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Abstract. A geometrical construction based on an infinite
tree graph is suggested to illustrate the concept of infinite wreath
powers of P. Hall. We use techniques based on infinite wreath powers
and on this geometrical constriction to build a 2-generator group
which is not soluble, but in which the normal closure of one of the
generators is locally soluble.

1. Introduction

Wreath powers (especially, infinite wreath powers) are one of the most
elegant structures, developed by P. Hall, and used by him to construct
characteristically simple groups, verbally complete groups, groups con-
taining an isomorphic copy of any finite group, non-strictly simple groups
and other interesting group types (see for example [5, 7, 8]). Although
wreath powers are flexible constructions, they are not used as widely as
many of other constructions of Hall due to their complicated structure
and lengthy definitions needed for their usage.
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The main aim of this paper is to suggest a geometrical construction
illustrating the concept of wreath powers. Some of the analytical proofs
from the mentioned works of Hall can in simpler manner be explained by
properties of some geometrical objects. In order to present our geometrical
approach, we consider the task of a construction of a group with certain
properties, and solve it in two ways: first using the infinite wreath powers,
and then by a geometrical method. The result is the group already
announced in [2, Remark 5.6] to answer the question:

Is there a 2-generator group G = 〈x, y〉 such that G is not
soluble (and, thus, even not locally soluble), but the normal
closure 〈x〉G of x in G is locally soluble?

Here is the context in which existence of such a group was consid-
ered. In [2] Guralnick, Plotkin and Shalev consider some “local-global”
conditions by which properties of the group can be determined by its
2-generator subgroups. This is motivated by earlier result of Thomp-
son [27], who proved that a finite group is soluble if and only if any of its
2-generator subgroup is soluble, and by later generalisation of Thompson’s
result in [1]: Let G be a finite group, and let R(G) be the soluble radical
of G (the maximal soluble normal subgroup of G). Then R(G) coincides
with the set of all radical elements of G, that is, elements x ∈ G with
the following property: for any y ∈ G the 2-generator subgroup 〈x, y〉
is soluble. Clearly, x ∈ G is radical if and only if the normal closure
〈x〉〈y〉 = 〈x〉〈x,y〉 of 〈x〉 in 〈x, y〉 is soluble.

Generalising this and also a few other concepts, [2] offers the notion
of X-radical elements for the given class of groups X. Let G be a group.
An element x ∈ G is called locally X-radical if the normal closure 〈x〉〈x,y〉

belongs to X for every y ∈ G. And an element x ∈ G is called globally
X-radical if the normal closure 〈x〉G belongs to X.

If X is the class of locally soluble groups we get the notion of a locally
radical element x (if 〈x〉〈x,y〉 is locally soluble for any y) and the notion of
a globally radical element x (if 〈x〉G is locally soluble). For such elements
Problem 5.5 in [2] asks: which are the groups in which every locally
radical element is globally radical; which are the groups in which every
radical element is globally radical; and which are the groups in which
every locally radical element is a radical?

In this context the 2-generator group built in the current paper is
mentioned in [2, Remark 5.6]. For, it is in some sense a “minimal” example
of a group G which is not locally soluble, but contains an element which is



252 A geometrical interpretation of wreath powers

both locally radical and globally radical. This example shows that, unlike
the case of finite groups, in the case of infinite groups the properties of
locally radical and globally radical elements can be “very far” from the
properties of the whole group.

In fact, the group G we construct has a few additional properties
stressing the difference between G and 〈x〉G:

Theorem 1. There exists a two generator group G = 〈x, y〉 such that
G is not soluble (and, thus, even not locally soluble), but the normal
closure 〈x〉G is a locally soluble subgroup. Moreover, the group G can be
constructed so that,

1) G is not finite (and, thus, even not locally finite), but 〈x〉G is locally
finite;

2) G is not a p-group, but 〈x〉G is a p-group (p is a any pre-given
prime number);

3) G is torsion free (and so is 〈x〉G).

We give the first proof of this theorem based on infinite wreath powers
in Section 2. We omit the definition and basic properties of the infinite
wreath powers, and refer for background information to the articles of
Hall mentioned above.

