣ f2) = if1 ⊣ if2, i(f1 ⊢ f2) = if1 ⊢ if2, (1)

where i ∈ I, f1, f2 ∈
∏

i∈IDi, is a g-dimonoid.

The obtained algebra is called the Cartesian product of g-dimonoids
Di, i ∈ I. If I is finite, then the Cartesian product and the direct product
coincide. The Cartesian product of a finite number of g-dimonoids D1,
D2, ..., Dn is denoted by D1 ×D2 × ...×Dn. In particular, the Cartesian
power of a g-dimonoid can be defined as follows. Let V be an arbitrary
g-dimonoid and X be any nonempty set. Denote by Map(X;V ) the set of
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all maps X → V . Define operations ⊣ and ⊢ on Map(X;V ) by (1) for all
f1, f2 ∈ Map(X;V ) and i ∈ X. Then (Map(X;V ),⊣,⊢) is a g-dimonoid
which is called the Cartesian power of V .

d) As usual, N denotes the set of all positive integers.
Let F [X] be the free semigroup in an alphabet X. We denote the

length of a word w ∈ F [X] by l(w). Fix n ∈ N and define operations ⊣
and ⊢ on F [X] × N by

(w1,m1) ⊣ (w2,m2) = (w1w2, n),

(w1,m1) ⊢ (w2,m2) = (w1w2, l(w1) +m2)

for all (w1,m1), (w2,m2) ∈ F [X]×N. Denote the algebra (F [X]×N,⊣,⊢)
by XNn.

Lemma 2. The algebra XNn is a g-dimonoid but not a dimonoid.

Proof. One can directly verify that XNn is a g-dimonoid. Show that it is
not a dimonoid. For all (w1,m1), (w2,m2), (w3,m3) ∈ XNn obtain

((w1,m1) ⊢ (w2,m2)) ⊣ (w3,m3) = (w1w2, l(w1) +m2) ⊣ (w3,m3) =

= (w1w2w3, n) 6= (w1w2w3, l(w1) + n) = (w1,m1) ⊢ (w2w3, n) =

= (w1,m1) ⊢ ((w2,m2) ⊣ (w3,m3)).

e) Let S be an arbitrary semigroup, a, b ∈ S. By ES denote the set of
all idempotents of S. Define operations ⊣ and ⊢ on S by

x ⊣ y = ax, x ⊢ y = by

for all x, y ∈ S. Denote the algebra (S,⊣,⊢) by S(a, b).

Lemma 3. Let S be an arbitrary right cancellative semigroup, a, b ∈ ES.
(i) If a and b are non-commuting, then S(a, b) is a g-dimonoid but

not a dimonoid.
(ii) If a and b are commuting, then S(a, b) is a dimonoid.

Proof. (i) The axioms (D1), (D2), (D4), (D5) are checked directly. Be-
sides,

(x ⊢ y) ⊣ z = by ⊣ z = aby, x ⊢ (y ⊣ z) = x ⊢ ay = bay

for all x, y, z ∈ S. Suppose that aby = bay. Then, using the right can-
cellability, obtain ab = ba. Thus, we arrive at a contradiction, i.e., the
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assumption that aby = bay does not hold. Consequently, S(a, b) is not a
dimonoid.

(ii) If a and b are commuting, then, obviously, all axioms of a dimonoid
hold.

f) Let S be an arbitrary semigroup, a, b ∈ S. Define operations ⊣ and
⊢ on S by

x ⊣ y = xa, x ⊢ y = yb

for all x, y ∈ S. Denote the algebra (S,⊣,⊢) by S[a, b].

Similarly to Lemma 3, the following lemma can be proved.

Lemma 4. Let S be an arbitrary left cancellative semigroup, a, b ∈ ES.

(i) If a and b are non-commuting, then S[a, b] is a g-dimonoid but
not a dimonoid.

(ii) If a and b are commuting, then S[a, b] is a dimonoid.

g) Let S be an arbitrary semigroup, a, b ∈ S. Define operations ⊣ and
⊢ on S by

x ⊣ y = axb, x ⊢ y = ayb

for all x, y ∈ S. Denote the algebra (S,⊣,⊢) by S(a, b].

