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Exponent matrices and Frobenius rings

M. A. Dokuchaev, M. V. Kasyanuk,

M. A. Khibina and V. V. Kirichenko

Abstract. We give a survey of results connecting the ex-
ponent matrices with Frobenius rings. In particular, we prove that
for any parmutation σ ∈ Sn there exists a countable set of inde-
composable Frobenius semidistributive rings Am with Nakayama
permutation σ.

1. Exponent matrices

Let Mn(B) be the ring of all n× n matrices over a ring B, a Z the
ring of integers.

An integer matrix E = (αij ∈ M(Z) is called an exponent matrix if

(a) αij + αjk > αik and αii = 0 for all i, j, k = 1, . . . , n;

a reduced exponent matrix if

(b) αij + αji > 0 for all i, j = 1, . . . , n; i 6= j.

Let

E(1) = (βij), where βij =

{

αij , if i 6= j
1, if i = j

and

E(2) = (γij), where γij = min
16k6n

(βik + βkj).
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Consider the matrix [Q] = E2 − E1 = (qij). Let βik + βkj (i 6= j) be
an integer. If k = i, then βii + βij = βii + αij = αij + 1.

Therefore min
16k6n

(βik + βkj) 6 αij + 1 and [Q] is (0, 1)-matrix and it is

the adjacency matrix of a simply laced quiver.

Definition 1.1. A reduced exponent matrix E = (αij) ∈ Mn(Z) is called
Gorenstein if there exists a permutation σ of {1, 2, . . . , n} such that αik +
αkσ(i) = αiσ(i) for i, k = 1, . . . , n.

The permutation σ is denoted by σ(E). Obviously, σ(E) has no cycles
of length 1.

Gorenstein matrices are closely related to the semiperfect semidis-
tributive rings A with non-zero Jacobson radical and inj.dimAAA = 1 [1].

Consider a reduced symmetric exponent matrix E = (αij) ∈ Mn(Z).
It means αij + αji > 0 for i 6= j, i.e., 2αij > 0 for i 6= j. Thus, all
nondiagonal elements of the reduced symmetric matrix are positive, and
it defines a finite metric space.

Definition 1.2. A metric space is a pair (M,d), where M is a set and
d : M ×M → [0,∞) is a metric, satisfying the following axioms:

(1) d(x, y) = 0, if and only if x = y;

(2) d(x, y) = d(y, x) for all x, y ∈ M ;

(3) d(x, y) + d(y, x) > d(x, z) for all x, y, z ∈ M .

If M is finite, then M is a finite metric space. Denote mij = d(i, j).
The matrix D(M) = (mij) ∈ Mn(R) is called the distance matrix of M .

Now we give the examples of Gorenstein matrices.

Example 1.1. The following exponent matrix

Tn,α =

























0 0 . . . . . . . . . 0
α 0 0 . . . . . . 0

α
. . .

. . .
. . .

...
...

. . .
. . .

. . .
. . .

...

α
. . . α 0 0

α . . . . . . α α 0

























is Gorenstein with σ(Tn,α) = (12 . . . n).
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Example 1.2. The Cayley table of the Klein four-group (2) × (2) can
be written in the following form:

K(4) =











0 1 2 3
1 0 3 2
2 3 0 1
3 2 1 0











.

K(4) is Gorenstein with σ(K(4)) = (14)(23).

Example 1.3. The Cayley table of the elementary Abelian n2-group
(2) × (2) × (2) is as following

K(8) =





























0 1 2 3 4 5 6 7
1 0 3 2 5 4 7 6
2 3 0 1 6 7 4 5
3 2 1 0 7 6 5 4
4 5 6 7 0 1 2 3
5 4 7 6 1 0 3 2
6 7 4 5 2 3 0 1
7 6 5 4 3 2 1 0





























.

K(8) is Gorenstein with σ(K(8)) = (18)(27)(36)(45).

The notion of a Latin square was introduced by L. Euler at the end
of the XVIII century (see [2] for details).

Definition 1.3. A Latin square Ln of order n is a square n× n matrix
of order n, such that its rows and columns are permutations of some set
S = {s1, . . . , sn}.

In what follows we shall take S = {0, 1, . . . , n− 1}. So, Ln = (αij),
where αij ∈ {0, 1, . . . , n− 1}.