In Section 3 we present the geometrical construction. The group G is
built as an automorphism group of a graph Γ generated by some basic
permutations of the vertex set of the graph. The graph Γ is an extended
version of the graph used for the Grigorchuk group.

In Section 4 we compare these two constructions and point out a few
other results in [4, 5, 7] the proofs of which could be realized without
infinite wreath products by means of the suggested geometrical method.

The groups G we build in Section 3 and in Section 4 by far are not
the only groups with the property mentioned in Theorem 1. When this
work was in progress, we had opportunities to discuss the topic, and we
got a couple of other examples of groups with that property. We present
them in the closing Section 5.

2. The proof based on infinite wreath powers

Before we start using wreath products, let us state that all wreath
products used here are permutational (associative) wreath products. These
days under “wreath product” one usually understands the direct or carte-
sian standard wreath products, which are non-associative operations.
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Permutational wreath products were more popular in earlier years of the
development of the wreath product. Their definition and basic properties
can be found in [5] or in [26]. And a description of infinite wreath powers
can be found in [5, 7, 8].

Let C be any non-trivial transitive permutation group, and Λ be any
infinite ordered set. Index the copies of C by elements λ ∈ Λ and denote
by Cλ the λ’th copy of it. Form the general (permutational, associative)
wreath product

W = Wrλ∈ΛCλ = WrCΛ

of the copies Cλ, λ ∈ Λ. For the group A of order-preserving permutations
of Λ build the split extension G = W · A with elements of A “shifting”
the copies of the wreath factors Cλ as:

Cf
λ = Cf(λ) for any f ∈ A.

If A is irreducible, in the sense that for any λ1, λ2 ∈ Λ there exists
a f ∈ A such that λ2 < f(λ1), then the commutator subgroup W ′ is a
minimal normal subgroup of G [7, Theorem D].

W ′ clearly is not an abelian group because W contains the subgroup

C wr C wr C,

the commutator of which already is non-abelian. In particular G is not a
locally soluble group because in such a group, and, in general, in every
SI-group every minimal normal subgroup (as a chief factor) need to be
abelian [26, vol. II].

To make G a 2-generator group it is sufficient to take C = 〈c〉 to
be a non-trivial cyclic group, and to take Λ to be the set of integers
Z ordered naturally. Then take x = c0 to be the generator element of
the 0’th copy C0 of C; and take y to be the “shifting” automorphism of
W corresponding to the generator 1 of Z. Then 〈x〉G = W , and W is a
locally soluble group because each of its finitely generated subgroups is a
subgroup in a finite wreath product C wr C wr · · · wr C, which is soluble.
Further, if C is a non-trivial finite cyclic group, then 〈x〉G is locally finite
because of the reason above. If, additionally, C is of prime order p, then
〈x〉G is a p-group. In both cases G is not locally finite because y is of
infinite order. Finally, if we take C to be an infinite cyclic group, then
the group G will be torsion free. This completes the proof.
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3. The geometrical proof

Let us construct a graph Γ, which is an infinite tree with vertices An,k

with n ∈ Z and k ∈ N, where Z is the set of all integers and N is the set
of all positive integers (see Figure 1 below). The vertices of Γ form rows:

An,1, An,2, . . . , An,k, . . . for any n ∈ Z.

Each of the vertices An,k is connected by two edges to two vertices of
the lower row An−1,2(k−1)+1 and An−1,2k; and is connected by one edge to
the vertex A

n+1, k
2

(if k is even) or to A
n+1, k+1

2

(if k is odd) of the upper

row. For any pair (n, k), where n ∈ Z and k ∈ N denote by Γn,k and call
a peak the subgraph of Γ that includes the vertex An,k and “lies below it”,
that is, the subgraph of Γ consisting of the set of the following vertices of
Γ together with all the edges of Γ connecting them:

An,k;

An−1,2(k−1)+1, An−1,2k;

An−2,22(k−1)+1, An−2,22(k−1)+2, An−2,22(k−1)+3, An−2,22·k;

· · · · · · · · ·

An−s,2s(k−1)+1, An−s,2s(k−1)+2, . . . , An−s,2s(k−1)+2s−1, An−s,2s·k;

· · · · · · · · ·

(1)

Let us call these: “0’th row of Γn,k”, “1’st row of Γn,k”, “2’nd row of
Γn,k”, “s’th row of Γn,k”, etc.