The following lemma could be proved immediately.

Lemma 5. If a, b ∈ ES, then S(a, b] is a dimonoid.

h) Let Y be an arbitrary nonempty set, S = SY be some monoid
defined on the set of finite words in the alphabet Y and θ ∈ S be an
empty word which is a unit of S. Denote the operation on S by ∗ and
the length of a word w ∈ S by l(w). By definition l(θ) = 0, u0 = θ for all
u ∈ S. Fix elements a, b ∈ Y , k ∈ N ∪ {0} and define operations ⊣ and ⊢
on S, assuming

u1 ⊣ u2 = u1 ∗ al(u2)+k, u1 ⊢ u2 = u2 ∗ bl(u1)+k

for all u1, u2 ∈ S. The obtained algebra will be denoted by Sb
a(k).

Lemma 6. Let T be the free monoid in the alphabet Y . Then for any
a, b ∈ Y , k ∈ N ∪ {0} the algebra T b

a(k) is a g-dimonoid. If a 6= b, then it
is not a dimonoid.

Proof. Let u1, u2, u3 ∈ T b
a(k). In order to prove that T b

a(k) is a g-dimonoid
we consider the following cases.
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Case 1. Let u1 6= θ, u2 6= θ, u3 6= θ. Then

u1⊣ (u2⊣u3) = u1⊣(u2 ∗ al(u3)+k) =

= u1 ∗ al(u2al(u3)+k)+k = u1 ∗ al(u2)+l(u3)+2k =

= u1 ∗ al(u2)+k ∗ al(u3)+k = (u1 ∗ al(u2)+k)⊣u3 = (u1⊣u2) ⊣u3,

u1⊣ (u2⊢u3) = u1⊣(u3 ∗ bl(u2)+k) =

= u1 ∗ al(u3bl(u2)+k)+k = u1 ∗ al(u3)+l(u2)+2k,

u1⊢ (u2⊢u3) = u1⊢(u3 ∗ bl(u2)+k) =

= u3 ∗ bl(u2)+k ∗ bl(u1)+k = u3 ∗ bl(u2)+l(u1)+2k =

= u3 ∗ bl(u2bl(u1)+k)+k = (u2 ∗ bl(u1)+k)⊢u3 = (u1⊢u2) ⊢u3,

(u1⊣u2)⊢u3 = (u1 ∗ al(u2)+k)⊢u3 =

= u3 ∗ bl(u1al(u2)+k)+k = u3 ∗ bl(u1)+l(u2)+2k.

Case 2. Let u1 = u2 = u3 = θ. Then

θ⊣ (θ⊣θ) = θ⊣(θ ∗ al(θ)+k) = θ⊣ak = θ ∗ al(ak)+k = a2k =

= ak ∗ al(θ)+k = ak⊣θ = (θ ∗ al(θ)+k)⊣θ = (θ⊣θ) ⊣θ,

θ⊣ (θ⊢θ) = θ⊣(θ ∗ bl(θ)+k) = θ⊣bk = θ ∗ al(bk)+k = a2k,

θ⊢ (θ⊢θ) = θ⊢(θ ∗ bl(θ)+k) = θ⊢bk = bk ∗ bl(θ)+k = b2k =

= θ ∗ bl(bk)+k = bk⊢θ = (θ ∗ bl(θ)+k)⊢θ = (θ⊢θ) ⊢θ,

(θ⊣θ) ⊢θ = (θ ∗ al(θ)+k)⊢θ = ak⊢θ = θ ∗ bl(ak)+k = b2k.