We say that a Latin square of order n is normalized if its first row
is (0, 1, . . . , n− 1) and the first column is (0, 1, . . . , n− 1)T , where T (as
exponent index) means transposition. The normalized Latin squares are
also called “reduced Latin squares” or “Latin squares of standard form”.

We use the following notations:

Γ0 = (0), Γ1 =

(

0 1
1 0

)

, Γ2 =











0 1 2 3
1 0 3 2
2 3 0 1
3 2 1 0











,
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Un =













1 1 . . . 1
1 1 . . . 1
...

...
. . .

...
1 1 . . . 1













∈ Mn(Z), Xk−1 = 2k−1U2k−1 ;

Γk =

(

Γk−1 Γk−1 +Xk−1

Γk−1 +Xk−1 Γk−1

)

for k = 1, 2, . . . .

The matrix Γ1 =

(

0 1
1 0

)

is the Cayley table of the cyclic group G1

of order 2 and is a Gorenstein matrix with permutation σ(Γ1) = (12).

Proposition 1.4 ([3, §7.6]). Γk is an exponent matrix for any natural
number k.

Proposition 1.5 ([3, §7.6]). Γk is the Cayley table of the elementary
Abelian group Gk of order 2k.

Proposition 1.6 ([3, §7.6]). The matrix Γk is Gorenstein with permuta-
tion

σ(Γk) =

(

1 2 3 . . . 2k − 1 2k

2k 2k − 1 2k − 2 . . . 2 1

)

.

Theorem 1.7 ([4] and [3, §7.6]). Suppose that a Latin square Ln with
first row and first column (0 1 . . . n − 1) is an exponent matrix. Then
n = 2k and Ln = Γk is the Cayley table of the direct product of k copies
of the cyclic group of order 2.

Conversely, the Cayley table Γk of the elementary Abelian group

Gk = Z/(2) × . . .× Z/(2) = (2) × . . .× (2)

(k factors) of order 2k is a Latin square and a Gorenstein symmetric
matrix with the first row (0, 1, . . . , 2k − 1) and permutation

σ(Γk) =

(

1 2 3 . . . 2k − 1 2k

2k 2k − 1 2k − 2 . . . 2 1

)

.

Now we consider the case when a Latin square Ln with first row and
first column (0 1 . . . n − 1) is a distance matrix D = D(M) of a finite
metric space M = {m1, . . . ,mn}. Obviously, if Ln = D(M) then Ln is an
exponent matrix. So we obtain the following theorem.
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Theorem 1.8. Suppose that a Latin square Ln with first row and first
column (0, 1, . . . , n−1) is a distance matrix D = D(M) of a finite metric
space M = {m1, . . . ,mn}. Then n = 2k and Ln = Γk is the Cayley table
of the direct product of k copies of the cyclic group of order 2.

Conversely, the Cayley table Γk of the elementary Abelian group

Gk = Z/(2) × . . .× Z/(2) = (2) × . . .× (2)

(k factors) of order 2k is a Latin square and the distance matrix D = D(M)
of a finite metric space with 2k elements.

2. Semiperfect rings

Recall that a ring A is called local, if it has a unique maximal right
ideal M.

An idempotent e ∈ A is called local if the ring eAe is local. Clearly,
a local idempotent is always a primitive idempotent. We shall say that
idempotents can be lifted modulo an ideal I of a ring A if from the fact
that g2 − g ∈ I, where g ∈ A, it follows that there exists an idempotent
e2 = e ∈ A such that e− g ∈ I (or that the same g − e ∈ I).

Show that in a local ring an idempotents can be lifted modulo a unique
maximal ideal R. Consider g2 − g ∈ R. So g(g − 1) ∈ R. If g ∈ R, then
g − 0 = g ∈ R. If g 6∈ R, then g − 1 ∈ R.

Proposition 2.1. Idempotents can be lifted modulo any nil-ideal I of a
ring A.