In Figure 1 below the peak Γn,k is highlighted by a dashed line around
it. The geometrical form of the subgraph Γn,k well explains the term
“peak”. The s’th row inside a peak contains 2s vertices, from each of which
a new peak starts. Two peaks Γn,k and Γn′,k′ are said to be of the same
level, if n = n′; and the peak Γn,k is of lower level then Γn′,k′ if n < n′.
The peak Γn,k is inside the peak Γn′,k′ if n < n′ and Γn,k is a subgraph
of Γn′,k′ . It is easy to see that any two peaks:

— either have no common vertices;

— or one of them is inside the other;

— or they coincide.
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A0,1 A0,2 A0,3 A0,4

A–1,1 A–1,2 A–1,3 A–1,4

A–2,1 A–2,2 A–2,3 A–2,4

A1,1 A1,2 A1,3 A1,4

A2,1 A2,2

A3,1

l

A–3,3 A–3,4

l

An–2,22(k–1)+1 A A A

An–1,2(k–1)+1 An–1,2k

An,k

n,k

n,k

n–2,22(k–1)+2 n–2,22(k–1)+3 n–2,22k

Figure 1.
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For each peak Γn,k, n ∈ Z and k ∈ N, define the basic automorphism
(of the first type) σn,k of Γ, which roughly speaking “turns” Γn,k around
its vertical axis and leaves all the remaining vertices and edges in Γ\Γn,k

unaffected.

The exact definition is:

σn,k : An,k 7→ An,k;

σn,k : An−1,2(k−1)+1 7→ An−1,2k,

σn,k : An−1,2k 7→ An−1,2(k−1)+1;

σn,k : An−2,22(k−1)+1 7→ An−2,22·k,

σn,k : An−2,22(k−1)+2 7→ An−2,22(k−1)+3,

σn,k : An−2,22(k−1)+3 7→ An−2,22(k−1)+2,

σn,k : An−2,22·k 7→ An−2,22(k−1)+1;

· · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · ·

σn,k : An−s,2s(k−1)+1 7→ An−s,2s·k,

σn,k : An−s,2s(k−1)+2 7→ An−s,2s(k−1)+2s−1,

· · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · ·

σn,k : An−s,2s(k−1)+2s−1 7→ An−s,2s(k−1)+2,

σn,k : An−s,2s·k 7→ An−s,2s(k−1)+1;

· · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · ,

(2)

where n ∈ Z and k ∈ N; and σn,k : An′,k′ 7→ An′,k′ for any An′,k′ ∈ Γ\Γn,k.
We would strongly recommend the reader in considerations below to follow
the “geometrical logic” of this definition, not the calculation routine.

In analogy with the terminology above we say that the basic automor-
phism σn,k is of the same level as σn′,k′ , or is of lower level or is inside
it, if the corresponding peaks Γn,k and Γn′,k′ have those properties. As
a first illustration of the properties of the basic automorphisms let us
observe that:

Lemma 1. For any n, n′ ∈ Z and k, k′ ∈ N the commutator [σn,k, σn′,k′ ]
of σn,k and σn′,k′ is:

1) trivial if none of these automorphisms is inside the other;

2) non-trivial, if one of them, say σn,k, lies in the other. In this case
[σn,k, σn′,k′ ] = σn,k · σn,k∗, where k∗ = (2k′ − 1)2n′−n + 2 − k.
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Proof. The first point is evident: if the basic automorphisms coincide or
if they intersect trivially, then their commutator is trivial either because
these automorphisms either are equal or because the intersection of the
sets on which they act non-trivially is empty.