Case 3. Let u1 = θ, u2 6= θ, u3 6= θ. Then

θ⊣ (u2⊣u3) = θ⊣(u2 ∗ al(u3)+k) = θ ∗ al(u2al(u3)+k)+k = al(u2)+l(u3)+2k =

= al(u2)+k ∗ al(u3)+k = (θ ∗ al(u2)+k)⊣u3 = (θ⊣u2) ⊣u3,

θ⊣ (u2⊢u3) = θ⊣(u3 ∗ bl(u2)+k) = θ ∗ al(u3bl(u2)+k)+k = al(u2)+l(u3)+2k,

θ⊢ (u2⊢u3) = θ⊢(u3 ∗ bl(u2)+k) = u3 ∗ bl(u2)+k ∗ bl(θ)+k = u3 ∗ bl(u2)+2k =

= u3 ∗ bl(u2∗bl(θ)+k)+k = (u2 ∗ bl(θ)+k)⊢u3 = (θ⊢u2) ⊢u3,

(θ⊣u2) ⊢u3 = (θ ∗ al(u2)+k)⊢u3 = u3 ∗ bl(al(u2)+k)+k = u3 ∗ bl(u2)+2k.
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Case 4. Let u1 = θ, u2 6= θ, u3 = θ. Then

θ⊣ (u2⊣θ) = θ⊣(u2 ∗ al(θ)+k) = θ⊣(u2 ∗ ak) = θ ∗ al(u2∗ak)+k = al(u2)+2k =

= al(u2)+k ∗ al(θ)+k = (θ ∗ al(u2)+k)⊣θ = (θ⊣u2) ⊣θ,

θ⊣ (u2⊢θ) = θ⊣(θ ∗ b
l(u2)+k

) = θ ∗ al(b
l(u2)+k

)+k = al(u2)+2k,

θ⊢ (u2⊢θ) = θ⊢(θ ∗ bl(u2)+k) = bl(u2)+k ∗ bl(θ)+k = bl(u2)+2k =

= θ ∗ bl(u2∗bk)+k = (u2 ∗ bl(θ)+k)⊢θ = (θ⊢u2) ⊢θ,

(θ⊣u2) ⊢θ = (θ ∗ al(u2)+k)⊢θ = θ ∗ bl(al(u2)+k)+k = bl(u2)+2k.

The cases u1 6= θ, u2 = θ, u3 6= θ; u1 6= θ, u2 6= θ, u3 = θ; u1 = u2 = θ,
u3 6= θ; u1 6= θ, u2 = u3 = θ are considered in a similar way.

Thus, T b
a(k) is a g-dimonoid.

Finally, show that T b
a(k) is not a dimonoid when a 6= b. For u1 6= θ,

u2 6= θ and u3 6= θ we have

(u1⊢u2) ⊣u3 = (u2 ∗ bl(u1)+k)⊣u3 = u2 ∗ bl(u1)+k ∗ al(u3)+k =

= u2b
l(u1)+kal(u3)+k 6= u2a

l(u3)+kbl(u1)+k =

= u2 ∗ al(u3)+k ∗ bl(u1)+k = u1⊢(u2 ∗ al(u3)+k) = u1⊢ (u2⊣u3)

and so, the axiom (D3) of a dimonoid does not hold.

The following lemma gives an answer on the question when Sb
a(k) is a

dimonoid.

Lemma 7. Let M be the free commutative monoid in the alphabet Y .
For any a, b ∈ Y , k ∈ N ∪ {0} algebras M b

a(k) and T a
a (k) are dimonoids.

Proof. From Lemma 6 it follows that M b
a(k) satisfies the axioms (D1),

(D2), (D4), (D5). Show that the axiom (D3) also holds.
Let u1, u2, u3 ∈ M b

a(k). Consider the following eight cases.
Case 1. Let u1 6= θ, u2 6= θ, u3 6= θ. Then

(u1⊢u2) ⊣u3 = (u2 ∗ bl(u1)+k)⊣u3 = u2 ∗ bl(u1)+k ∗ al(u3)+k =

= u2 ∗ al(u3)+k ∗ bl(u1)+k = u1⊢(u2 ∗ al(u3)+k) = u1⊢ (u2⊣u3) .

