Algebra and Discrete Mathematics Volume **18** (2014). Number 2, pp. 301–305 © Journal "Algebra and Discrete Mathematics"

Colour class domination numbers of some classes of graphs

Yanamandram B. Venkatakrishnan, V. Swaminathan

Communicated by D. Simson

ABSTRACT. We compute the colour class domination number of fan graphs, double fan graphs, Helm graphs, flower graphs and sun flower graphs.

1. Preliminaries

Let G = (V, E) be a graph, with the number of vertices |V(G)| = n. By the neighbourhood of a vertex v of G we mean the set $N_G(v) = \{u \in V(G) : uv \in E(G)\}$. We say that a vertex is isolated if it has no neighbour, while it is universal if it is adjacent to all other vertices. The degree of a vertex v, denoted by $d_G(v)$, is the cardinality of its neighbourhood. Let $\delta(G)$ mean the minimum degree among all vertices of G.

A vertex of a graph is said to dominate itself and all of its neighbors. A subset $D \subseteq V(G)$ is a dominating set of G if every vertex of G is dominated by at least one vertex of D. The domination number of G, denoted by $\gamma(G)$, is the minimum cardinality of a dominating set of G. For a comprehensive survey of domination of graphs, the reader is referred to [3,4].

A proper colouring of a graph G = (V, E) is an assignment of colours to the vertices of the graph, such that any two adjacent vertices have different colours. The chromatic number $\chi(G)$ is the minimum number

²⁰¹⁰ MSC: 05C15, 05C69.

Key words and phrases: colour class domination number, Helm graph, sun flower graph, double fan graph.

of colours needed in a proper colouring of G. By a χ -partition of G, we mean the partition $\{V_1, V_2, \dots, V_{\chi}\}$ of V(G) where each V_i is the colour class representing the colour $i, i = 1, 2, \dots, \chi$.

Dominating and colouring concepts have nice interactions, one such combination is the dominator colouring introduced by Gera et al. A dominator colouring of a graph G is a proper colouring in which each vertex of graph dominates every vertex of some colour class. The dominator chromatic number $\chi_d(G)$ is the minimum number of colour classes in a dominator colouring of a graph G. Swaminathan et al [6] relaxed the condition of 'every vertex dominating a colour class' with 'every colour class is dominated by a vertex of G' and defined a new parameter colour class domination number of a graph G. A colour class domination partition of a graph G is a proper colouring in which vertices in every colour class is dominated by a vertex in V(G). The colour class domination number $\chi_{cd}(G)$ is the minimum number of colour classes in a colour class domination partition of a graph G. It is to be noted that dominator chromatic number and colour class domination number are not comparable. The domination colouring of some classes of graphs was found in [2,5] and the colour class domination number of middle graph and center graph of $K_{1,n}, C_n$ and P_n was calculated in [7]. In the present paper, we find the colour class domination number of fan graphs, double fan graphs, helm graphs, flower graphs and sun flower graphs.

2. Main results

We recall from [6] the following result.

Theorem 1. For a graph G, $max\{\chi(G), \gamma(G)\} \leq \chi_{cd}(G)$.

Given $n \ge 1$, the fan graph denoted by F_n , can be constructed by joining *n* copies of the cycle graph C_3 with a common vertex.

Theorem 2. For a fan graph F_n , with $n \ge 1$, we have $\chi_{cd}(F_n) = 3$.

Proof. By the definition of fan graph, n copies of C_3 is joined with a common vertex, $\chi(F_n) \ge 3$ and $\gamma(F_n) = 1$. Hence, $\chi_{cd}(F_n) \ge 3$.

Let $V(F_n) = \{v_1, v_2, \dots, v_{2n+1}\}$ be the vertex set of F_n and let the vertex at the center be labeled by v_1 . Let the vertex v_1 be coloured by colour 1 and the other two vertices of each copy of C_3 are coloured by colours 2 and 3. The vertex v_1 dominates itself namely vertex coloured 1 and the vertices coloured 2 and 3. Hence, $\chi_{cd}(F_n) \leq 3$. Therefore, $\chi_{cd}(F_n) = 3$.

We recall from [1] that the double fan graph $F_{2,n}$ is isomorphic to $P_n + 2K_1$.

Theorem 3. For the double fan graph $F_{2,n}$, with $n \ge 2$, we have $\chi_{cd}(F_{2,n}) = 3$.