Assume σn,k lies inside σn′,k′ . Without loss of generality we can assume
that Γn,k is “closer to the left edge” of Γn′,k′ , that is, if Γn,k is inside
Γn′−1,(k′−1)2+1 or coincides with it. This, of course, means that k − l <

l + 2n′−n − k (equivalently: k < 2n′−n−1 + l), where l = (k′ − 1)2n′−n + 1
is the number from which the (n′ − n)’th row of the peak Γn′,k′ starts
(see Figure 2). Then the peak Γn,k∗ with

k∗ = (l + 2n′−n) − (k − l) = 2n′−n − k + 2l = (2k′ − 1)2n′−n + 2 − k

is nothing else but the peak symmetrical to Γn,k “around the central
vertical axis” of Γn′,k′ (see Figure 2).

A A A A

An'–1,2(k'–1)+1 An'–1,2k'

An',k'
n',k'

n,k n,kAn,l An,l+2   

An–1,2k

An,k

A A

An,k
n'–n

An–1,2(k–1)+1 n–1,2k*n–1,2(k*–1)+1

**

n'–2,22(k'–1)+1 n'–2,22(k'–1)+2 n'–2,22(k'–1)+3 n'–2,22k'

Figure 2.
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It is clear that [σn,k, σn′,k′ ] does not move the vertices of Γ\Γn′,k′ .
Also, this commutator acts trivially on the subgraph Γn′,k′ \ (Γn,k ∪ Γn,k∗)
because it acts on its vertices like the square of the automorphism σn′,k′ ,
which is of order two.

Further, [σn,k, σn′,k′ ] acts on Γn,k like σn,k. For, σ−1
n,k “turns” Γn,k; then

σ−1
n′,k′ maps the “turned” Γn,k onto Γn,k∗ ; then comes σn,k, which acts

trivially on Γn,k∗ ; and finally the “turned” Γn,k∗ “comes back” to Γn,k

by σn′,k′ . For the same reason [σn,k, σn′,k′ ] acts on Γn,k∗ like σn,k∗ . Thus,
[σn,k, σn′,k′ ] = σn,k · σn,k∗ .

Our next key element is the basic automorphism (of the second) type θ
of Γ, which roughly speaking shifts Γ one level higher by axis l. More
precisely:

θ : An,k 7→ An+1,k.

θ maps a peak Γn,k onto Γn+1,k. The main property of θ needed for our
construction is:

Lemma 2. For each basic automorphism σn,k, n ∈ Z and k ∈ N:

σθ
n,k = σn+1,k.

Proof. Consider the peak Γn+1,k and the peak Γn,k, which is inside it,
or is to the left from it. The main idea of this proof is that θ−1 maps
Γn+1,k on Γn,k, then σn,k “turns” Γn,k, and then θ maps the latter onto
the “turned” Γn+1,k. So the effect of θ−1σn,kθ is σn+1,k. More precisely:

An+1,k
θ−1

7−→ An,k

σn,k
7−→ An,k

θ
7−→ An+1,k;

An,(k−1)2+1
θ−1

7−→ An−1,(k−1)2+1
σn,k
7−→ An−1,2k

θ
7−→ An,2k;

An,2k
θ−1

7−→ An−1,2k

σn,k
7−→ An−1,(k−1)2+1

θ
7−→ An,(k−1)2+1;

· · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · ·

An+1−s,(k−1)2s+1
θ−1

7−→ An−s,(k−1)2s+1
σn,k
7−→

An−s,k2s
θ

7−→ An+1−s,k2s ;

· · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · ·

An+1−s,k2s
θ−1

7−→ An−s,k2s

σn,k
7−→

An−s,(k−1)2s+1
θ

7−→ An+1−s,(k−1)2s+1;

· · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · ·

(3)

Finally, the effect of σθ
n,k on Γ\Γn+1,k is trivial.
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Now we have the necessary items to define the group G we are looking
for by automorphisms of Γ as follows:

G = 〈σn,k, θ | n ∈ Z, k ∈ N〉.

Lemma 3. The group G constructed above is a 2-generator group:

G = 〈σ0,1, θ〉.