Case 2. Let u1 = u2 = u3 = θ. Then

(θ⊢θ) ⊣θ = (θ ∗ bl(θ)+k)⊣θ = bk⊣θ = bk ∗ al(θ)+k = bk ∗ ak =
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= ak ∗ bk = ak ∗ bl(θ)+k = θ⊢ak = θ⊢(θ ∗ al(θ)+k) = θ⊢ (θ⊣θ) .

Case 3. Let u1 = θ, u2 6= θ, u3 6= θ. Then

(θ⊢u2) ⊣u3 = (u2 ∗bl(θ)+k)⊣u3 = u2 ∗bl(θ)+k ∗al(u3)+k = u2 ∗bk ∗al(u3)+k =

= u2∗al(u3)+k∗bk = u2∗al(u3)+k∗bl(θ)+k = θ⊢(u2∗al(u3)+k) = θ⊢ (u2⊣u3) .

Case 4. Let u1 6= θ, u2 = θ, u3 6= θ. Then

(u1⊢θ) ⊣u3 = (θ ∗ bl(u1)+k)⊣u3 = bl(u1)+k ∗ al(u3)+k =

= al(u3)+k ∗ bl(u1)+k = u1⊢(θ ∗ al(u3)+k) = u1⊢ (θ⊣u3) .

Case 5. Let u1 6= θ, u2 6= θ, u3 = θ. Then

(u1⊢u2) ⊣θ = (u2 ∗bl(u1)+k)⊣θ = u2 ∗bl(u1)+k ∗al(θ)+k = u2 ∗bl(u1)+k ∗ak =

= u2 ∗ ak ∗ bl(u1)+k = u1⊢(u2 ∗ al(θ)+k) = u1⊢ (u2⊣θ) .

Case 6. Let u1 = u2 = θ, u3 6= θ. Then

(θ⊢θ) ⊣u3 = (θ ∗ bl(θ)+k)⊣u3 = bk⊣u3 = bk ∗ al(u3)+k =

= al(u3)+k ∗ bk = al(u3)+k ∗ bl(θ)+k = θ⊢(θ ∗ al(u3)+k) = θ⊢ (θ⊣u3) .

Case 7. Let u1 6= θ, u2 = u3 = θ. Then

(u1⊢θ) ⊣θ = (θ ∗ bl(u1)+k)⊣θ = bl(u1)+k ∗ al(θ)+k = bl(u1)+k ∗ ak =

= ak ∗ bl(u1)+k = u1⊢ak = u1⊢(θ ∗ al(θ)+k) = u1⊢ (θ⊣θ) .

Case 8. Let u1 = θ, u2 6= θ, u3 = θ. Then

(θ⊢u2) ⊣θ = (u2 ∗ bl(θ)+k)⊣θ = u2 ∗ bk ∗ al(θ)+k = u2 ∗ bk ∗ ak =

= u2 ∗ ak ∗ bk = u2 ∗ ak ∗ bl(θ)+k = θ⊢(u2 ∗ al(θ)+k) = θ⊢ (u2⊣θ) .

Thus, M b
a(k) is a dimonoid.

A proof is the same for T a
a (k).

Note that independence of axioms of a g-dimonoid follows from inde-
pendence of axioms of a dimonoid (see [2], Theorem 2).
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3. Free g-dimonoids

In this section we construct a g-dimonoid which is isomorphic to
the free g-dimonoid of an arbitrary rank and consider separately free
g-dimonoids of rank 1.

A nonempty subset A of a g-dimonoid (D, ⊣,⊢) is called a g-subdimo-
noid, if for any a, b ∈ D, a, b ∈ A implies a ⊣ b, a ⊢ b ∈ A.

Note that the class of all g-dimonoids is a variety as it is closed under
taking of homomorphic images, g-subdimonoids and Cartesian products.
A g-dimonoid which is free in the variety of all g-dimonoids is called a
free g-dimonoid.

In order to prove the main result of this section we need the construc-
tion of a free g-dimonoid from [14].

Let e be an arbitrary symbol. Consider the following sets:

I1 = {e}, In = {(ε1, . . . , εn−1) | εk ∈ {0, 1}, 1 6 k 6 n− 1}, n > 1,

I =
⋃

n>1

In.

