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ABSTRACT. We prove that Jordan elementary surjective maps
on standard rings are additive.

1. Standard rings and Jordan elementary map

Throughout this paper the word ring will mean a not necessarily
associative or commutative ring. Let R be a ring. For x,y, 2z € R, we
denote the associator by (x,y,z) = (xy)z — z(yz) and the commutator by
[x,y] = xy — yzx. A ring R is called k-torsion free if kx = 0 implies x = 0,
for any x € R, where k € Z, k > 0. Let us define the linear application
f M — R, by f(x) = kx for all x € R. Clearly, if R is a k-torsion free
ring, then f is an injective application. In his case, we denote x = %y
when y = kz. A ring R is said prime if 33 # 0 for any two nonzero ideals
J,J CA.

Let R be a 2-torsion free ring satisfying the following identities:

(m,y7z)+(z,x,y)—(x,z,y) :07 (1)
(wzx,y, 2) + (xz,y,w) + (wz,y,z) =0, (2)
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for all w, x,y, z, € M. These identities are satisfied by any associative ring
and any 2-torsion free Jordan ring. Put z = x in (1). Then

(z,y,2) =0, 3)

for all x,y € R. Moreover, if R is a 3-torsion free ring, then (2) implies
(¢%,y,2) = 0, (4)

for all z,y € R.

We say that R is a standard ring if cases (1), (2) and (4) are satisfied.
The condition (4) is redundant if R is 3-torsion free.

So, every standard ring is a noncommutative Jordan ring.

Let us consider R a standard ring and let us fix a nontrivial idempotent
e1 € R, i.e, e% =eq, e1 # 0 and e; is not a unity element. Let es: R — R
and e5: M — R be given by esa = a — eja and ehba = a — ae;. We
denote eha by aes. Then, by a process similar to [7], we can show that
R has a Peirce decomposition R = Ri; & R & Dfi%% P Ro1 @ Rog,
where %ij = {SCU €ER ‘ e1T;; = iazij and Tij€1 = j$l]} (’L,] = 1,2) and
9%%; = {x%% €N 261.%'%% = z11 and 2z;je; = :r%%}, satisfying the

multiplicative relations:

)
(ii) RiiR11 CR11 and R11R; SR (Z = 172);
22 22 22 22
(iii) ERUER%% =0 and SR%%SRU =0 (i,j =1,2;1 # j);
(iv) Ri1M11 C Ry @ Ray;
22" 22
(v) [9{79‘{%%] =0.

Let 9% and R’ be two rings and let
M:%—R and M % —R

be two maps. We call the ordered pair (M, M*) a Jordan elementary map
of R x R if

M(aM*(x) + M*(x)a) = M(a)x + xM(a)
M*(M(a)x + xM(a)) = aM*(x) + M*(z)a,

for all a € R and = € K.
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We say that the Jordan elementary map (M, M*) of R x R is additive
( resp., injective, surjective, bijective) if both maps M and M* are additive
(resp., injective, surjective, bijective).

The problem of when a map must be additive has been studied for
the case of several rings with nontrivial idempotents. The authors [2], [5]
showed that under the condition of surjectivity a Jordan elementary
map is additive for the case of associative and alternative rings. Also,
the question of when a multiplicative map is additive was investigated
by [4] in which it was shown that under the condition of bijectivity a
multiplicative map is additive for the case of Jordan rings.

Theorem ([5, W. Jing]). Let % and R be two associative rings. Suppose
that R is a 2-torsion free ring containing a non-trivial idempotent ey
satisfying:

(i) e;aejRer, =0 or eyRe;ae; = 0 implies e;ae; =0 (i, 5,k =1,2),
(ii) (egaez)(bea) + (e2b)(e2aea) =0, for each b € R, then ezaes = 0.

Then every surjective Jordan elementary map (M, M™*) of R X R s
additive.

Theorem ([2, J. C. M. Ferreira, H. Guzzo Jr.]). Let R and R be two
alternative rings. Suppose that R is a 2-torsion free ring containing a
nontrivial idempotent ey satisfying:

(i) (ejae;)(Rer) = 0 or ((e;aej)R)ex, = 0 implies ejae; = 0 (1 <
i,k <2);
(ii) (exR)(eiaej) = 0 or ex(R(eiae;)) = 0 implies e;ae; = 0 (1 <
i,k <2);
(iii) if (exaez)(bez) + (e2d)(e2aez) = 0 for each b € R, then esaes = 0.

/

Then every surjective Jordan elementary map (M,M*) of | x R s
additive.

Theorem ([4, P. Ji]). Let A and B be two Jordan algebras over a field

§ of characteristic not two and p a non trivial idempotent in 2A. Let

A=2 &A1 DAy be the Peirce decomposition of A with respect to p. If
2

A satisfies the following conditions:
(i) Leta; €A; (i =1,2). Ifaity =0 for all t1 € A1, then a; = 0;
2 2 2
(ii) Let ag € Ag. If agty = 0 for all ty € Ay, then ag = 0;
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(iii) Let a1 € A1. If artg =0 for all ty € Ap, then a1 = 0;
2 2 2 2
Then every map ¢ from 24 onto B that is bijective and satisfies

¢(ab) = ¢(a)g(b),
for all a,b € A is additive.

It is clear that for 2-torsion free rings an additive map is a Jordan
elementary map if, and only if, is multiplicative. But in general, we do not
know whether they are still equivalent without the additivity assumption.
Thus, in this paper we consider the question and give affirmative answer
for the case of a Jordan elementary maps on standard rings.

2. The main theorem

We will prove the following result:

Theorem 1. Let R and R be two standard rings such that R is a 2-

torsion free ring containing a non-trivial idempotent e; and R = Ry &

Rio ®R11 @ Ro1 @ Roo, the Peirce Decomposition of R, relative to eq,
22

satisfying at least one of the two sets of conditions:

(i) aij(Rex) =0 or (exR)a;; = 0 implies a;; =0 (4,5, k =1,2;1 # j),

(i) If (ejaei)ti; = 0 for every ti; € Ryj, then ay; =0 (4,5 = 1,21 # j),

(iii) If tij(ejaej) =0 for every tij € Ryj, then aj; =0 (4,5 = 1,254 # j),
)

If ajitae = 0 (res., togay; =0) (i = %, 2) for every tay € Raa, then
ai; =0,

(iv

(v) If agatos + tazase = 0 for every tag € Rag, then aze =0,

(i) aij(Re;) =0 or (e;R)a;; = 0 implies a;; =0 (1,5 =1,2;i # j),
(it") If ajitin =0 (i = 1,2) for every ti1 € Ri1, then a; =0,
22 22 22
(iit’) If ajiteg = 0 (resp., toga; =0) (i = %, 2) for every tag € Raa, then
ai; =0,
(iV/) If a22t22 + t22a22 =0 fOT cvery t22 S 9‘{22, then agy = 0,

Then every surjective Jordan elementary map (M, M*) of R x R s
additive.
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The proof of theorem is the same for both sets of axioms and is
organized as a series of lemmas. When necessary in the proves of the
lemmas, we shall present both conditions or separately, of the first and
second set of axioms of the Theorem, or when derived from them, to the
conclusion of each desired result.

Henceforth, where necessary, we shall use the components of the de-
composition of Peirce of any element of ring without making any mention.

We begin with the following lemma that your proof is very simple.
Lemma 1. M(0) =0 and M*(0) = 0.

Lemma 2. Let a =aj1 +ajo +a11 + as1 + ase € R.
22
If R satisfies the conditions (i)—(v), of Theorem, then:

(i) If aijtjr =0 for each tj, € Ry (i,7,k = 1,2), then a;; = 0. Dually,

if triai; = 0 for each ty; € Ry (i, 4,k =1,2), then a;; = 0;

(i) Iftija+ati; € Ri; for every ti; € Ry;(i,j = 1,254 # j), then aj; = 0;

(iii) If am‘tii + tiiaii =0 fOT’ every tii € i)%m» (Z = 1, 2), then Qg5 — 0;

(iv) If tjja + atj; € Ry; for every tj; € Ry (4,5 = 1,2;1 # j), then
aj; =0, a;; =0 and a11 = 0. Dually, if tj;a + at;; € Ry; for every

22

ti; € Rj; (1,7 =1,2;9# j), then a;; =0, aj; =0 and ai1 = 0.