Proof. Since each peak Γn,k is inside a peak of type Γn′,1 (where n′ > n),
and since by Lemma 2 for each n′ holds:

σn′,1 = σθn′

0,1 ∈ G,

it is sufficient to prove that for each σn′,1 all basic automorphisms σn,k

inside it belong to G. Prove this by the row number of Γn′,1. For the first
two rows the situation is simple:

σn′,1 ∈ G;

σn′−1,1 = σθ−1

n′,1 ∈ G;

σn′−1,2 ∈ G because [σn′,1, σn′−1,1]

= σn′−1,1σn′−1,2, and σn′,1, σn′−1,1 ∈ G

(we used Lemma 1 on [σn′,1, σn′−1,1]). Assume lemma is proved for all
rows of Γn′,1 until the s’th row included. Let us consider the (s + 1)’st
row using the idea above:

σn′−s−1,1 = σθ−1

n′−s,1 ∈ G;

σn′−s−1,2 ∈ G because [σn′−s−1,1, σn′−s,1]

= σn′−s−1,1 σn′−s−1,2, and σn′−s−1,1, σn′−s,1 ∈ G;

σn′−s−1,3 ∈ G because [σn′−s−1,2, σn′−s+1,1]

= σn′−s−1,2 σn′−s−1,3, and σn′−s−1,2, σn′−s+1,1 ∈G;

σn′−s−1,4 ∈ G because [σn′−s−1,3, σn′−s,2]

= σn′−s−1,3 σn′−s−1,4 and σn′−s−1,3, σn′−s,2 ∈ G;

· · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · ·

The Lemma is proved.

The formal calculations above may seem confusing, but the geometrical
meaning is not complicated: for each row of automorphisms σn′−s−1,1,
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σn′−s−1,2, σn′−s−1,3,... the first σn′−s−1,1 is in G because by Lemma 2
it is a shifted image of a basic automorphism that is located “to the
North” from σn′−s−1,1. And the rest are in G because by Lemma 1 we
can obtain each σn′−s−1,j (j > 1) as a product of basic automorphisms
(and of commutators of basic automorphisms) that all are located “to the
North-West” from σn′−s−1,j .

It remains to prove the desired two properties of the group G.

Lemma 4. The group G constructed above is not a soluble group (and,
thus, is not a locally soluble group).

Proof. For any pre-given positive integer m we will construct elements

τ1, τ2, . . . , τ2m ∈ G,

such that the solubility identity wm(x1, x2, . . . , x2m) [20] of length m is
falsified on them. These elements could be pointed out directly, and the
proof could be completed by computations. However, we deduce the proof
from two geometrical observations to illustrate why we introduced the
graph Γ and its basic automorphisms.

Firstly, assume we have an automorphism λ = σn1,k1
· · · σns,ks

, which,
clearly, can act non-trivially only on the following subgraph of Γ:

Γλ = Γn1,k1
∪ · · · ∪ Γns,ks

⊂ Γ.

Denote n̄ = maxi=1,...,s{ni}. It always is possible to choose v > n̄ large
enough so that all peaks Γni,ki

, i = 1, . . . , s, “lie in the left half” of the
peak Γv,1, that is, Γni,ki

is inside Γv−1,1 for all i = 1, . . . , s (see Figure 3).
Applying the idea of Lemma 1 we get that the commutator [λ, σv,1] is
a product of λ and of the automorphism σn1,k∗

1
· · · σns,k∗

s
. We omit the

calculations because the geometrical meaning is clear: σv,1 just “turns”
around the vertical axis of Γv,1 all the peaks Γni,ki

, i = 1, . . . , s.

Secondly, assume we have another automorphism µ = σn′

1
,k′

1
· · · σn′

q ,k′

q
,

such that all the peaks Γn′

i
,k′

i
, i = 1, . . . , q, are inside one of the peaks of

λ, say, are inside Γn1,k1
and, moreover, Γn1,k1

has empty intersection with
the rest of Γn2,k2

, ..., Γns,ks
. Then [λ, µ] = [σn1,k1

, µ] because [λ, µ] acts
trivially on all vertices of both subgraphs: Γ \ Γλ and Γn2,k2

∪ · · · ∪ Γns,ks
,

and there only remains to calculate its action on the peak Γn1,k1
.