If l = 0, we will regard the sequence ε1, . . . , εl without brackets as
empty, and the sequence (ε1, . . . , εl) with brackets as e. Define operations
⊣ and ⊢ on I by

(ε1, . . . , εn−1) ⊣ (θ1, . . . , θm−1) = (ε1, . . . , εn−1, 1, 1, . . . , 1︸ ︷︷ ︸
m

),

(ε1, . . . , εn−1) ⊢ (θ1, . . . , θm−1) = (θ1, . . . , θm−1, 0, 0, . . . , 0︸ ︷︷ ︸
n

).

By Lemma 3 from [14] (I,⊣,⊢) is a g-dimonoid. Observe that e⊣e=(1),
e ⊢ e = (0) and (I,⊣,⊢) is not a dimonoid.

Let X be an arbitrary nonempty set and F [X] be the free semigroup
in the alphabet X. Define operations ⊣ and ⊢ on FG = {(w, ε) |w ∈
F [X], ε ∈ I l(w)} by

(w1, ε) ⊣ (w2, ξ) = (w1w2, ε ⊣ ξ),

(w1, ε) ⊢ (w2, ξ) = (w1w2, ε ⊢ ξ)

for all (w1, ε), (w2, ξ) ∈ FG. The algebra (FG,⊣,⊢) is denoted by FG[X].
By Theorem 4 from [14] FG[X] is the free g-dimonoid.

Using notations from Section 2, introduce the set

XT b
a(k) = {(w, u) ∈ F [X] × T b

a(k) | l(w) − l(u) = 1}.
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If s = 1, we will regard the sequence y1y2...ys−1 ∈ T b
a(k) as θ.

The main result of this section is the following.

Theorem 1. The g-dimonoid XT b
a(1) is free if |Y | = 2 and a 6= b.

Proof. By Lemma 1 F [X] × T b
a(k) is a g-dimonoid. It is not difficult to

check that XT b
a(1) is a g-subdimonoid of F [X] × T b

a(1).
Let |Y | = 2 and a 6= b. Let us show that XT b

a(1) is free. Take
(x1x2...xs, y1y2...ys−1) ∈ XT b

a(1), where xi ∈ X, 1 6 i 6 s, yj ∈ Y ,
1 6 j 6 s− 1, and define a map

π : XT b
a(1) → FG[X] :

(x1x2...xs, y1y2...ys−1) 7→ (x1x2...xs, y1y2...ys−1)π,

assuming

(x1x2...xs, y1y2...ys−1)π = (x1x2...xs, (ỹ1, ỹ2, ..., ỹs−1)),

where

ỹi =

{
1, yi = a,
0, yi = b

for all 1 6 i 6 s− 1, s 6= 1, and (ỹ1, ỹ2, ..., ỹs−1) is e for s = 1. Show that
π is an isomorphism.

For all

(x1x2 . . . xs, y1y2 . . . ys−1) , (a1a2 . . . am, b1b2 . . . bm−1) ∈ XT b
a(1),

where ai ∈ X, 1 6 i 6 m, bj ∈ Y, 1 6 j 6 m− 1, obtain

((x1x2 . . . xs, y1y2 . . . ys−1) ⊣ (a1a2 . . . am, b1b2 . . . bm−1))π =

= (x1x2 . . . xsa1a2 . . . am, y1y2 . . . ys−1 ∗ am)π =

=


x1x2 . . . xsa1a2 . . . am, (ỹ1, ỹ2, . . . , ỹs−1, ã, ã, . . . , ã︸ ︷︷ ︸

m

)


 =

=


x1x2 . . . xsa1a2 . . . am, (ỹ1, ỹ2, . . . , ỹs−1, 1, 1, . . . , 1︸ ︷︷ ︸

m

)


 =

= (x1x2 . . . xs, (ỹ1, ỹ2, . . . , ỹs−1)) ⊣
(
a1a2 . . . am, (b̃1, b̃2, . . . , b̃m−1)