Proof. Let g2 − g ∈ I. Set r = g2 − g, g1 = g + r − 2gr. Obviously,
rg = g3 − g2 = g(g2 − g) = gr. Calculating g2

1 − g1, we obtain g2
1 = (g +

r−2gr)2 = (g+r)2+4g2r2−4gr(g+r) = g2+2gr+r2+4g2r2−4g2r−4gr2.
Therefore, g2

1 − g1 = 2gr+ r2 + 4g2r2 − 4g2r− 4gr2 + 2gr = r2 + 4g2r2 +
4gr − 4g2r − 4gr3 = r2 − 4r3 − 4r2 = r2(4r − 3).

Let r1 = r2(4r − 3) ∈ I and g1 = g1 + r1 − 2g1r1. We obtain that
r2 = g2

2 − g2 = r2
1(4r1 − 3), i.e., in the expression of r2 the element r4

enters a factor. Since rk = 0 for some integer k > 0, we obtain that
rn = 0 for some n, i.e., g2

n = gn. We have that g1 −g ∈ I and gi −gi−1 ∈ I
for i = 1, 2, . . . , n and we obtain gn = e is idempotent and g − e ∈ I

Theorem 2.2 (Hopkins-Levitsky Theorem). The Jacobson radical R of
a right Artinian ring A is nilpotent [5], [6].

Therefore, any right Artinian ring is semiperfect.
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Lemma 2.3. Let a ring A have two decompositions into a direct sum
of right ideals: A = e1A ⊕ . . . ⊕ enA = f1A ⊕ . . . ⊕ fnA (where 1 =
e1 + . . .+en = f1 + . . .+fn are two decompositions of 1 ∈ A into a sum of
pairwise orthogonal idempotents), and suppose eiA ≃ fiA (i = 1, . . . , n),
after renumbering if necessary. Then there is an invertible element a ∈ A
such that fi = aeia

−1.

Proof. Let ϕ : eiA → fiA be the isomorphism. Then ϕ(eia) = ϕ(ei)a
and ϕ(ei) = ϕ(e2

i ) = ϕ(ei)ei. We have ϕ(ei) = fia. So ϕ(ei) = fiaei

and endomorphism ϕ is realized by multiplication on the left side by
element ai = fiaei. Then fiai = aiei = ai. Consider the elements bi ∈
eiafi realizing the inverse isomorphisms. We set b = b1 + . . . + bn and
a = a1 + . . .+an. Obviously, eib = bi = bfi. Moreover, aibi = fi, biai = ei.

Clearly, ab =
n
∑

i=1
aibi =

n
∑

i=1
fi = 1 and ba =

n
∑

i=1
biai =

n
∑

i=1
ei = 1, i.e.,

b = a−1. Since aei = fia, we have fi = aeia
−1.

We will use the following notations and definitions.
Let M be a module over a ring A with the Jacobson radical R. Denote

by rad M the intersection of all its maximal submodules. By convention,
if M does not have maximal submodules we define radM = M . This
submodule is called the radical of the module M .

Recall that a right ideal M in a ring A is called maximal in A if there
is no right ideal J , different from M and A such that M ⊂ I ⊂ A. In
nonzero ring with identity always there exist maximal proper right ideals.

The following proposition is often useful.

Proposition 2.4. Let M be a right A-module, and let R be the Jacobson
radical of the ring A. Then MR ⊂ radM .

Theorem 2.5. A ring A is semiperfect if and only if it can be decomposed
into a direct sum of right ideals each of which has exactly one maximal
submodule.

Proof. Let Ā = A/R = ē1Ā⊕ . . .⊕ ēnĀ be a decomposition of Ā into a
direct sum of a simple Ā-modules. Write ēiĀ = Ui. Since A is semiperfect,
for each idempotent ēi there is an idempotent ei such that ei +R = ēi.
Let Pi = eiA. Obviously, PiR = eiAR ⊂ R. Therefore Pi ∩ R = PiR
Consequently, Pi +R/R ≃ Pi/PiR ≃ Ui and every module Pi has exactly

one maximal submodule PiR. Let P =
n
⊕

i=1
Pi. Obviously, there is an

epimorphism ϕ : P → Ā. Denote by π the natural projection A → Ā. Since
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the module P is projective, there exists a homomorphism ψ : P → A such
that πψ = ϕ. Obviously, Imψ+R = A. By Nakayama’s lemma Imψ = A.
Since the module A is projective, we have P ≃ Imψ⊕Kerψ = A⊕Kerψ.
We want show that X = Kerψ = 0. Consider P/PR. Then P/PR ≃ Ā
and, on the other hand P/PR = Ā ⊕ X/XR. By the Krull-Schmidt
theorem for semisimple modules we obtain that the module X/XR is
equals to zero. By Nakayama’s lemma X = 0, i.e., X is finitely generated
as the image P . Therefore Kerψ = 0 and A decomposes into a direct sum
of right ideals ψ(eiA), each of which has exactly one maximal submodule.