If R satisfies the conditions (7 )-(iv), of Theorem, then:

(i") If aijtj; = O for each tj; € Ry; (1,5 = 1,254 # j), then a;; = 0.
Dually, if tia;; = 0 for each ti; € Ry (4,5 = 1,259 # j), then
aij = 0;

(ii/) If iitii 4 tiiaq; = 0 fOT’ every ti; € %ii (Z = 1, 2), then Q45 = 0;

(iii") If tjja + atj; € Ryj for every tj; € Rj; (4,5 = 1,29 # j), then
aj; =0, aj; =0 and ar1 = 0. Dually, if tjja + at;; € Rj; for every
ti; € Rj; (1,7 =1,2;9# j), then a;; =0, aj; =0 and a1 =0.

Proof. If R satisfies the conditions (i)—(v), of Theorem, then:

(i) For the case (i = 1,75 = 2). If k = 1, then 2a13(te;) = 2a12ta; = 0,

for all t € M. This implies aj2(Re;) = 0. It follows from condition (i),

of Theorem, that ajo = 0. If k = 2, then 2a;2(tes) = 2ajatee = 0. This

implies a12(Mez) = 0. Again, it follows from condition (i), of Theorem,
that a1 = 0. For the case (i = j = 1). If k = 1, then aj1t1; = 0 implies
al] = 0, because el € 9%11. Ifk = 2, then 4(61&61)t12 == 4a11t12 = 0. Hence,
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(eraer)tia = 0. It follows from condition (ii), of Theorem, that a;; = 0.
Now, for the case (i = 2,5 = 1). If k = 1, then 2ag;(te1) = 2az1t1; = 0, for
all t € R. So ag1(Req) = 0. It follows from condition (i), of Theorem, that
ag = 0. If k = 2, then 2a9(tea) = 2ag1t12 = 0. Therefore, ag; (Rez) = 0.
Again, it follows from condition (i), of Theorem, that ag; = 0. For the case
(Z =j= 2). If £ =1, then 4(62&62)t21 = 4agoto; = 0, that is, agote; = 0.
It follows from condition (ii), of Theorem, that age = 0. If kK = 2, then
agatas = 0 implies age = 0, by condition (iv), of Theorem. Similarly, we
prove the dual cases.

(ii) Since t;ja + at;; € Ryj;, we have (tj;a + at;j)e; = 0 which implies
tijaji =0. Hence, tija]’i = 0. Thus, a5 = 0, by (1), of Lemma.

(iii) For the case ¢ = 1, in particular, we have 0 = a11e1 +e1a11 = 2a11
and so a1 = 0, since R is 2-torsion free. The case ¢ = 2 follows direct of
(v), of Theorem.

(iv) If j = 1, then t11a + aty1 € Ro;. Hence, eq(t11a + at11) = 0 which
implies t11a11 +a11t11 = 0, t11a12 = 0 and tna%% =0.50a11 =0,a12=0
and a11 = 0, because e; € Ri1. Now, if j = 2, then tosa + atey € Ryo.
Hencei 262(75220, + atzg) = 0 which implies tQQQ%% = 0, tegas; = 0 and
tooago + asotos = 0. So a%% =0, ao; = 0 and age = 0, by (iV) of Theorem,
(i) and (iii) of Lemma, respectively. Similarly, we prove the dual cases.

If R satisfies the conditions (i')—(iv’"), of Theorem, then the demons-
trations, of the cases (i')—(iv'), of Lemma, are made identically to the
preceding cases. For this, it is sufficient in the case ('), of Lemma, to
take the case (i), just to i # j, replacing in the proof, the condition (i),
of the theorem, by condition (i’). In the case (ii’), of Lemma, to take the
case (iii), replacing in the proof, the condition (v), of the theorem, by
the condition (iv'), and in the case (iii’), of Lemma, to take the case (iv),
replacing in the proof, the conditions (iv), (i) and (iii), of the theorem,
by the conditions (iii’), (') and (iii’), respectively. O

Lemma 3. M and M* are injective.

Proof. Let a,b € R be two elements such t/hat M(a) = M (b). For every
tj; € Rj; (i = 1,2), there exists z(j,j) € R such that M*(z(j,7)) = tj,
by hypothesis of the surjectivity of M*. Hence,

tjja + atj; = M"(x(j, '))a + aM*( (4:4))
= M*(x(j, )M M (a)z(j, j))
= M*(2(4,5)M(b) + M (b)x(4, 7))
= M*(z(j ))b+ bM*( (4,7)) = tj;b+ bt;.

7
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This implies
tjj(a — b) + (CL — b)tjj =0.
By (iv) (resp., (iii’)) in Lemma 2, we have a;;—b;; = 0 (i, j = %, 1,2), that is
a = b. Thus, M is injective. Now, let z,y € R’ such that M*(x) = M*(y).
Since M is a bijection, there are a,b € R such that a = M~!(z) and
b= M~!(y). Hence, for every t;; € R;; (j = 1,2), there is a c(j,j) € R
such that M*M (c(j,7)) = t;j, by the surjectivity of M*M. This implies
tija+atj; = t;; M~ (@) + M~ (2)ty;
= M*M(c(j, j))M () + M~ (&) M*M(c(j, 5))
= M (M(c(j, §)) MM~ (z) + MM~ (2)M(c(5, 7))
= M*(M(c(j, j))z + xM(c(j, 1))
= c(J,J)M"(x) + M*(z)c(j,j) = c(§, )M " (y) + M*(y)c(j, j)
= M*(M(c(4,5))y + yM(c(5,5)))
= M*(M(c(j, §)) MM~ (y) + MM~ (y) M(c(4, j)))
= MM (c(4,5)) M~ (y) + M~ (y) MM (c(j. 7))
=tj; M~ (y) + M~ ()t
= t;;b+ bt;;.
Thus,
tjj(a — b) + (CL — b)t]‘j = 0.

Again, by (iv) (resp., (iii’)) in Lemma 2, we have a;; — bj; = 0
(i,j = %, 1,2) and so a = b. Consequently, we have x = y, by bijectivity
of M. Therefore, we can also infer that M™* is injective. O

The three lemmas that follow, have identical proofs, as in [5]. Thus,
they will be omitted.

Lemma 4. The pair (M*~1, M~ is a Jordan elementary map on RxR .
Lemma 5. Let a,b,c € R such that M(c) = M(a) + M(b). Then
M* " Hte+ ct) = M* (ta + at) + M* 7 (tb + bt)
for all t € R.
Lemma 6. Let z,y,z € R such that M*(z) = M*(z) + M*(y). Then
MY wz 4 2w) = M (wx + zw) + M~ (wy + yw)
for allw e R'.
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Corollary 1. Let a,b,c € R such that M*~'(c) = M*1(a) + M*~1(b).
Then
M (tc + ct) = M(ta + at) + M(tb + bt)

for all t € R.

Corollary 2. Let z,y,z € R such that M~'(z) = M~ (z) + M~ (y).
Then
M*(wz + zw) = M*(wx 4+ zw) + M (wy + yw)

for allw e K.
Lemma 7. Let aj; € R11 and bag € Rog. Then
(i) M(ai1 + ax) = M(ai1) + M(a2);
(ii) M*_l(an + age) = M*_l(an) + M*_l(aQQ).
Proof. (i) Suppose M (c) = M (a11) + M (az2), for some ¢ € R. For arbi-
trary t1; € P11, by Lemma 5, we have
M* tie+ ctiy) = M* Ntyann + anitnn) + M7 (t11a9s + agatin)
= M* " (ty1a11 + aritiy).
Hence, ti11¢c + ct11 = t11a11 + a11t11 which implies ¢11 = aq1, c12 = 0,
ci1 = =0 and co1 = 0, because e; € R11. Now, for arbitrary too € Rao, by
Lemma 5, we have
M* tgge + ctog) = M*(tagary + aritan) + M* ™ tagags + azatan)
= M* " (tazags + agatan).
Hence, tooc + ctog = tosaos + agotes which implies coo = asg2, by (iV)
(resp., (iii’)) in Lemma 2. So ¢ = a1 + aga.
(ii) This proof is similar to case (i). O
Lemma 8. Let a; € Ry and aij € mi]’ (Z,j =1,2;1 75 j) Then
(1) M(aii + ai;) = M(ai) + M(aij);
(11) M*_l(aii + aij) = M*_l(a“’) + M*_l(azj).

