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Colour class domination numbers

of some classes of graphs
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Abstract. We compute the colour class domination number
of fan graphs, double fan graphs, Helm graphs, flower graphs and
sun flower graphs.

1. Preliminaries

Let G = (V, E) be a graph, with the number of vertices |V (G)| = n.
By the neighbourhood of a vertex v of G we mean the set NG(v) = {u ∈
V (G) : uv ∈ E(G)}. We say that a vertex is isolated if it has no neighbour,
while it is universal if it is adjacent to all other vertices. The degree of a
vertex v, denoted by dG(v), is the cardinality of its neighbourhood. Let
δ(G) mean the minimum degree among all vertices of G.

A vertex of a graph is said to dominate itself and all of its neighbors.
A subset D ⊆ V (G) is a dominating set of G if every vertex of G is
dominated by at least one vertex of D. The domination number of G,
denoted by γ(G), is the minimum cardinality of a dominating set of G.
For a comprehensive survey of domination of graphs, the reader is referred
to [3, 4].

A proper colouring of a graph G = (V, E) is an assignment of colours
to the vertices of the graph, such that any two adjacent vertices have
different colours. The chromatic number χ(G) is the minimum number
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of colours needed in a proper colouring of G. By a χ−partition of G, we
mean the partition {V1, V2, · · · , Vχ} of V (G) where each Vi is the colour
class representing the colour i, i = 1, 2, · · · , χ.

Dominating and colouring concepts have nice interactions, one such
combination is the dominator colouring introduced by Gera et al. A
dominator colouring of a graph G is a proper colouring in which each
vertex of graph dominates every vertex of some colour class. The dominator
chromatic number χd(G) is the minimum number of colour classes in a
dominator colouring of a graph G. Swaminathan et al [6] relaxed the
condition of ‘every vertex dominating a colour class’ with ‘every colour
class is dominated by a vertex of G’ and defined a new parameter colour
class domination number of a graph G. A colour class domination partition
of a graph G is a proper colouring in which vertices in every colour
class is dominated by a vertex in V (G). The colour class domination
number χcd(G) is the minimum number of colour classes in a colour
class domination partition of a graph G. It is to be noted that dominator
chromatic number and colour class domination number are not comparable.
The domination colouring of some classes of graphs was found in [2,5] and
the colour class domination number of middle graph and center graph of
K1,n, Cn and Pn was calculated in [7]. In the present paper, we find the
colour class domination number of fan graphs, double fan graphs, helm
graphs, flower graphs and sun flower graphs.

2. Main results

We recall from [6] the following result.

Theorem 1. For a graph G, max{χ(G), γ(G)} 6 χcd(G).

Given n > 1, the fan graph denoted by Fn, can be constructed by
joining n copies of the cycle graph C3 with a common vertex.

Theorem 2. For a fan graph Fn, with n > 1, we have χcd(Fn) = 3.

Proof. By the definition of fan graph, n copies of C3 is joined with a
common vertex, χ(Fn) > 3 and γ(Fn) = 1. Hence, χcd(Fn) > 3.

Let V (Fn) = {v1, v2, · · · , v2n+1} be the vertex set of Fn and let the
vertex at the center be labeled by v1. Let the vertex v1 be coloured by
colour 1 and the other two vertices of each copy of C3 are coloured by
colours 2 and 3. The vertex v1 dominates itself namely vertex coloured
1 and the vertices coloured 2 and 3. Hence, χcd(Fn) 6 3. Therefore,
χcd(Fn) = 3.
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We recall from [1] that the double fan graph F2,n is isomorphic to
Pn + 2K1.

Theorem 3. For the double fan graph F2,n, with n > 2, we have
χcd(F2,n) = 3.

Proof. Let V1 = {v1, v2, · · · , vn} be the vertices of the path Pn and
V2 = {u1, u2} be the vertices of 2K1. Then V (F2,n) = V1 ∪ V2. The
vertices of V2 are adjacent to the vertices of V1. The set V2 forms a
minimum dominating set and γ(G) = 2. The vertices u1, v1, v3 forms a
cycle C3 and therefore χ(F2,n) > 3. Hence, χcd(F2,n) > 3.

The vertices u1 and u2 are non adjacent, they are coloured by colour 1.
Since, vi, 1 6 i 6 n is adjacent to both u1 and u2, these vertices are
alternatively coloured by colours 2 and 3. Any vertex vi in the path
dominates the vertices coloured 1 and the vertex u1 dominates the vertices
coloured 2 and 3. Hence, χcd(F2,n) 6 3. Therefore, χcd(F2,n) = 3.

The Helm graph Hn with n > 1, is defined to be the graph obtained
from a wheel graph W1,n by attaching a pendant edge at each vertex of
the n−cycle.

Theorem 4. For the Helm graph Hn, with n > 4, we have χcd(Hn) = n.

Proof. Let V (Hn) = {v1} ∪ V1 ∪ V2, where v1 is the central vertex,
V1 = {vi : 2 6 i 6 n + 1} be the vertices on the n−cycle and V2 = {vi :
n + 2 6 i 6 2n + 1} be the pendant vertices incident with n−cycle such
that vn+i is adjacent with vi, 2 6 i 6 n + 1.

The vertices v1 and vn+i, 2 6 i 6 2n+1 are non adjacent, these vertices
are coloured with colour 1. The remaining vertices vi, 2 6 i 6 n+1 on the
n−cycle can be coloured using a maximum of three colours. Therefore,
χ(Hn) 6 4 6 n. Since there are n pendant vertices, γ(Hn) > n. Hence,
χcd(Hn) > n.