Proof. Let $V_1 = \{v_1, v_2, \dots, v_n\}$ be the vertices of the path P_n and $V_2 = \{u_1, u_2\}$ be the vertices of $2K_1$. Then $V(F_{2,n}) = V_1 \cup V_2$. The vertices of V_2 are adjacent to the vertices of V_1 . The set V_2 forms a minimum dominating set and $\gamma(G) = 2$. The vertices u_1, v_1, v_3 forms a cycle C_3 and therefore $\chi(F_{2,n}) \geq 3$. Hence, $\chi_{cd}(F_{2,n}) \geq 3$.

The vertices u_1 and u_2 are non adjacent, they are coloured by colour 1. Since, $v_i, 1 \leq i \leq n$ is adjacent to both u_1 and u_2 , these vertices are alternatively coloured by colours 2 and 3. Any vertex v_i in the path dominates the vertices coloured 1 and the vertex u_1 dominates the vertices coloured 2 and 3. Hence, $\chi_{cd}(F_{2,n}) \leq 3$. Therefore, $\chi_{cd}(F_{2,n}) = 3$. \Box

The Helm graph H_n with $n \ge 1$, is defined to be the graph obtained from a wheel graph $W_{1,n}$ by attaching a pendant edge at each vertex of the n-cycle.

Theorem 4. For the Helm graph H_n , with $n \ge 4$, we have $\chi_{cd}(H_n) = n$.

Proof. Let $V(H_n) = \{v_1\} \cup V_1 \cup V_2$, where v_1 is the central vertex, $V_1 = \{v_i : 2 \leq i \leq n+1\}$ be the vertices on the *n*-cycle and $V_2 = \{v_i : n+2 \leq i \leq 2n+1\}$ be the pendant vertices incident with *n*-cycle such that v_{n+i} is adjacent with $v_i, 2 \leq i \leq n+1$.

The vertices v_1 and v_{n+i} , $2 \leq i \leq 2n+1$ are non adjacent, these vertices are coloured with colour 1. The remaining vertices v_i , $2 \leq i \leq n+1$ on the n-cycle can be coloured using a maximum of three colours. Therefore, $\chi(H_n) \leq 4 \leq n$. Since there are n pendant vertices, $\gamma(H_n) \geq n$. Hence, $\chi_{cd}(H_n) \geq n$.

Assume that the pendant vertices v_{n+i+1} , $1 \leq i \leq n$ be coloured with i. The vertex v_1 is coloured with colour n. Let v_2 and v_4 be coloured with colour 2. The vertex adjacent to v_{2n+i} , $3 \leq i \leq n+1$; $i \neq 4$ namely v_i is coloured with colour i-2. The partition

$$\Pi = \{\{v_{n+2}, v_3\}, \{v_{n+3}, v_2, v_4\}, \{v_{n+4}, v_5\}, \cdots, \{v_{2n}, v_{n+1}\}, \{v_{2n+1}, v_1\}\}$$

is a minimum colour class domination partition. The first two colour classes are dominated by v_2 and v_3 and the last colour class is dominated by the vertex v_n . The colour classes $\{v_{n+i}, v_{i+1}\}, 4 \leq i \leq n$ is dominated by the vertex v_i . Hence, $\chi_{cd}(H_n) \leq n$. Therefore, $\chi_{cd}(H_n) = n$. \Box

A flower graph Fl_n with $n \ge 1$, is defined to be the graph obtained from a Helm graph H_n by joining each pendant vertex to the central vertex of the Helm graph.

Theorem 5. For the flower graph Fl_n with $n \ge 3$, we have

$$\chi_{cd} \left(Fl_n \right) = \begin{cases} 3, & if \quad n \text{ is even} \\ 4, & if \quad n \text{ is odd} \end{cases}$$

Proof. The central vertex is a dominating set. Therefore, $\gamma(Fl_n) = 1$. Clearly, $\chi(Fl_n) = 3$ if n is even or $\chi(FL_n) = 4$ if n is odd. Therefore, $\chi(Fl_n) \ge 3$ if n is even and $\chi(Fl_n) \ge 4$ if n is odd.

Let v_1 be the central vertex of $W_{1,n}$. Let v_2, v_3, \dots, v_{n+1} be the vertices in the *n*-cycle. The vertices v_{n+i} is adjacent to $v_i, 2 \leq i \leq n+1$ and v_1 .