Proof. (i) For the case (i = 1,7 = 2), suppose that M(c) = M(a11) +
M (ai2) for some ¢ € R. For arbitrary tgo € oo, using Lemma 5, we have
M*(tage + ctag) = M* tagary + arrtas) + M* " (tagais + ayatas)

= M* ™ (ayatan)
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which yields tosc + ctog = aqates € Rio. It follows from (iV) (resp., (iii,)),
in Lemma 2, that c11 = 0, co1 = 0 and c90 = 0.

2
Now, if 2R satisfies the conditions (i)—(v), of Theorem, then for arbitrary
t12 € R12, by Lemma 5, we have

M* " tige + ctiz) = M* " (tigars + aritiz) + M* " (tiza1 + a1atis)
= M*il(alltlg).

It follows that t1oc + ct1o = aj1t12 which implies ¢11t12 = a11t12. Thus,
c11 = ai1, by (i) in Lemma 2.

If R satisfies the conditions (i’)—(iv’), then for arbitrary ¢ 11 € R
we have

N|=

1
2

M*il(t c+ct )ZM*il(t a11+a11t;;):M*fl(Qant;;),
22 22

11 11 11
22 22 22
by Lemma 5. It follows that t1 ic + ct11 = 2a11t%% which implies
011t1 1= a11t1 1. So c11 = a11, by condltlon (ii") of Theorem.

In both cases we have ¢11 = a11.

Since togc + ctag = ajotas € *Riz, then we can conclude that
c12t22 = aiatas. Using (i) (resp., (i')), in Lemma 2 again, we see that
c12 = ajz. Thus, ¢ = aj1+ayz. Therefore, M (ai1+a12) = M(a11)+M(ai2).

Similarly, we prove the case (i = 2,5 = 1).

(ii) By Lemma 4, we can infer that (ii) holds. O

Similarly, we can get the following result.
Lemma 9. Let a;; € Ry; (1,7 = 1,2;0 # j) and aj; € Rj;. Then
(i) M(CLZ’Z‘ + aji) = M(CL”) + M(aji);
(ii) M*_l(aii + sz‘) = M*_l(aii) + M*_l(aji).

Lemma 10. Let a; € Ry; (1 = 1,2) and a;; € Rij (4,5 = 1,251 # 7).
Then

(i) M(all + Qij + CLQQ) = M(an) + M(ai]’> + M(CLQQ);
(if) M*~"(a11 + ag; + azz) = M* " (arr) + M* " (ay) + M* " (az).

Proof. (i) For the case (i = 1,j = 2), suppose that M(c) = M(a11) +
M (a12) + M (ag2) for some ¢ € R. From Lemma 5, we have

M*fl(elc +cep) = M*71(2a11) + M*fl(aw) = M*71(26L11 + ay2),
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by Lemma &8, which yields ejc + ce; = 2a11 4+ a12. Hence, ¢;1 = aqq,

c12 = a2, c11 = 0 and co; = 0. Now, for arbitrary to9 € SRao, by Lemma 5
22

again, we have

M*(tyge + ctag) = M*~agatan) + M*(troags + azatan)
= M* " Haigtas + tasags + agatss),
by Lemma 9. It follows that tog(coa —a22)+ (ca2—ag2)taa = 0, which implies
co2 = aga, by (v) (resp., (iv')) of Theorem. Therefore, ¢ = aj1 + a1z + ase.
Hence, M(a11 + a12 + az) = M(a11) + M(a12) + M(az).

Similarly, we prove the case (i = 2,7 = 1).
(ii) By Lemma 4, we can infer that (ii) holds. O

Lemma 11. Let tgg € Roo and ajj € %ij (Z,j = 1, 2;i 7& ]) Then

(i) M (aiataz + togag1) = M(aiataz) + M (tagaszr);
(11) M*_l(a12t22 + t22“21) = M*_l(a12t22) + M*_l(tggagl).

Proof. First at all, let us note that
2e1+a12a91 +a12+az; +agiaiz = (e1+aje)(e1+an )+ (e1+ag1)(e1+aiz).
Hence,

M (2e1 + a12a21 + a1z + ag1 + ag1a12)
= M((e1 + ar12)(e1 + a21) + (e1 + a21)(e1 + ai2))
= M((e1 + arg) M*M*(ey + az1) + M*M* (1 + az1)(e1 + a12))
= M(e; + alg)M**l(el +a9) + M*fl(el + a1 )M (e + ai2)
= M(e1 + a) M* "' (e1) + M(e1 + a12) M* ' (az)
+ M*He1)M(e1 + ara) + M* " (as1)M(e1 + ar2)
= M ((e1 + ar2)e1+ei(er + a12)) +M((er + ar2)as1 + azi(e1 + ai2))
= M(2e1 + a12) + M(ai2a21 + az1 + az1a12)
= M(2e1) + M(a12) + M(a12a21) + M(az1) + M(az1a12),

by (i), in Lemma 8, (i), in Lemma 9 and (i), in Lemma 10. So

M (2e1 + a12a21 + a12 + a1 + aziai2)
= M(261) + M(alg) + M(algagl) + M(agl) + M(aglalg).



B. L. M. FERREIRA, H. Guzzo Jr., J. C. M. FERREIRA 213

Now,

M*71(2261 + 2a12a91 + a1z + agy)
= M*"1(2%1) + M* " (aw2) + M* ' (2a12a91) + M* ' (az1),
by Lemma 5, which implies M (a12t22 + ta2a21) = M (a12t22) + M (ta2a21),

by Corollary 1.
(ii) By Lemma 4, we can infer that (ii) holds. O

Lemma 12. Let a;; € Ry (i, = 1,250 # j). Then

(i) M(a12 +a2) = M(a12) + M(az1);

(i) M* Yays + ag1) = M*(are) + M*(ag).
Proof. (i) Suppose that M(c) = M(a12) + M (ag1) for some ¢ € R. By
Lemma 5, we have

M*fl(elc +cep) = M*fl(elalg + ajger) + M*fl(elagl + aseq)
which implies
M* " (2¢11 + 1o + c11+ea) = M*aw) + M*az).  (5)

Next, for arbitrary too € Poo, by Corollary 1 and Lemma 11, we have

M(C12t22+2c%t22+t22621) = M (ayata2)+M (t22a21) = M (aratae+taasy).

It follows that ciatos = aqatos, c11too = 0 and togsco; = tooasy. SO c190 =

11
arz, 11 = 0 and c21 = ag1, by (1)2 fresp.7 (i')) in Lemma 2 and (iv) (resp.,
(iii’)) in Theorem.

Now, if R satisfies the conditions (i)—(v), of Theorem, then for arbitrary
t12 € Ri2, by (5) and Lemma 7, we have

M (2ci1t12 + tiaca1 + caiti2) = M (t12a21 + a21t12)

which implies ¢11t19 = 0. So ¢11 = 0, by (i) in Lemma 2.

If R satisfies the conditions (i')—(iv’), of Theorem, then for arbitrary
ti1€ 9“1%%, by (5) and Lemma 7, we have M(22011t%%) = 0 which implies
c11ti1 = 0. So ¢11 =0, by (il’) in Theorem.

121r12 both cases we have c11 = ay1.

Finally, for arbitrary too € fReg, we have

M* " tggetctag) = M*(aratan)+M* (tagag ) = M* ™ (aratog+tagas ),
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by Lemma 11. It follows that tooc + ctog = aq1ates + tosas; which implies
ciatoa = aiatag, taaca1 = tasagr and caatas + tastas = 0. So ca2 = 0, by (v)
(resp., (iv")) of Theorem.