Conversely, let AA = P1 ⊕ . . . ⊕ Pn be a decomposition of right
regular A-module A into a direct sum of right A-modules, each of which
has exactly one maximal submodule radPi (i = 1, . . . , n). Consequently,
R = radP1 ⊕ . . .⊕ radPn and Ā = A/R is a right semisimple ring. Let
1 = f1+. . .+fn be a decomposition of the identity of the ring A into a sum
of pairwise orthogonal idempotents such that Pi = fiA (i = 1, . . . , n).

We shall show that for any idempotent ē2 = ē ∈ Ā there is an idem-
potent e ∈ A such that e + R = ē. The right ideal ēĀ is semisimple
as Ā-submodule of the semisimple module Ā. Therefore there is a de-
composition of 1̄ ∈ A into a sum of pairwise orthogonal idempotents
1̄ = ē1 + . . .+ ēs + . . .+ ēn such that ē = ē1 + . . .+ ēs and all modules ēiĀ
are simple. On the other hand, let 1̄ = f̄1 + . . .+ f̄n be a decomposition
of 1̄ ∈ Ā into a sum of pairwise orthogonal idempotents such that the
modules f̄iĀ are simple. By Krull-Schmidt theorem for semisimple mod-
ules for an an appropriate renumeration we have ēiĀ ≃ f̄iĀ (i = 1, . . . , n).
By lemma 2.3 there exists an element ā ∈ Ā such that ēi = ā−1f̄iā
(i = 1, . . . , n). Let ā be the image of a and ā−1 be the image of b = a−1.
Obviously, ab = 1 + r, where r ∈ R. Since (1 + r)x = 1 we have x = 1− r1,
where r1 ∈ R. Therefore, b(1 − r1) = bx = 1. So, bx = a−1. bx = b− br1

and the image of the element a−1 under the epimorphism π coincides
with ā−1. Then π(e) =

∑

π(a−1fia) =
∑

ā−1f̄iā = ē. The theorem is
proved.

Theorem 2.6 (B. J. Mueller). A ring A is semiperfect if and only if
1 ∈ A can be decomposed into a sum of a finite number of pairwise
orthogonal local idempotents.

Proof. Let a ring A be semiperfect. By previous theorem A = e1A⊕ . . .⊕
enA, where e1, . . . , en are idempotents and each right ideal Pi = eiA (i =
1, . . . , n) has exactly one maximal submodule. Then Hom(Pi, Pi) ≃ eiAei

and for any ψ : Pi → Pi either Imψ = Pi or Imψ ⊂ PiR. In the first
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case, since Imψ ≃ Pi is projective we have Pi ≃ Imψ ⊕ Ker ψ, which
implies Ker psi = 0 and so ψ is an automorphism. In the second case, ψ
is noninvertible element and, obviously, all noninvertible elements form
an ideal. Therefore, the ring eiAei is local for i = 1, . . . , n.

Conversely, let π : A → Ā be the natural projection of the ring A
on the ring Ā = A/R. (R is the Jacobson radical of the ring A). Let
π(a) = ā and e be a local idempotent of the ring A. We shall show that
the module π(eA) = ēĀ is simple. We may consider that the ring A is
not local (a local ring is semiperfect). Consider (1̄ − ē)Ā. Since it is a
proper right ideal in the ring Ā, it is contained in a maximal right ideal
Ĩ of the ring Ā. We shall show that ēĀ ∩ Ĩ = 0. If (ēĀ ∩ Ĩ) 6= 0, then
(ēĀ∩ Ĩ)2 6= 0. The ring A/R is semiprimitive ring and therefore it has no
nilpotent right ideals. Then there is an element ēā ∈ Ĩ and ēāēā 6= 0. So
ēāē 6= 0. Since eAe is a local ring and rad (eAe) = eRe, we conclude that
the ring ēĀē is a division ring. Therefore, there is an element ēx̄ē ∈ ēĀē
such that ēāēx̄ē = ē and ē ∈ Ĩ. Thus 1̄ ∈ Ĩ, a contradiction. We obtain,
that ēĀ ∩ Ĩ = 0 and Ā = ēĀ⊕ Ĩ. Since Ĩ is the maximal ideal in the ring
A, the module ēĀ is simple. The theorem is proved.