We can now turn to the construction of the elements τ1, . . . , τ2m . Take
two peaks on “near” levels, for example, Γ0,1 and Γ1,1, and set τ1 = σ0,1

and τ2 = σ1,1.
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Av –3, 1

Av –2,1 Av –2, 2 Av –2, 3 Av –2,4

Av –1 , 1 Av –1 , 2

Av,1 v , 1

l

l

v  –1 , 1

n ,k

n  ,k

n  ,k

1 1

s s

2 2

n ,k
1 1

n  ,k
2 2

n  ,k
s s

*

*

*

Figure 3.

Then by Lemma 1 (or by the argument above) [τ1, τ2] = σ0,1 σ0,2 (in
particular, this commutator is not trivial). Take the positive integer v
large enough (in this case it is sufficient to take v = 2) and consider the
peaks:

Γθ2

0,1 = Γ2,1 and Γθ2

1,1 = Γ3,1.

Set τ3 = σ2,1 and τ4 = σ3,1. By our definition:

[τ3, τ4] = [τ1, τ2]θ
2

= σ2,1 σ2,2.
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(in particular, it also is not trivial). We use the geometrical observation
above: since Γ0,1 and Γ1,1 are inside Γ2,1, we get that:

[[τ1, τ2], [τ3, τ4]] = [σ0,1 σ0,2 , σ2,1 σ2,2] = [σ0,1 σ0,2 , σ2,1].

Since Γ0,1 and Γ0,2 are inside the “left half” of Γ2,1, we by the geometrical
observation above get that

[σ0,1 σ0,2 , σ2,1] = σ0,1 σ0,2 σ0,3 σ0,4 6= 1.

Next take v large enough (in this case it is sufficient to take v = 4) and
consider the peaks:

Γθ4

0,1 = Γ4,1 , Γθ4

1,1 = Γ5,1 , Γθ4

2,1 = Γ6,1 , Γθ4

3,1 = Γ7,1.

Set: τ5 = σ4,1, τ6 = σ5,1, τ7 = σ6,1 and τ8 = σ7,1. By definition and
arguments above:

[

[[τ1, τ2], [τ3, τ4]] , [[τ5, τ6], [τ7, τ8]]
]

=
[

[[τ1, τ2], [τ3, τ4]] , σ4,1

]

= σ0,1 σ0,2 σ0,3 σ0,4 · (σ0,1 σ0,2 σ0,3 σ0,4)θ4

= σ0,1 σ0,2 · · · σ0,8 6= 1.

This process can be continued for v = 23, 24, . . ., and in each step the
automorphism θv will lift the already constructed elements “high enough”
so that the resulting commutator is of the form σ0,1 σ0,2 · · · σ0,2i and is
not trivial.

Lemma 5. The normal closure 〈σ0,1〉G is a locally soluble subgroup in G.

Proof. Denote H = 〈σn,k | n ∈ Z, k ∈ N〉. Evidently σ
σn,k

0,1 ∈ H for any

n ∈ Z, k ∈ N; and σθ
0,1 ∈ H. Thus, it is sufficient to prove that any set of

basic automorphisms (of the first type)

σn1,k1
, . . . , σns,ks

(4)

generates a soluble subgroup S in H. Denote n̄ = maxi=1,...,s{nij
} and

n
¯

= mini=1,...,s{nij
}. For any non-trivial ν ∈ S fix a presentation

ν = σni1
, ki1

· · · σnir , kir
(5)

(we may without loss of generality assume that nij
6 n̄, j = 1, . . . , r)

and denote n̄(ν) = maxi=1,...,r{nij
} and n

¯
(ν) = mini=1,...,r{nij

}. For any
n1, k1, n2, k2 by Lemma 1 we have that either [σn1, k1

, σn2, k2
] is trivial or:

n̄([σn1, k1
, σn2, k2

]) < max{n̄(σn1, k1
), n̄(σn2, k2

)} = max{n1, n2}.
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Also, evidently, either [σn1, k1
, σn2, k2

] is trivial or:

n
¯
([σn1, k1

, σn2, k2
]) > min{n

¯
(σn1, k1

), n
¯
(σn2, k2

)} = min{n1, n2}.