(ii) By Lemma 4, we can infer that (ii) holds. O

Lemma 13. Let ay; € Ry1 and aij € mi]’ (’L,] =1,2;12 75 ]) Then

(i) M(a11+ a1z + ag1) = M(a11) + M(a12) + M(az1);
(ii) M*_l(all + a2 + a21) = M*_l(all) + M*_l(au) + M*_l(agl).

Proof. (i) Suppose that M(c) = M(a11) + M(ai12) + M(ag;) for some
¢ € R. For arbitrary t92 € fRao, we have

M* " togetctag) = M* " (aratan) + M*(tagaa1) = M* ™~ (a1atag+tanas ),

by Lemmas 5 and 12. Hence, t9sc + ctogs = aqatas + tosas; which implies
ciatoo = aialan, C%%tzz = 0, toaco1 = tooagr and caalan + taates = 0. So
C12 = a1z, C11 = 0, co1 = ag1 and o2 = 0, by (i) (resp., (i')) in Lemma 2,
(iv) (resp., (iii’")) and (v) (resp., (iv')) in Theorem, respectively.

Now, if R satisfies the conditions (i)—(v), of Theorem, then for arbitrary
t12 € Ri2, by Lemmas 5 and 10, we have

M*_l(tuc + cti2) = M*_l(antm) + M*_l(tmam + ag1t12)
= M* Y ayitis + tioas + asitio).

It follows that tioc+ ct12 = ai1t12 + t12a91 + ao1t12 which implies ¢11t12 =
a11t12. ThUS, C11 = aii, by (1) in Lemma 2.
If R satisfies the conditions (i')—(iv’), of Theorem, then for arbitrary

ti1 € R11, we have
22 22

M* Ytrie+ctin) = M*—l(zaum).

11 11
22 22

It follows that t1 1c 4+ cti11 = 2ai1t11 which implies 011t1 1= = aj1tiy
22 22 22
Thus, ci11 = a11, by (ii') in Theorem.
In both cases we have c¢11 = aq1.

(ii) By Lemma 4, we can infer that (ii) holds. O
Lemma 14. Let a;; € Ry (Z = 1,2), aij € S)fiij (l,] =1,2;1 75 j) and
ai11 € Ri11. Then

22 22

(i) M(aii +ai;+a ) = M(au) +M(aij —i—a%%);

) = M*_l(aii) + M*_l(aij +a

11
22
(i) M* au +aij +a ).

11 11
22 22
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Proof. (i) For the case (i = 1,5 = 2), suppose that M(c) = M(a11) +
M(ai2 4+ a11) for some ¢ € R. For arbitrary tas € PRae, by Lemma 5, we
have

11
22

M*tose + ctan) = M* " (tasars + aritas)

+ M* Ytgg(a12 + a11) + (a12 + a11)ts)

11 11
22 22

which implies

M*_l(tQQC + CtQQ) = M*_1<a12t22 + 2@%%t22).

It follows that tooc+ ctog = a11tos + 2a1 1too which implies c1atos = aqatos,
C;;tgg = a;;tQQ, t22021 =0 and 022t222—i tQQCQQ =0. By (1) (resp., (i/)), in
Lemma 2, 2(12\7) (resp., (iil’)) and (v) (resp., (iv')), in Theorem, we have
c12 = a2, c11 = a1, ca1 = 0 and ¢ = 0.

Now, if % satisfies the conditions (i)—(v), of Theorem, then for arbitrary

t19 € R19, by Lemma 5, we have
M*_l(tlgc + ct1a) = M*_l(a11t12)~

It follows that t1oc + ct1o = aq1t12 which implies ¢11t19 = a11t12. Thus,
c11 = a1, by (i) in Lemma 2.

If R satisfies the conditions (i')-(iv’), of Theorem, then for arbitrary
t

11 € R, , we have
22 33

M*_l(t;;c—i—ct;;):M*_1(2a11t;;)+M*_1(2a1;t1;)

23 23 23 23 23
and
M(el(tééc—i-ct%%)+<t%%c+6t%%)61) :M(Qant%%)+M(2(a%%t%%)11),
by Lemma 5 and Corollary 1, which implies
2 _
M(?Cut%% + 2 (C%%t%%)n) = M(Qallt%%) +M(2(a%%t%%)11).

Hence, we have
M*_1(22(011t;;)u22) = M*_1(22(a11t;;)uQ2),
22 22

for arbitrary wugo € Po9, which implies (cnt%%)uzg = (allt%%)um. Thus
c11 = a11, by (it’) and (iii’) of Theorem.

In both cases we have ¢11 = aq1.

(ii) By Lemma 4, we can infer that (ii) holds. O
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Similarly, we can get the following result.

Lemma 15. Let a; € Ry; (i = 1,2), a;; € Ryj (4,5 = 1,2;4 # j) and

ai11 €R11. Then
22 22
(i) M(aii—i—a%% + aji) = M(ai;) —i—M(a%% + aji);
(ii) M*_l(au—l—a%% +aj;) = M*(ai) +M*_1(a%% + aj;)

Lemma 16. Let t; € R;; (Z = 1,2), ajj € mz’j (Z,j =1,2;12 7& j) and
€ER Then

a 11.
22

(i) M(aij + Qtn’a%%) = M(aij) + M(Qtn'a%%);
(ii) M*_l(ai]’ + 2tiia;;) = M*_l(ai]’) + M*_I(Qtiia;;).
22 22

N

1
2

Proof. For the case (i = 1,7 = 2), note that for arbitrary t1; € Ry

aig + 2t11 + 2t11a%% = (e1 + a%%)(alg +t11) + (a2 + t11)(e1 +arn).

11
23
Hence,

M(2t11) + M(ay2 + 27511(1%%) = M(2t11 + a12 + 27511(1%%)
)

= M((er +ar1)(arz +tnr) + (a2 + tin)(er + a
= M((ex + a3 )M*M**(arz + tn1)

11
22

+M*M*71(a12 +t11)(61 +a%%))

= M(e1 + a%%)M*fl(au +t11) + M* N arg + t11)M(e; + a%%)
= M(e; + a%%)M**l(am) + M(ey + a%%)M**l(tn)

+ M (a12) M (e1 + ai1)+ M*"t1)M(ey +a
= M((e1 + a%%)au + ai2(er +ay )

+ M((eq + a%%)tn +ti(er +ai1))
= M(a12) + M (2t11 + 2t11a%%)
= M(a12) + M(2t11) + M(2t11a

)

11
22

N[

11
22

),

by (i) in Lemma 14. So M (a2 + 2ti1a11) = M(a12) + M(2t11a11).
22 22
Similarly, we prove the case (i = 2,7 = 1), from the identity

11
22

).

(ii) By Lemma 4, we can infer that (ii) holds. O

a1 + 27522@%% = (e1 + a%%)(am + to2) + (a1 + ta2)(e1 + a

11
22
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Lemma 17. Let aij € mij (’L,j =1,2:1 75 ]), tjj S %J’j (] = 1,2) and
ar1 € Ri1. Then
2

11 1.
22 2
() M(aij +2tj5011) = M(aij) + M(2tj5a11) ;
(i) M*~Hay +2tj5011) = M* " (ai) + M* 7 (2t55011) -
22
Proof. For the case (i = 1,7 = 2), note that for arbitrary tas € Rao

a2 + 27522(1%% = (61 +a )(alz + tgg) + (CL12 + tgg)(el +a )

11 11
22 22

Hence,

M (a9 4 2tooa11)
22

=M((e1+a

=M((e1+a

)(ai2 + ta2) + (a12 +t22)(e1 +a
YM*M* a1z + ta)

5 1))

+ M*M*™ " (a12 + t22)(e1 + a%%))
)M*_l(au +t92) + M*_l(alg +ty9)M(e; +a
)M*~ar2) + M(eq + a%%)M*_l(tQQ)
+ M (a12) M (er + ai1)+ M* " (ty)M(er +a
=M((e1 +a )
)

)

11
22

)CL12 + CL12(61 +a

11 1
22 2

1
3
+ M((e1 +av1)ta +ta(er +a

11
2 22

1
3
= M(ay2) + M(QtZQG%%),

by (ii) in Lemma 9. So M (a2 + 2t22a%%) = M(ai2) + M(2t22a%%).
Similarly, we prove the case (i = 2,7 = 1) from the identity

agy + 211 + 2tnar1 = (e1 + a%%)(am +t11) + (ag1 + ti1)(e1 + a%%).
(ii) By Lemma 4, we can infer that (ii) holds. O
Lemma 18. Let a;; € Ry (1,5 =1,2;0# j) and arr € Ri1. Then
22 22
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)