3. Distributive modules

Recall that a module M is called distributive if for all submodules
K,L,N of M we have K∩(L+N) = K∩L+K∩N . Clearly, a submodule
and a quotient module of a distributive module is distributive. A module
is called semidistributive if it is a direct sum of distributive modules.
A ring A is called right (left) semidistributive if the right (left) regular
module AA (AA) is semidistributive. A right and left semidistributive
ring is called semidistributive. Obviously, every uniserial module is a
distributive module and every serial module is a semidistributive module.

Example 3.1. Let D be a division ring and

A =

















d11 d12 d13

0 d22 0
0 0 d33






| dij ∈ D











.

Obviously, A is the semidistributive ring, which is left serial, but not right
serial.

We write SPSD-ring for semiperfect semidistributive ring.
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4. Semiprime right Noetherian SPSD-rings

Definition 4.1. A ring A is called semimaximal if it is a semiperfect
semiprime right Noetherian ring such that for each local idempotent e ∈ A
the ring eAe is a discrete valuation ring (not necessary commutative),
i.e., all principal endomorphism rings of A are discrete valuation rings.

The following is a decomposition theorem for semiprime right Noethe-
rian SPSD-rings.

Theorem 4.2. The following conditions for a semiperfect semiprime
right Noettherian ring A are equivalent:

(a) the ring A is semidistributive;

(b) the ring A is a direct product of a semisimple Artinian ring and a
semimaximal rings.

Theorem 4.3. Each semimaximal ring is isomorphic to a finite direct
product of prime rings of the following form:

A =











O πα12O . . . πα1nO
πα21O O . . . πα2nO
. . . . . . . . . . . .

παn1O παn2O . . . O











,

where n > 1, O is a discrete valuation ring with a prime element π, and
the αij are integers such that αij + αjk > αik for all i, j, k (αii = 0 for
any i).

Definition 4.4. A ring A is called a tiled order if it is a prime Noetherian
SPSD-ring with nonzero Jacobson radical.

Our definition of a tiled order is a generalization of the definition
of a tiled order over a discrete valuation ring in the sense V. A. Jate-
gaonkar [7], [8].

We’ll use the following notation A = {O, E(A)}, where E(A) = (αij) is

the exponent matrix of a ring A, i.e., A =
n
∑

i,j=1
eijπ

αij O, where the eij are

the matrix units. If a tiled order A is reduced, i.e., A/R is a direct product
of division rings, then the matrix E(A) also reduced, i.e., αij + αji > 0
for i, j = 1, . . . , n (i 6= j).
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It is well-known the following proposition.

Proposition 4.5 ([9, vol II, proposition 22.1.A]). Let P be nonzero
projective A-module and radA be the Jacobson radical of A. Then radP =
PradA 6= P .

Using this proposition and Muller’s theorem, we obtain the description
of projective modules over a semiperfect ring.

Theorem 4.6. Any indecomposable projective module over a semiper-
fect ring A is finitely generated, and has exactly one maximal submodule.
There is one-to-one correspondence between pairwise nonisomorphic in-
decomposable projective A-modules P1, . . . , Ps and mutually nonisomor-
phic simple A-modules? which are given by the following correspondence:
Pi → Pi/PiR = Ui and Ui → P (Ui).

Remark. A submodule N of a module M is called small if the equality
N +X = M implies X = M for any submodule X of M .