By these and by the well known commutator identities [25]:

[ab, c] = [a, c]b[b, c], [a, bc] = [a, c][a, b]c

we have that for any ν1, ν2 ∈ S either [ν1, ν2] is trivial or:

n̄([ν1, ν2]) < max{n̄(ν1), n̄(ν2)}, n
¯
([ν1, ν2]) > min{n̄(ν1), n̄(ν2)}

because each of ν1, ν2 can be presented in the form (5) and then their
commutator can be “split” by commutator identities to the commutators
of the factors and their conjugates (we omit the routine calculations).
Thus, for any ν ∈ S′ we have that either ν is trivial or n̄(ν) 6 n̄ − 1
and n

¯
(ν) > n

¯
. For the same reason for any ν ∈ S′′, either ν is trivial or

n̄(ν) 6 n̄ − 2 and n
¯
(ν) > n

¯
, etc. This process cannot repeat more than

n̄ − n
¯

times. Thus, the commutator subgroup S(n̄−n

¯
) is trivial.

4. Comparison of the arguments and other applications

of the method

The reader familiar with the notion of infinite wreath products has
probably noticed that our geometrical construction imitates some of its
aspects. For example, the group H = 〈σn,k | n ∈ Z, k ∈ N〉 in the proof of
Lemma 5 is the infinite wreath power W = Wrλ∈ΛCλ = WrCΛ for Λ = Z

(ordered in the natural way) and for C a cyclic group of order 2. The
automorphism θ of Γ in the second construction has a role similar to the
role of the group automorphism f in the first construction.

The group G = 〈σ0,1, θ〉 also satisfies the second statement of Theo-
rem 1: the normal closure 〈σ0,1〉G is a p-group whereas G is not a p-group
(here p = 2, of course). One could assume that the second construction is
less powerful, since it does not cover the cases of p = 3, 5, . . . However,
some modification of Γ can allow to cover the case of of any prime p.
Namely, in the graph Γ the number of edges incident to each vertex
need not be 3 = 2 + 1 but p + 1 so that each peak has not two but
p “branches”. However, we built our construction for p = 2 because it
makes the construction and the calculations simpler (simplicity was our
main motivation why we suggest it as an alternative of infinite wreath
powers of Hall). In the general case for any p we would have to change
our construction as follows:



264 A geometrical interpretation of wreath powers

Firstly, for p = 2 with each peak Γn,k connected is just one basic
automorphism σn,k (and, of course, the trivial automorphism leaving Γn,k

unaffected). In the general case we have p vertices in the second row
of Γn,k:

An−1,(k−1)p2+1, An−1,(k−1)p2+2, . . . , An−1,kp2 ,

and we get a cyclic group of order p generated by a basic automorphism
of the first type given by “shifting” permutation:

(

An−1,(k−1)p2+1 An−1,(k−1)p2+2 . . . An−1,kp2

An−1,(k−1)p2+2 An−1,(k−1)p2+3 . . . An−1,(k−1)p2+1

)

The basic automorphism of the second type is defined as before:
θ : An,k 7→ An+1,k.

The proofs of Lemma 1, Lemma 3, Lemma 4 and Lemma 5 can be
modified accordingly. We omit the calculations.

Moreover, our construction can be modified to cover the case of torsion-
free groups of the third statement in Theorem 1. In this case countably
many edges need be incident to each vertex, and each basic automorphism
σn,k will be of infinite order, “shifting” infinitely many vertices of the
second row in Γn,k.

Closing this paper we would like to stress that the group G = 〈σ0,1, θ〉
we constructed is useful not only in the context of the problem of Plotkin
mentioned above, but also in other problems based on infinite wreath
products.