Assume that the pendant vertices vn+i+1, 1 6 i 6 n be coloured with i.
The vertex v1 is coloured with colour n. Let v2 and v4 be coloured with
colour 2. The vertex adjacent to v2n+i, 3 6 i 6 n + 1; i 6= 4 namely vi is
coloured with colour i − 2. The partition

Π = {{vn+2, v3}, {vn+3, v2, v4}, {vn+4, v5}, · · · , {v2n, vn+1}, {v2n+1, v1}}

is a minimum colour class domination partition. The first two colour
classes are dominated by v2 and v3 and the last colour class is dominated
by the vertex vn. The colour classes {vn+i, vi+1}, 4 6 i 6 n is dominated
by the vertex vi. Hence, χcd(Hn) 6 n. Therefore, χcd(Hn) = n.
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A flower graph Fln with n > 1, is defined to be the graph obtained
from a Helm graph Hn by joining each pendant vertex to the central
vertex of the Helm graph.

Theorem 5. For the flower graph Fln with n > 3, we have

χcd (Fln) =

{

3, if n is even

4, if n is odd

Proof. The central vertex is a dominating set. Therefore, γ(Fln) = 1.
Clearly, χ(Fln) = 3 if n is even or χ(FLn) = 4 if n is odd. Therefore,
χ(Fln) > 3 if n is even and χ(Fln) > 4 if n is odd.

Let v1 be the central vertex of W1,n. Let v2, v3, · · · , vn+1 be the vertices
in the n−cycle. The vertices vn+i is adjacent to vi, 2 6 i 6 n + 1 and v1.

Case(i): n is odd. The vertex v1 is coloured with colour 1. The
sequence of vertices vi, 2 6 i 6 n are coloured with colours 2 and 3
alternatively and vn+1 is coloured with colour 4. The remaining vertices
vi, n + 2 6 i 6 2n + 1 are coloured with colours 3 and 2 alternatively. The
vertex v1 dominates all the colour classes. Hence, χcd(Fln) 6 4. Therefore,
χ(Fln) = 4.

Case(ii): n is even. The vertex v1 is coloured with colour 1. The
sequence of vertices vi, 2 6 i 6 n + 1 are coloured with colours 2 and 3
alternatively. The remaining vertices vi, n + 2 6 i 6 2n + 1 are coloured
with colours 3 and 2 alternatively. The vertex v1 dominates all the colour
classes. Hence, χcd(Fln) 6 3. Therefore, χ(Fln) = 3.

The sun flower graph Sfn with n > 1, is defined to be the graph
obtained by adding n pendant edges to the central vertex of the flower
graph Fln.

Theorem 6. For the sun flower graph Sfn with n > 3, we have

χcd (Sfn) =

{

3, if n is even

4, if n is odd

Proof. The central vertex is a dominating set. Therefore, γ(Sfn) = 1.
Clearly, χ(Sfn) = 3 if n is even or χ(Sfn) = 4 if n is odd. Therefore,
χ(Sfn) > 3 if n is even and χ(Sfn) > 4 if n is odd.

Let V (Sfn) = {vi : 1 6 i 6 3n + 1}.
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Case(i): n is odd. The vertex v1 is coloured with colour 1. The
sequence of vertices vi, 2 6 i 6 n are coloured with colours 2 and 3
alternatively and vn+1 is coloured with colour 4. The remaining vertices
vi, n + 2 6 i 6 2n + 1 are coloured with colours 3 and 2 alternatively
and the vertices vi, 2n + 2 6 i 6 3n + 1 are coloured with 2,3 or 4. The
vertex v1 dominates all the colour classes. Hence, χcd(Sfn) 6 4. Therefore,
χ(Sfn) = 4.

Case(ii): n is even. The vertex v1 is coloured with colour 1. The
sequence of vertices vi, 2 6 i 6 n + 1 are coloured with colours 2 and 3
alternatively. The remaining vertices vi, n + 2 6 i 6 2n + 1 are coloured
with colours 3 and 2 alternatively and the vertices 2n + 2 6 i 6 3n + 1 are
coloured with 2,3. The vertex v1 dominates all the colour classes. Hence,
χcd(Sfn) 6 3. Therefore, χ(Sfn) = 3.

References
[1] J.A. Gallian, A Dynamic Survey of Graph Labeling, Electronic Journal of Combi-

natorics 18(2011).

[2] K. Kavitha, N.G. David, Dominator coloring of some classes of graphs, Interna-
tional Journal of Mathematical Archive 3(11)(2012), 3954-3957.

[3] T. Haynes, S. Hedetniemi, and P. Slater, Fundamentals of Domination in Graphs,

Marcel Dekker, New York, 1998.

[4] T. Haynes, S. Hedetniemi, and P. Slater (eds.), Domination in Graphs: Advanced

Topics, Marcel Dekker, New York, 1998.

[5] Mustapha Chellali, F. Maffray, Dominator coloring in some classes of graphs,

Graphs and Combinatorics 28(2012), 97-107.

[6] V. Swaminathan, R. Sundareswaran, Color class domination in graphs, Mathe-
matical and Experimental Physics, Narosa Publishing house,2010.

[7] Y.B. Venkatakrishnan, V. Swaminathan, Color class domination number of middle

graph and center graph of K1,n, Cn, Pn, Advanced Modeling and Optimization
12(2)(2010), 233-237.

Contact information

Yanamandram B.
Venkatakrishnan

Department of Mathematics, SASTRA University
Tanjore, Tamilnadu, India
E-Mail(s): devasenavk@gmail.com

V. Swaminathan Ramanujan Research Center, S.N.College,
Madurai, India
E-Mail(s): swaminathan.sulanesri@gmail.com

Received by the editors: 01.02.2013
and in final form 01.03.2013.