)
=

= (x1x2 . . . xs, y1y2 . . . ys−1)π ⊣ (a1a2 . . . am, b1b2 . . . bm−1)π,
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((x1x2 . . . xs, y1y2 . . . ys−1) ⊢ (a1a2 . . . am, b1b2 . . . bm−1))π =

= (x1x2 . . . xsa1a2 . . . am, b1b2 . . . bm−1 ∗ bs)π =

=


x1x2 . . . xsa1a2 . . . am, (b̃1, b̃2, . . . , b̃m−1, b̃, b̃, . . . , b̃︸ ︷︷ ︸

s

)


 =

=


x1x2 . . . xsa1a2 . . . am, (b̃1, b̃2, . . . , b̃m−1, 0, 0, . . . , 0︸ ︷︷ ︸

s

)


 =

= (x1x2 . . . xs, (ỹ1, ỹ2, . . . , ỹs−1)) ⊢
(
a1a2 . . . am, (b̃1, b̃2, . . . , b̃m−1)

)
=

= (x1x2 . . . xs, y1y2 . . . ys−1)π ⊢ (a1a2 . . . am, b1b2 . . . bm−1)π.

So, π is a homomorphism. Obviously, π is a bijection and thus, π is an
isomorphism. Hence we obtain that XT b

a(1) is the free g-dimonoid.

The following lemma gives one property of Sb
a(k).

Lemma 8. If Sb
a(k) is a dimonoid, then ak and bk are commuting in S.

Proof. Let Sb
a(k) be a dimonoid. Then

(θ⊢θ) ⊣θ = (θ ∗ bl(θ)+k)⊣θ = bk⊣θ = bk ∗ al(θ)+k = bk ∗ ak,

θ⊢ (θ⊣θ) = θ⊢(θ ∗ al(θ)+k) = θ⊢ak = ak ∗ bl(θ)+k = ak ∗ bk

and, using the axiom (D3), obtain bk ∗ ak = ak ∗ bk.

Now we construct a g-dimonoid which is isomorphic to the free g-
dimonoid of rank 1.

Let |Y | = 2, a 6= b. Define operations ⊣ and ⊢ on

ÑT
b

a(1) = {(m,u) ∈ N × T b
a(1) |m− l(u) = 1}

by

(m1, u1)⊣(m2, u2) = (m1 +m2, u1 ∗ al(u2)+1),

(m1, u1)⊢(m2, u2) = (m1 +m2, u2 ∗ bl(u1)+1)

for all (m1, u1) , (m2, u2) ∈ ÑT
b

a(1). By Lemma 1 (N,+) × T b
a(1) is a

g-dimonoid. An immediate verification shows that operations ⊣ and ⊢ are

well-defined. Thus, (ÑT
b

a(1),⊣,⊢) is a g-subdimonoid of (N,+) × T b
a(1).

Denote it by NT b
a(1).
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Lemma 9. The free g-dimonoid of rank 1 is isomorphic to the g-dimonoid
NT b

a(1).

Proof. Let X = {r}. An easy verification shows that a map

ξ : XT b
a(1) → NT b

a(1),

defined by ωξ = (k, u) ⇔ ω = (rk, u), is an isomorphism.

4. Free n-nilpotent g-dimonoids

In this section we construct a free n-nilpotent g-dimonoid of an arbi-
trary rank and consider separately free n-nilpotent g-dimonoids of rank 1.
We also characterize the least n-nilpotent congruence on a free g-dimonoid.

An element 0 of a g-dimonoid (D,⊣,⊢) will be called zero, if x ⋆ 0 =
0 = 0 ⋆ x for all x ∈ D and ⋆ ∈ {⊣,⊢}.

A g-dimonoid (D,⊣,⊢) with zero will be called nilpotent, if for some
n ∈ N and any xi ∈ D, 1 6 i 6 n + 1, and ∗j ∈ {⊣,⊢}, 1 6 j 6 n, any
parenthesizing of

x1 ∗1 x2 ∗2 . . . ∗n xn+1 (2)

gives 0 ∈ D. The least such n we shall call the nilpotency index of (D,⊣,⊢).
For k ∈ N a nilpotent g-dimonoid of nilpotency index 6 k is said to be
k-nilpotent.