Proof. For the case (i = 1,j = 2), suppose that M (c¢) = M (a12)+M(a11
22

for some ¢ € R. For arbitrary t1; € *R11, by Lemma 16, we have
M* Y (tie+ ctyy) = M* tais + aratin) + M**l(tlla%% +ay1tn)

Ytiars) + M* 1 (2t1a11)

=M"" 11
22
= M* Y(ty1a19 + 2t11a11).
22

Hence, t11¢c 4+ ct11 = t11a12 + 2t11a1 1 which implies t11¢11 + ¢11t11 = 0,
22

ticiz = tiane, tcir = tnais and c21t11 = 0. So ¢11 = 0, c12 = aiz,

2
ci1 =a11 and co; = 0. Finally, for arbitrary too € Roo, we have

11
22

(NI

1
2
M* " (tage 4 ctag) = M* " tagara + aratas) + M*~(taga
= M*_l(a12t22) + M*_1(2t22a )

(NI

1
2

11
22

= M* Yaiatan + 2t22a%%),

by Lemma 17. Hence, tooc 4 ctoa = ajatos + 2ts2a11 which implies
22
toaca2 + cootas = 0. So coa = 0, by (v) (resp., (iv')) of Theorem.
Similarly, we prove the case (i = 2,7 = 1).
(ii) By Lemma 4, we can infer that (ii) holds. O
. Then

Lemma 19. Let a; € Ry; (i =1,2) andars € R

11 11
22 22

) = M(a;;) + M(a11);

)= M*"Yay)+ M a

11
22
).

Proof. (i) For the case (i = 1), suppose that M(c) = M(a11) + M(a
for some ¢ € fR. For arbitrary too € $Roo, by Lemma 5, we have

N|=

1
2

)

[N

1
2

M* tgge + ctog) = M*(tagary + aritan) + M*fl(tzza%% + a%%tm)
= M*_I(thga%%).

It follows that tosc + ctos = 2t99a 11 which implies cjotos = 0,
toac11 = togai1, togacer = 0 and togces + coatoo = 0. By (i) (resp., (i/)) in
Lemma 2, and iv) and (v) (resp., (iii’) and (iv’)) of Theorem, we have
, C21 = 0 and Co9 = 0.

c1o=0,c11 =a

N

11 1
22 2
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Next, if R satisfies the conditions (i)—(v), of Theorem, then for arbitrary
t19 € Ri2, by Lemma 5, we have

M*il(tlgc + Ctlg) = M*il(tlgall + allt12) + M*il(tlga%% +a tlg)

= M*il(alltlg).

N

1
2

It follows that tlgc + Ct12 == a11t12 which implies 011t12 = a11t12. So
c11 = a1, by (ii) of Theorem.

If if R satisfies the conditions (i')-(iv’), then for arbitrary ¢ 11 € R
we have

11,
22

M tiie+ct ):M**l(zallt%HM**l@a ti1),

[NIE

1
2

NI

1
2

[

11 1
22 2

by Lemma 5, which implies

M* N 2e11t11 +2c11t11) = M* ' (2a11t11) + M* " (2a11t11).
22 22 22 22 22 22
It follows that
2 _ 2
M(2011t%% + 2 (C%%t%%)n) —M(Qallt%%)+M(2 (a%%t%%)n),

by Corollary 1. Now, for arbitrary use € Ros, we have

M*_1(22(011t%%)u22) = M*_1(22(a11t%%)um),

by Lemma 5, which implies ((¢11 — a11)t11)uge = 0. From hypothesis (ii’)
22
and (iii’), of Theorem, we have ¢11 = aq;.

In both cases we conclude that ¢11 = a11. Hence,

):M(a11)+M(a )

N

1
2

Similarly, we prove the case (i = 2).
(ii) By Lemma 4, we can infer that (ii) holds. O

Lemma 20. Let a11 € R11 and ase € Ros and a11 € Ri1. Then

11 11
22 22

)+ M(ag2);

)

N

1
2

)
) + M*_l(agg).
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Proof. (i) Suppose that M(c) = M(a11) + M(a11) + M(age) for some
22
c € R. For arbitrary t17 € fR11, by Lemma 19, we have

M* tyie+ ctyy) = M* H(tann + aiitin) + M*fl(tna%% +ai1tyy)

22

+ M*fl(tllagz + agatii)
= M*il(tllall + alltll) + M*71(2t110¢%%)
= M~ (tnain +antin + 2tnasy).

It follows that t11¢ + ct11 = ti1a11 + aiitin + 2t11a11 which implies
22

ti1c11+ci1tn = tiiari+aritin, tricie = 0, tllc%% = tlla%% and ca1t11 = 0.

ThUS, C11 = daii, C12 = 0, C

= a11 and co; = 0. Next, for arbitrary

11 11
22 22

tos € Roo, we have

M* " (tage + ctag) = M* tagaiy + ayitas) + M*fl(tzw% +a11ton)

22

+ M* " (tyags + agaton)
= M*_I(Qtzza%% + tagaga + agatas),

by Lemma 19. It follows that tosc+ ctoo = 2tooa1 1 + tosags + asotss which
22
implies toocoo + cootos = togaga + agatos. Thus cog = age, by (v) (resp.,
(iv")), of the Theorem.
(ii) By Lemma 4, we can infer that (ii) holds. O

Lemma 21. Let a;; € Ry (i,j =1,2;i# j) and a . Then

(i) M(aii+aij +a ) = M(a“) +M(ai]’) —I—M(a

11
22

(i) M* Yas +aij + a1z 11).

22 2
Proof. (i) For the case (i = 1,j = 2), suppose that M(c) = M(a11) +
M(ay2) + M(a%%) for some ¢ € R. For arbitrary too € Roo, by Lemmas 5
and 18, we have

N|=

M* " Utgge + ctog) = M* " (tagary + aritan) + M* " tagars + aratan)
+ M* Htapar1 + arity)
22 22

= M*il(algtgg) + M*71(2t22a )

11
22

= M*(ayatas + 22522@%%)-
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Hence t22€+6t22 = a12t22+2t22a;; which implies 012t22 = a12t22, tQQC;; =
22 22
tosa11, taacor = 0 and toaca + cootos = 0. By (1) (resp., (i/)) in Lemma 2
22
and (iv) and (v) (resp., (iii’) and (iv’)), of Theorem, we have c12 = a12,

C ;:a;;,cm:()anchQZO.
2 22

D=

Now, if R satisfies the conditions (i)—(vi), of Theorem, then for arbi-
trary ti1o € Rz, we have

M* Ytige + ctiz) = M*H(tigar1 + aritiz) + M* " (tiza1 + a1atis)
+ M*il(tlga;; + a;ltlg) = M*il(antlg),
22 22

by Lemma 5. Hence, t19¢ + ct12 = aj1t12 which implies c11t12 = aji1tio,
So ¢11 = a1, by (i) in Lemma 2.

If R satisfies the conditions (i')—-(iv’), of Theorem, then by Lemma 5,
we have

M tiie+ ct

[SIE
[ I

11
22
implying

M*_l(2011t;; + 2c11t
22

N|=
D=
N|=

11l
22 2

Hence,

M(QCHt;; + 22(6 t )11) = M(Qalltl;) + M(22(a
23 23

11011
22 22

by Corollary 1. Thus, for arbitrary use € Ros, we have

M*71(22(611t )UQQ) = M*71(22(a11t

11
22
by Lemma 5, which implies ((¢11 — a11)t11)ug2 = 0. From hypothesis (ii’)
22
and (iii’), of Theorem, we have ¢11 = aq;.
In both cases we conclude that ¢11 = a11. Hence,
M(ay + a2 +a

) :M(a11)+M(a12)+M(a )

N

11 1
22 2
Similarly, we prove the case (i = 2,7 = 1).

(ii) By Lemma 4, we can infer that (ii) holds. O

Similarly, we can get the following result.