For example, our group G = 〈σ0,1, θ〉 can be presented as a product
of its two locally soluble normal subgroups, but it is not a locally soluble
group, is not an SI-group and is not a radical group. A group with such
properties was built in [4] to answer Plotkin’s question posed in [22]. The
construction of [4] also is based on infinite wreath powers, and can be
replaced by G.

Another example is the verbally complete group built in [5] by Hall.
A group G is verbally complete if for any non-trivial word w(x1,. . . ,xn) and
for any element a∈G there exist a1, . . . , an ∈G such that w(a1, . . . , an)=a.
Hall builds this group as infinite wreath product of a series of finite groups,
each of which can be realized in our construction as a fragment of the
tree Γ and of some automorphisms working on it.

Yet another example is the characteristically simple group built in [7].
That group can be presented as a factor group of G = 〈σ0,1, θ〉 by some
normal subgroup which also has a geometrical meaning.
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5. Examples based on other constructions

When this work was in progress, we had an opportunity to discuss this
topic with A.Yu. Ol’shanskii, who kindly offered two other ideas of the
proof. One is built by Ol’shanskii, Osin and Sapir in [21] in subsection 3.5
for different purposes of lacunary hyperbolic amenable groups.

The other idea is based on the concept of verbal wreath products of
groups. Let G = F∞(V) be the relatively free group of countable rank
in a variety V which is locally soluble but not soluble. Such a variety
exists: by a theorem of Razmislov [24] the Burnside variety of exponent
4 has this property. G can be interpreted as a verbal product

∏

V C of
countably many copies of the finite cycle C = C4 of order 4 (see definition
in [20]).

We take the infinite cycle Z = 〈z〉 and index by its elements the
generators of copies C = 〈czi〉 of the cycle C in G. An action of Z = 〈z〉
by automorphisms on G can be defined by the rule z : czi−1 7→ czi , which
defines a structure of verbal direct wreath product

W = C wr V Z

(see [20]). The constructed extension certainly is a 2-generator group
W = 〈cz0 , z〉 and is not soluble. The normal closure of cz0 in W is locally
soluble since it is inside the base subgroup

∏

V C = G of this wreath
product.

Razmislov’s example is not the only variety we can use. In [15] for
different purposes we listed a few other varieties that can also be used
here, since their relatively free groups of countable rank also are locally
soluble but are not soluble. Let us list them:

Since the Kostrikin variety V = Kp is a locally nilpotent variety, all
relatively free groups Fn(Kp), n = 1, 2, . . ., are nilpotent. On the other
hand Kp is not a soluble variety (see [23] for the case p > 5, and [3] for
the case p = 5). So we can take W = C wr Kp

Z.
All 3-Engel groups are locally nilpotent [10]. So put Gn = Fn(E3).

There is no bound on the solubility lengths of these groups, for the free
group of infinite rank in variety K5 ∩ E3 is insoluble [3]. We can take
W = C wr E3

Z.
Varieties En for n > 3 can be another source for examples. Intersections

Kp ∩En, where n > 3, p = n + 2, are locally nilpotent, but still not soluble
varieties [23]. To get torsion-free groups with the desired properties take
relatively free groups of finite ranks in the variety A · (Kp ∩ En). We can
take W = C wr Kp∩En

Z.
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The final example was suggested by the first referee. Let U be the
group of infinite unitary upper triangular matrices over Z or over Z/pZ
with only finitely many non-zero entries outside of the main diagonal;
more precisely, U is the inductive limit of UTn, where UTn is embedded
in the upper left corner of UTn+1. Let t be the injective endomorphism of
U that shifts matrix coefficients one position right and then one position
down and adds (1, 0, 0, ...) as the first row and the first column (so t acts
as a “shift” along the main diagonal). Let x be the matrix with second
coefficient in the first row equal to 1 and all other coefficients outside
of the main diagonal equal to 0. Then the HNN-extension of U by 〈t〉
is generated by {x, t} and it is fairly easy to see that it satisfies all the
required properties.

I am very much thankful to the second referee for careful and very
helpful attention to the geometrical construction and for noticing some
mistaken indexation in the rows of Γn,k and Figure 1, which was affecting
calculations in Section 3.
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