Note that from (2) it follows that operations of any 1-nilpotent g-
dimonoid coincide and it is a zero semigroup.

It is not difficult to see that the class of all n-nilpotent g-dimonoids is
a subvariety of the variety of all g-dimonoids. A g-dimonoid which is free
in the variety of n-nilpotent g-dimonoids will be called a free n-nilpotent
g-dimonoid.

Fix n ∈ N and, using notations from Section 3, assume

Gn = {(w, u) ∈ XT b
a(1) | l(w) 6 n} ∪ {0} (|Y | = 2, a 6= b).

Define operations ≺ and ≻ on Gn by

(w1, u1) ≺ (w2, u2) =

{ (
w1w2, u1 ∗ al(u2)+1

)
, l(w1w2) 6 n,

0, l(w1w2) > n,

(w1, u1) ≻ (w2, u2) =

{ (
w1w2, u2 ∗ bl(u1)+1

)
, l(w1w2) 6 n,

0, l(w1w2) > n,
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(w1, u1) ⋆ 0 = 0 ⋆ (w1, u1) = 0 ⋆ 0 = 0

for all (w1, u1) , (w2, u2) ∈ Gn\{0} and ⋆ ∈ {≺,≻}. The algebra (Gn,≺,≻)
will be denoted by Gn(X).

Theorem 2. Gn(X) is the free n-nilpotent g-dimonoid.

Proof. Prove that Gn(X) is a g-dimonoid. Let (w1, u1), (w2, u2) ,
(w3, u3) ∈ Gn\{0}. If l(w1w2) > n or l(w2w3) > n, then the proof
is straightforward. The fact that axioms of a g-dimonoid hold when
l(w1w2w3) 6 n follows from Theorem 1. In the case l(w1w2) 6 n,
l(w2w3) 6 n and l(w1w2w3) > n we have

((w1, u1) ∗1 (w2, u2)) ∗2 (w3, u3) = 0 = (w1, u1) ∗1 ((w2, u2) ∗2 (w3, u3))

for ∗1, ∗2 ∈ {≺,≻}. The proofs of the remaining cases are obvious. Thus,
Gn(X) is a g-dimonoid.

For any (wi, ui) ∈ Gn\{0}, 1 6 i 6 n+ 1, and ∗j ∈ {≺,≻}, 1 6 j 6 n,
any parenthesizing of

(w1, u1) ∗1 (w2, u2) ∗2 . . . ∗n (wn+1, un+1)

gives 0, hence Gn(X) is nilpotent. Moreover, for any (xi, θ) ∈ Gn\{0},
where xi ∈ X, 1 6 i 6 n,

(x1, θ) ≺ (x2, θ) ≺ . . . ≺ (xn, θ) = (x1x2 . . . xn, a
n−1) 6= 0.

It means that Gn(X) has nilpotency index n.
Let us show that Gn(X) is free in the variety of n-nilpotent g-dimo-

noids.
The g-dimonoid (G(X),⊣,⊢) which is isomorphic to FG[X] from

Section 3 was constructed in [14]. The corresponding isomorphism
(G(X),⊣,⊢) → FG[X] is denoted by σ (see [14], Theorem 4). In the
last paper for an arbitrary g-dimonoid (D,⊣,⊢) the homomorphism ψ0

from (G(X),⊣,⊢) to (D,⊣,⊢) was given. We will call ψ0 as a canonical
homomorphism. Observe that ψ0 sends an arbitrary term with elements
x1, ..., xn to the product of some n elements from D.

Let
(
P,⊣′,⊢′

)
be an arbitrary n-nilpotent g-dimonoid, α be the ca-

nonical homomorphism from (G(X),⊣,⊢) to (P,⊣
′

,⊢
′

) and µ = πσ−1α
(see Section 3). Obviously, µ is a homomorphism from XT b

a(1), where
|Y | = 2, a 6= b, to (P,⊣

′

,⊢
′

). Define a map

δ : Gn(X) → (P,⊣′,⊢′) : ω 7→ ωδ,
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assuming

ωδ =

{
ωµ, ω ∈ Gn\{0},
0, ω = 0.