Lemma 22. Let a;; € Rij (i, =1,2;i# j) and ar1 € Ri1. Then

11 11
22 22
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11) = M(aii) + M(aji) + M(a11
(ii) M*_l(aii + aji +ai1)= M*_l(a“) —l—M*_l(aﬂ) —I—M*_l(a;;).
22 22
Lemma 23. Let a;; € Ry (i, = 1,251 # j) and b%% € %%% Then

(i) M(a11 +a;; a1+ CLQQ) = M(an) + M(aij) + M(a%%) + M(CLQQ);

1
(ii) M* (a1 +aij+a
M*_l(agg).
Proof. (i) For the case (i = 1,j = 2), suppose that M(c) = M(a11) +
M (a12) + M(b11) 4+ M(aaz) for some ¢ € R. For arbitrary t11 € R11, we
22
have

M* M (te+ ctry) = M Htrain + anitn) + M Hta1z 4 aratin)

+ M*_l(tllb%% + a%%tll) + M*_l(tllagz -+ Cbggtll)

= M*(ty1a11 + aritiy + tinars + 21511@%%),
by Lemma 21. Hence, t11c+ct11 = t11a11+ a1t +ti1a12+2t11a11 which
22

implies t11¢11 + cr1t11 = tiair + anti, tiicie = tiiaiz, t110%% = tna%
and co1t11 = 0. So €11 = a11, c12 = aq2, ci1=ai1 and co1 = 0. Now, for
arbitrary tog € Rog, by Lemma 5 again, we have
M* "ty + ctog) = M* ™ Htgoar1 + a11tas) + M*~taoa1z + aiata)

+ M*il(tng%% + a%%tzz) + M*il(t22a22 + a22t22)

= M* " Naiatos + 22011 + lazaz; + at),

by Lemma 22. Hence, tooc + ctoo = ajstos + 2tgga%% + to2a02 + agala
which implies t99c290 + cootog = togaos + agatas. SO cog = age, by (V) (resp.,
(iv")), of Theorem.

Similarly, we prove the case (i = 2,5 = 1).

(ii) By Lemma 4, we can infer that (ii) holds. O

Lemma 24. Let a;; € Ry (i,j = 1,20 # j), tag € Rag and a
Then

€ENR

(NI

11 1
22 2

(i) M(a12t22+2a%%t22+t22a21) = M(a12t22)+M(2a%%tgg)-i-M(tzzagl);
(i) M* (aiates + QCL%%QQ +togant) = M* aratae) + M* " (2a11t20)

=+ M*_l(tQQCLQl).

11
22
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Proof. First at all, let us note that

(6’1+a12+a21)(61+a%%)+(€1+a J(e1+aia+az) = 2e1+aiz+a11+ag;.

11 11
23 23
Hence,
M*71(261 +taiztas + as)
= M*il((el + a2 + a21)(€1 —l—a%%) + (61 “+a
= M*il((e1 + a2 + CL21)M_1M(61 + a%%)

+ M_IM(el + a%%)(el + a1z + agl))

)(e1 + a1z + az1))

11
22

= M*"(e1 + a1z + az1)M(e1 + a%%)

+ M(er+ay )M (er + arz + a)
= (M*"(e1) + M (ar) + M*H(a21)) (M (ex) + (M(ayy))
)) (M (er) + M* ™ (a12) + M*H(az1))

+ M* Hazer + erarn) + M*fl(alza% +aiia2)

22

+ M* Hagier + era) + M*fl(ama%% + a%%am)
= M (2e1) + M* " Hazs) + M (ar2) + M* (az).
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This implies that
M*71(261 +aig + CL%% + agl)
= M* 1 (2e1) + M*Har1) + M Haw) + M*(az).
Thus, for an arbitrary element too € 9o, we have

M (a1t + 2(1%%7522 + togagt) = M (aiataz) + M (2a11ta9) + M(taaz1),

NI

1
2
by Corollary 1.

(ii) By Corollary 2 and using the same identity in the precedent case,
we prove that (ii) holds. O

Lemma 25. Let a;; € Ry (i,§ =1,2;i# j) and a

(i) M(aii—i-aij +a +aji) = M(a“) —i—M(aij) —l—M(a

11

33
(i) M*H(ay+ai +a%%+a]l) = M*Nay)+M* " (ay)+M* " (a

M*~ 1(aji).
Proof. (i) For the case (i = 1,57 = 2), suppose that M(c) = M(ai1) +
M (a12) + M(a11)+ M(ag) for some ¢ € R. For arbitrary tos € Rya, by
22
Lemma 5, we have

M*_l(tnc + ctag) = M*_l(t22a11 +ajites) + M*_l(t22a12 + aiata2)
+ M*_l(tma%% + a%%tm) + M*(tagao1 + agitas)

implying
M*fl(tmc + ctyg) = M*fl(autm + QCL%%tm + toga21),

by Lemma 24. Hence, tooc + ctog = aiatos + 2a%%t22 + togagy. It follows
that ciatos = aiatao, C%%tm = a1 17522, toaCo1 = tagag1 and togcog +coolog =
togaoo + agatos. Thus, cio = a12, C%% = al 1 c21 = ag1 and cag = agg, by
(i) (resp., (i')), in Lemma 2, and (iv) an (v) (resp., (iii’) and (iv’)), in
Theorem.

Now, if R satisfies the conditions (i)—(vi), of Theorem, then for arbi-
trary t19 € R19, by Lemmas 5 and 10, we have

M* " Htype + ctiz) = M* Hagitia) + M* " (t12a1 + agityz)
= M* Naitig + tiza + axtia)
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which implies Cutlg = a11t12. Thus, C11 = aii, by (1), in Lemma 2.
If R satisfies the conditions (i')—(iv’), of Theorem, then for arbitrary
, we have

which implies M*_1(2011t%% + 2¢
Lemma 20. Hence, ci1t11 +c11t1
Cllt;; = allt;;. So C11 2:2 (111,2132}/ Z(ii,), in Theorem.
I2n2 both cases we conclude that ¢11 = aq1. Similarly, we prove the case

(i=2,j=1).

(ii) By Lemma 4, we can infer that (ii) holds. O
Lemma 26. Let a;; € Ry (4,5 =1,2;0# j) and a1 € Ri1 then
22 22
(i) M(an + a1z + aii+ag + ag) = M(ai1) + M(a12) + M(a%%) +

M(a21) + M(az2);
(i) M* ay + a2 + ai1+az + age) = M* Yay) + M* (ay) +
M*_l(a )—1—M*_1(a21)+M*_1(a22).

Nl
ol

Proof. (i) Suppose that M(c) = M(a11) + M (a12) + M(a%%) + M(a21) +
M (ag). Then M* (erc+cer) = M* 1 (2a11)+M*(a12)+M* a11)+
22
M*_l(agl) = M*_1(2a11 +ai2+a11 +ag), by Lemmas 5 and 25. Hence,
22

2c11 +ci2 +c11 + 21 = 2a11 + a12 + a11 + ap which implies ¢1; = a1,
2 22

2
c12 = ay2, c11 = a11 and co; = asy. Now, for arbitrary tos € PRoo, we
2

have
M* Ytgge + ctoy) = M*(tanary + ayitan) + M* taars + aratan)
+ M*_1<t22a%% + a%%tm) + M*_l(t22a21 + ag1te2)
+ M* " (tasazs + azatan)
= M* (anatas) + M* ! (2t90a11)
22
+ M* N tanag:) + M* " (tasage + antss)
= M*_l(a12t22 + 2t22a%% + tagagr + tazage + antar),
again by Lemmas 5 and 25 again, which implies t99co9 + cootog = tosass +

agatos. By (v) (resp., (iv')), in the Theorem, we obtain coy = ass.
(ii) By Lemma 4, we can infer that (ii) holds. O
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Lemma 27. (i) M(a12 + bizcee) = M(a12) + M (b12c22);
(if) M*"(a12 + bracaa) = M*~(ar2) + M* ' (biacos);
(iii) M (a21 + baaco1) = M (ag1) + M (bazca1);

(iv) M* agy + baacar) = M* ! (an1) + M* " (baacar).