Case(i): n is odd. The vertex v_1 is coloured with colour 1. The sequence of vertices v_i , $2 \leq i \leq n$ are coloured with colours 2 and 3 alternatively and v_{n+1} is coloured with colour 4. The remaining vertices v_i , $n+2 \leq i \leq 2n+1$ are coloured with colours 3 and 2 alternatively. The vertex v_1 dominates all the colour classes. Hence, $\chi_{cd}(Fl_n) \leq 4$. Therefore, $\chi(Fl_n) = 4$.

Case(ii): n is even. The vertex v_1 is coloured with colour 1. The sequence of vertices v_i , $2 \leq i \leq n+1$ are coloured with colours 2 and 3 alternatively. The remaining vertices v_i , $n+2 \leq i \leq 2n+1$ are coloured with colours 3 and 2 alternatively. The vertex v_1 dominates all the colour classes. Hence, $\chi_{cd}(Fl_n) \leq 3$. Therefore, $\chi(Fl_n) = 3$.

The sun flower graph Sf_n with $n \ge 1$, is defined to be the graph obtained by adding n pendant edges to the central vertex of the flower graph Fl_n .

Theorem 6. For the sun flower graph Sf_n with $n \ge 3$, we have

$$\chi_{cd} \left(Sf_n \right) = \begin{cases} 3, & if \quad n \text{ is even} \\ 4, & if \quad n \text{ is odd} \end{cases}$$

Proof. The central vertex is a dominating set. Therefore, $\gamma(Sf_n) = 1$. Clearly, $\chi(Sf_n) = 3$ if n is even or $\chi(Sf_n) = 4$ if n is odd. Therefore, $\chi(Sf_n) \ge 3$ if n is even and $\chi(Sf_n) \ge 4$ if n is odd.

Let $V(Sf_n) = \{v_i : 1 \leq i \leq 3n+1\}.$

Case(i): n is odd. The vertex v_1 is coloured with colour 1. The sequence of vertices v_i , $2 \leq i \leq n$ are coloured with colours 2 and 3 alternatively and v_{n+1} is coloured with colour 4. The remaining vertices v_i , $n+2 \leq i \leq 2n+1$ are coloured with colours 3 and 2 alternatively and the vertices v_i , $2n+2 \leq i \leq 3n+1$ are coloured with 2,3 or 4. The vertex v_1 dominates all the colour classes. Hence, $\chi_{cd}(Sf_n) \leq 4$. Therefore, $\chi(Sf_n) = 4$.

Case(ii): n is even. The vertex v_1 is coloured with colour 1. The sequence of vertices v_i , $2 \leq i \leq n+1$ are coloured with colours 2 and 3 alternatively. The remaining vertices v_i , $n+2 \leq i \leq 2n+1$ are coloured with colours 3 and 2 alternatively and the vertices $2n+2 \leq i \leq 3n+1$ are coloured with 2,3. The vertex v_1 dominates all the colour classes. Hence, $\chi_{cd}(Sf_n) \leq 3$. Therefore, $\chi(Sf_n) = 3$.

References

- J.A. Gallian, A Dynamic Survey of Graph Labeling, Electronic Journal of Combinatorics 18(2011).
- [2] K. Kavitha, N.G. David, Dominator coloring of some classes of graphs, International Journal of Mathematical Archive 3(11)(2012), 3954-3957.
- [3] T. Haynes, S. Hedetniemi, and P. Slater, Fundamentals of Domination in Graphs, Marcel Dekker, New York, 1998.
- [4] T. Haynes, S. Hedetniemi, and P. Slater (eds.), Domination in Graphs: Advanced Topics, Marcel Dekker, New York, 1998.
- [5] Mustapha Chellali, F. Maffray, Dominator coloring in some classes of graphs, Graphs and Combinatorics 28(2012), 97-107.
- [6] V. Swaminathan, R. Sundareswaran, Color class domination in graphs, Mathematical and Experimental Physics, Narosa Publishing house, 2010.
- [7] Y.B. Venkatakrishnan, V. Swaminathan, Color class domination number of middle graph and center graph of K_{1,n}, C_n, P_n, Advanced Modeling and Optimization 12(2)(2010), 233-237.

CONTACT INFORMATION

Yanamandram B.	Department of Mathematics, SASTRA University
Venkatakrishnan	Tanjore, Tamilnadu, India
	E-Mail(s): devasenavk@gmail.com
V. Swaminathan	Ramanujan Research Center, S.N.College,
	Madurai, India
	E-Mail(s): swaminathan.sulanesri@gmail.com

Received by the editors: 01.02.2013 and in final form 01.03.2013.