Show that δ is a homomorphism.
Let ω1 = (x1x2...xs, y1y2...ys−1), ω2 = (a1a2 . . . am, b1b2 . . . bm−1) ∈

Gn\{0}, where xi ∈ X, 1 6 i 6 s, yj ∈ Y , 1 6 j 6 s−1, ai ∈ X, 1 6 i 6 m,
bj ∈ Y , 1 6 j 6 m− 1. Assume s+m 6 n. As ω1 ≺ ω2 ∈ Gn\{0}, then

(ω1 ≺ ω2)δ = (ω1 ≺ ω2)µ = (ω1 ⊣ ω2)µ = ω1µ ⊣′ ω2µ = ω1δ ⊣′ ω2δ.

Analogously, (ω1 ≻ ω2)δ = ω1δ ⊢′ ω2δ. Taking into account the previous
arguments, in the remaining cases the equalities

(ω1 ≺ ω2)δ = (ω1 ≻ ω2)δ = 0 = ω1δ⊢
′ω2δ = ω1δ⊣

′ω2δ

hold. Thus, δ is a homomorhism.
The proof is complete.

Now we construct a g-dimonoid which is isomorphic to the free n-
nilpotent g-dimonoid of rank 1.

Assume |Y | = 2, a 6= b. For any n ∈ N let

L̃n = {(m,u) ∈ N × T b
a(1) |m− l(u) = 1,m 6 n} ∪ {0}.

Define operations ⊣ and ⊢ on L̃n by the rule

(m1, u1) ⊣ (m2, u2) =

{ (
m1 +m2, u1 ∗ al(u2)+1

)
, m1 +m2 6 n,

0, m1 +m2 > n,

(m1, u1) ⊢ (m2, u2) =

{ (
m1 +m2, u2 ∗ bl(u1)+1

)
, m1 +m2 6 n,

0, m1 +m2 > n,

(m1, u1) ⋆ 0 = 0 ⋆ (m1, u1) = 0 ⋆ 0 = 0

for all (m1, u1) , (m2, u2) ∈ L̃n\{0} and ⋆ ∈ {⊣,⊢}. An immediate verifi-
cation shows that axioms of a g-dimonoid hold concerning operations ⊣
and ⊢. So, (L̃n,⊣,⊢) is a g-dimonoid. Denote it by Ln.

Lemma 10. If |X| = 1, then Gn(X) ∼= Ln.

Proof. Let X = {r}. An easy verification shows that a map ̺ : Gn(X) →
Ln, defined by

ω̺ =

{
(k, u), ω = (rk, u),
0, ω = 0,

is an isomorphism.
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We finish this section with the description of the least n-nilpotent
congruence on a free g-dimonoid.

If f : D1 → D2 is a homomorphism of g-dimonoids, then the corre-
sponding congruence on D1 will be denoted by ∆f . If ρ is a congruence on
a g-dimonoid (D,⊣,⊢) such that (D,⊣,⊢) /ρ is an n-nilpotent g-dimonoid,
then we say that ρ is an n-nilpotent congruence.

Let XT b
a(1) be the free g-dimonoid (|Y | = 2, a 6= b) (see Section 3).

Fix n ∈ N and define a relation κ(n) on XT b
a(1) by

(w1, u1)κ(n)(w2, u2) if and only if
(w1, u1) = (w2, u2) or l(w1) > n, l(w2) > n.

Theorem 3. The relation κ(n) on the free g-dimonoid XT b
a(1) is the

least n-nilpotent congruence.

Proof. Define a map τ : XT b
a(1) → Gn(X) by

(w, u) τ =

{
(w, u) , l(w)6n,

0, l(w) > n,
(w, u) ∈ XT b

a(1).

Similarly to the proof of Theorem 4 from [4], the facts that τ is a
surjective homomorphism and ∆τ = κ(n) can be proved.
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