Proof. First of all, let us note that
a2 + biacoa = (e1 + biz)(a12 + ca2) + (@12 + ca2)(e1 + bi2).

Hence, M (a2 + bigczz) = M((e1 + bi2)(ai2 + c22) + (a12 + c22)(e1 +
bi2)) = M((e1 + bio) M*M*(a1g + ca2) + M*M* a1z + ca2)(e1 +
bia)) = M(ey + bio)M* Haz + c22) + M*(a12 + co2) M(eg + b1a) =
M (eq+b12)M* Hayz)+ M ey +bia) M*(con) + M*(a12) M (e1 +b12) +
M*"Hea)M(e1+bi2) = M((e1+b12)ara+aiz(e1+b12))+M((e1+bia)coa+
caa(e1+b12)) = M(a12)+ M (bi2c2). Similarly, we prove M (ag;+baacer) =
M (ag1) + M (baaca1), from the identity

as1 + bagcar = (e1 + ca1)(a21 + baz) + (a1 + baz)(e1 + c21).

The identities (iz) and (iv) follow from (i) and (i), respectively, by
Lemma 4. 0

Lemma 28. The following are true.

(i) M(ar2 + bi2) = M(a12) + M(bi2);
(i) M* N aga +bia) = M* agp) + M* 1 (bya).

Proof. (i) Let us suppose that ¢ € R satisfies M(c) = M (a12) + M (b12).
For any t9g € PRoy, we have M*71<t226 + Ct22) = M*il(t22a12 + a12t22) +
M* Y togbro + bigtas) = M*Haratas) + M*~H(biotas) = M*~Hayatey +
biataa), by (ii) in Lemma 27. Therefore we have tooc + ctag = ajatos +
bioton € Rio. It follows that 11 = =0, co1 = 0 and ¢92 = 0, by (iv) (resp.,
(iii’)), in Lemma 2. It follows yet from identity above, that ciotos =
a12ta2 +biatee which implies ¢12 = aja + b1, by (i) (resp., (i')) in Lemma 2.

Now, if R satisfies the conditions (i)—(v), of Theorem, then for arbi-
trary t19 € Rio, we have M*il(tlgc -+ Ct12) = M*71<t12a12 + algtlg) +
M*_l(t12b12 + b1at12) = 0, by Lemma 5. Hence, t12¢ + ct12 = 0 implying
c11ti2 = 0. So ¢11 = 0, by (7) in Lemma 2.

If R satisfies the condltlons (i")=(iv’), of Theorem, then for arbitrary
ti1 € 9%11, we have M™~ (t11c+ct11) = 0. Hence, t11c+ct11) =0

Wthh 1mphes 011t1 L= 0. So ¢11 =0, by (ii"), of the Theorem
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In both cases we conclude that ¢;1 = 0, and therefore ¢ = a1 + b12.
(ii) By Lemma 4, we can infer that (ii) holds. O

Similarly, we can get the following result.
Lemma 29. The following hold:
(i) M(az1 + b21) = M(az21) + M (ba1);
(i) M* Y agr + bor) = M*(agr) + M* 7 (ba).

Lemma 30. For arbitrary ai11,bi1 € Ri1 and t;; € Ry; (i = 1,2), the
22
following hold:

(1) M(2a11tj;+ 2%(tiaby 1)t5) = M(2a11t;5) + M (2% (tiiby 1)t5);

11,011
22° 22

(i) M*~'Qay 1ty +22(tuby 1)t;)=M"""2ay 1)+ M7} (2(tiby 1 )t55)-
22

Proof. (i) For the case (i = 1). First of all, note that a11 +2t114+2t11011 +
22 22
2011011 = (e1+bi1)(arr +t11) + (@11 +t11)(e1 + b11). Hence,
22 22 22 22 22 22
M(ai +2t11bl 1 +2t11 +2a11b11)
22 22 22
((e1 + b;;)(a%% +ti1) + (a%% +t11)(e1 + b%%))
= M((e1 + b )M M* Nays +t11)
22 22
+ M*M* ars +t11)(er +b11))
22 22
= M(ey +bir)M*™ (all i)+ M HNars +ty)M(ey +bi1)
22 22 22 22
= M(ey + b1 )M* Haxr) + M(ey +ban)M* " (ty)
22 22 22
+ M* Har1)M(er 4+ b11) + M* () M(ey +bi1)
22 22 22
= Ml(er +byp)ayy +agyler+5yy))
+ M((e1 + b%%)tn +t11(er +b11))
=M(ar11+2a11b11)+ M(2t11 + 2t11b11)
22 22 22 2
= (a;;)+M(2a;;b;;)+M(2t11)+M(2t11511)
22 22 22

aii 11011
22 22 22
_M**l(an)juM* Y(2t11b1 1) + M*TH(2%1)
22 22
x—1 /62
+ M (2 (a%%b%%)u)
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So

M(2 t22+2 (tnb%%)tzz) = M(2a11t92) +M( (tllb%%)tgz).

a1
22
Similarly, we prove the case (i = 2), from the identity

+2t22l)11 +2a +t22)(€1+b

).

aii ai1bii 11)(a11 aii 11
22 22 22 22 22 22 22
(ii) By Lemma 4, we can infer that (ii) holds. O
Lemma 31. For arbitrary a11,b11 € Ri1 and t; € Ry (i = 1,2), the
22 22 22

ollowing hold:
f g
(i) M(Qtiia%% + Qtiib%%) = M(2tiia%%) + M(Qtiib%%);
(ii) M*fl(Qtiia;; + 2tiib11) = M*fl(Qtiiall) + M*fl(Qtiibll).
23 23 23 23

Proof. (i) For the case i = 1. Let ¢ be an element of R, satisfying M (c) =
M (2t11a11) + M(2t11b11). For any t9s € Rao, we have
22 22

M*_l(t22c + ctog) = M*_1(22(t11a%%)t22 + 22(t11b%%)t22),

by Lemmas 5 and 30. Therefore, tooc+ctoy = 22(t11a%%)t22+22(t11b%%)t22.
It follows that cjotos = 0, C%%tgg = (2t11a%% + 2t11b%%)t22, toocor = 0
and t9g9coo + Cootog = 0, which implies c1o =0, c11 = 2t11a11 + 2t11b11,
c21 = 0 and cg2 = 0, by (i) and (iv) (resp., (') and (iii")), in Lemma 3,
and (v) (resp., (iv')) in Theorem. This implies that M (c1; + 01%) =
M(2t11a%%) + M(Qtnb%%).

Now, if 2R satisfies the conditions (i)—(v), of Theorem, then for arbitrary
t12 € M2, we have ¢11t12 = 0, Lemma 5. So ¢17 = 0, by (i) in Lemma 2.
If R satisfies the conditions (i')-(iv’), of Theorem, then for arbitrary
€ER

)

|

l\)\»—‘

1
2

[NIE

t1
2

M*™ (2011t1 1 + 2c¢

ciritii
22 22

:M _1<2 (tlla/%;)t )_|_M* 1(22(t11b11)t

),

11
22

by Lemma 5, which implies

M (2¢11t11 + 22(cy1t
22

=
=

1))
2

= M( 3((7511%%)75%%)11) + M(23((t11b%%)t%%)n)v
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by Corollary 1. Hence, for arbitrary uso € Ros, we obtain
M*71(22 (Cllt%%)UQQ) =0

and so (c11t11)uge = 0. From the hypothesis (ii’) and (iii’), of Theorem,
22
we conclude that ¢;; = 0.
In both cases we conclude that ¢;1 = 0. So ¢ = 2¢11a11 + 2¢11b11.
22 22

Similarly, we prove the case ¢ = 2.
(ii) By Lemma 4, we can infer that (ii) holds. O

Lemma 32. For arbitrary ai11 and 61 1€ 9{1 1 the following hold:

N[

) = (CL11>+M bll)
by y=M*""a11)+ M (b11).

1
2

NI

11401
22 2
~1
eyt
Proof. (i) Let ¢ be an element of R, satisfying M (c) = M(a
For any to2 € Roa, we have

M*il(tgzc + Ctzg) = M*71(2t22a%% + thgb%%),

by Lemmas 5 and 31. Therefore, we have tosc + ctog = 2tosa11 + 2toob1 1.
22 22

It follows that ciatos = 0, togci1 = t22(a;1 + bl 1) toocor = 0 and
22 23
togcog + Cootoo = 0, which implies ¢19 =0, c11 = %% + b1 1, C21 = 0 and

1
2
1

in Lemma 2 and (v) (resp.,

- N

co2 =0, by (i) and (iv) (resp., (i) and (iii’))
(iv")) in Theorem.
Next, by Lemma 5 again, we have

M* ' (2e11+e11) =M azs) + M (biy). (6)
If R satisfies the conditions (i)—(v), of Theorem, then for arbitrary
t12 € M2, we have M (2¢11t12) = 0, by (6) and Corollary 1, which implies
Cntlg =0. So C11 = 0, by (l) in Lemma 2.

If R satisfies the conditions (i')—(iv’), of Theorem, then for arbitrary

€ Ri11, we have
22

N[

11 11 1
22 22 2

t

11
22

M(2%ciitiy +2ci1t11) = M(2a11t11) + M(2b11t11),
22

=

1
2

(NI

1
2

N

1
2

[N

1
2

[NIE
N|=
N

1
2

by (6) and Corollary 1, which implies that

*—1
M (2 611t11+2(%% %%)11)

= M* (2% (arati1)) + M (22 (bt

)11),

NI
N|=
NG
(NI

11011
22 22
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Lemma 5. Hence, for arbitrary uos € Ros, by Corollary 1, we obtain

M(23(611t )U22) =0

11
22
and so (c11t11)uga = 0. From the hypothesis (ii’) and (iii’), of Theorem,
22
we conclude that ¢;1 = 0.
In both cases we conclude that ¢;1 =0. Soc=a11 +b1:1.
22 22

(ii) By Lemma 4, we can infer that (ii) holds. O
Lemma 33. For arbitrary ai1,b11 € R11, we have:

(i) M(a11+b11) = M(a11) + M(b11);
(11) M*_l(an =+ bll) = M*_l(au) + M*_1<b11).
Proof. (i) Let ¢ € R be such that M(c) = M(ai1) + M(b11). For any
too € Moo, we have M*_l(tggc—l- ctao) = 0, by Lemma 5. This implies that
togc + ctao = 0. Thus, c12 = c11 = c91 = ¢a2 = 0, by (iv) (resp., (iii’)), in
22
Lemma 2.

Now, if R satisfies the conditions (i)—(vi), of Theorem, then for arbi-
trary t1o9 € P12, we compute

M* Ytrge + ctrz) = M*(tigar1 + aritia) + M* " H(tiabyy + biitia)
= M* Yait1a) + M* " (byit1o)
= M* Y(ayitiz2 + biiti2),
by Lemma 28. It follows that ci1t12 = (@11 +b11)t12. Thus, ¢11 = a1 + b1y,

by (i), in Lemma 2.
if R satisfies the conditions (i')—(iv’), of Theorem, then for arbitrary

ti1 € Ri1, we have
22 22
M*_l(t;;c—i-ct;;) = M*_1(2a11t;1) +M*_1(2b11t;;),
232 23 23 23

which implies

M* Y2t11e11) = M*H(2a11t11 4 2011t 1),
22 22

N

1
2

by Lemma 32. It follows that (c11 — (a11 + bi1))t
c11 = a1 + b1y, by (if'), in Theorem.

In both cases we conclude that ¢11 = a11 + b11.

(ii) By Lemma 4, we can infer that (ii) holds. O

11 = 0, which implies
22
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Lemma 34. For arbitrary ass, by € Ros, we have:

(i) M(azg + 522) = M(GQQ) + M(bgg),’
(i) M* (agy + baa) = M* " (age) + M*(baa).

Proof. The proof is similar to Lemma 33. L

Proof of main Theorem

Let a and b be two arbitrary elements of $R. Then

M(a+b) = M((G11+b11)+(a12+b12) (a1 1 +b§ 2)+(a21+b21)+(a22+622))
= M(a11 + b11) + M(a12 + b12) + M(a —i—b%)

+ M (a1 + ba1) + M (a2 + ba2)
= M(an) + M(bn) + M(alg) + M(bm) + M(CL%%)

+ M(b;;) + M(az21) + M (b21) + M (ag2) + M (ba2)
= M(all +a12+a1 1 “+ao1 + CLQQ) + M(bll +612+b1 1 +ba1 —l—bgg)
= M(a) + M(b).

@11
22

That is, M is additive. Now, for any z,y € R, there are elements ¢, d
in R such that ¢ = M*(x) + M*(y) and d = M*(xz + y). For arbitrary
ti; € Rj; (7 =1,2), using the additivity of M, we compute

M(tjjc+ ctjj) = M(tj;(M*(x) + M*(y)) + (M*(x) + M*(y))t;;)
= M(t;;M*(x)) + M(t;; M*(y))
+ M(M*(z)tj;) + M(M*(y)t;;)
= M(tij*( )+ M*(@)t;;) + M(t;; M*(y) + M*(y)t;;)

M (tj5)x + xM(t55) + M(tj5)y + yM (i)

M(tj5)(x +y) + (x +y) M(t;;)

M(tj; M*(z +y) + M*(z + y)t;;)

M (tjjd + dtjj).
Therefore, t;jc + ctj; = tj;d + dtj; (i,5 = 1,2). So ¢ =d, by (iv) (resp.,
(iii")), in Lemma 2. Consequently, M* (a? y) = M*(z) + M*(y), which

completes the proof. O
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The following two examples show that the conditions of the Theorem 1
are not artificial.

Example 1. Let § be a field of characteristic different from 2, J a
four dimensional algebra over § and a basis {e11, €12, €21, €22} with the
multiplication table given by: e;jen = djreq (i,j,k,l = 1,2), where
d;, is the Kronecker delta. We can verify that J is a standard algebra.
In fact, J is an associative algebra where e1; and esy are orthogonal
idempotents such that e = e1; + es9 is the unity element of J. Moreover,
if =311 DJ12 ® Jo1 D Joo is the Peirce decomposition of J, relative to
e11, then we have J;; = §e;; (4,7 = 1,2). From a direct calculation, we
can verify that J satisfies the conditions (i)—(v) of the Theorem 1.

Example 2. Let £ be the algebra obtained from the associative algebra J,
in Example 1, on replacing the product zy by z -y = 1(zy + yz). We
can verify that £ is a standard algebra. In fact, 8 is a Jordan algebra
where ej; and egy are orthogonal idempotents such that e = ej; + eas
is the unity element of K. Moreover, if R = K ¢ ﬁ% @ Ry is the Peirce
decomposition of K, relative to ej1, then we have K; = Fey (i = 1,2)
and ﬁ% = Feis + Feo1. From a direct calculation, we can verify that the
algebra R satisfies the conditions (i')—(iv’) of the Theorem 1.

We conclude with the following result.

Theorem 2. Let J and 3/ be two standard algebras. If J is a unital non-
degenerate prime standard algebra over a field of characteristic different
from 2 and 3 containing a non-trivial idempotent ey, then every surjective
Jordan elementary map (M, M*) of J X 3 is additive.

Proof. Let J =31 ®J1 ® J2 be the Peirce decomposition of J, relative to
er. If J is a prime stanéard algebra, then either J is an associative algebra
or a Jordan algebra, by [6, Theorem 1] and [7]. If J is associative, then
it is easy to verify that the conditions (i)—(v) of Theorem 1 hold in J. If
J is a Jordan algebra, then it is also easy to verify that the conditions
(7), (iit' ) and (i) ) of Theorem 1 hold in J. In addition, for an arbitrary
element a; € J1 such that alt% = 0, for every t% € 3%, and es = 1 — eq,
we have the Jordan triple product {a;Jes} = 0 which results in a; = 0, by
[1, Theorem 2]. Similarly, we prove that for an arbitrary element ay € Jo,
if agt: = 0 for every t1 € J1, then ag = 0. Thus, the condition (ii’) also
holdsZin J. Consequerftly, W2e can conclude that every surjective Jordan
elementary map (M, M*) of J x J' is additive. O
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