A projective module P is called a projective cover of M and it is
denoted by P (M) if there is an epimorphism ϕ : P → M such that Ker ϕ
is a small submodule in P . The following is a method of constructing
a projective cover for an arbitrary finitely generated module M over a
semiperfect ring A. Let M - be a finitely generated A-module. Clearly,
M/MR is a module over the semisimple Artinian ring Ā = A/R. Therefore

M/MR ≃
s
⊕

j=1
U

mj

j , where U1, . . . , Us are mutually nonisomrphic simple

Ā-modules. Lifting the idempotents we obtain that Uj = ejA/ejR, where
e2

j = ej . Denote Pj = ejA. Then the projective cover P (M) of M is

P (M) =
s
⊕

j=1
P

mj

j .

5. Quiver of a semiperfect ring

Let AA = Pn1

1 ⊕ . . . ⊕ Pns
s be the decomposition of a semiperfect

ring A into a direct sum of pairwise nonisomorphic indecomposable
projectives. Let P = P1 ⊕ . . . ⊕ Ps and B = EndA P . By the Morita
theorem, the category of right A-modules is equivalent to the category
of right B-modules. Obviously, B/radB is a direct product of division
rings. The ring B is called the basic ring of the ring A.

Let A be a semiperfect right Noetherian ring and AA = Pn1

1 ⊕. . .⊕Pns
s

be the decomposition A as above. Let PiR is the unique maximal
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submodule of Pi. Consider the projective cover P (PiR) of PiR. Let

P (PiR) =
s
⊕

j=1
P

tij

j (i = 1, . . . , s). We assign to the modules P1, . . . , Ps

points 1, . . . , s on the plane and join point i with j by tij arrows. The
so constructed graph is called the right quiver of the semiperfect right
Noetherian ring A and will be denoted by Q(A).

Analogously, one can define the left quiver Q′(A) of a left Noetherian
semiperfect ring.

Note, that the quiver of a semiperfect right Noetherian ring does not
change by switching to its basic ring and Q(A) = Q(A/R2).

Definition 5.1. Let A be a semiperfect ring such that A/R2 is a right
Artinian ring. The quiver of the ring A/R2 is the quiver of the ring A
and is denoted by Q(A).

The following proposition gives the description of the Jacobson radical
of semiperfect ring A (see [10, Chapter 11]).

Proposition 5.2. Let A = Pn1

1 ⊕ ... ⊕ Pns
s be the decomposition of a

semiperfect ring A into a direct sum of principal right A-modules and let
1 = f1 + ... + fs be a corresponding decomposition of the identity of A
into a sum of pairwise orthogonal idempotents, i.e., fiA = Pni

i . Then the
Jacobson radical of the ring A has a two-sided Peirce decomposition of
the following form:

R =













R11 A12 . . . A1n

A21 R22 . . . A2n

...
...

. . .
...

An1 An2 . . . Rnn













,

where Rii = rad(fiAfi), Aij = fiAfj for i, j = 1, ..., n.

Lemma 5.3 (Annihilation lemma). Let 1 = f1 + . . .+ fs be a canonical
decomposition of 1 ∈ A. For every simple right A-module Ui and for each
fj we have Uifj = δijUi, i, j = 1, . . . , s. Similarly, for every simple left
A-module Vi and for each fj , fjVi = δijVi, i, j = 1, . . . , s.

Lemma 5.4 (Q-Lemma). The simple module Uk (resp. Vk) appears in the
direct sum decomposition of the module eiR/eiR

2 (resp. Rei/R
2ei) if and

only if eiR
2ek (resp. ekR

2ei) is strictly contained in eiRek (resp. ekRei).
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6. Quasi-Frobenius rings

Definition 6.1. Let M be a right A-module. The socle of M (socM)
is the sum of all simple right submodules of M . If there are no such
submodules, then SocM = 0.

If M = AA, then socAA is the sum of all minimal right ideals of A and
it is a right ideal ofA. If J a minimal right ideal in A, then for any x ∈ A ei-
ther xJ = 0 or xJ is a minimal right ideal in A. Therefore, socAA is a two-
sided ideal in A. Analogously we can consider socAA. However socAA 6=

socAA in general. Let A = T2(k) =

{(

α β
0 γ

)

| α, β, γ ∈ k

}

, where k is

a field. Obviously, socAA =

{(

0 β
0 γ

)}

and socAA =

{(

α β
0 0

)}

. For

semisimple module M we have socM = M .

Let A be an Artinian ring and AA = Pn1

1 ⊕ . . . ⊕ Pns
s (resp. AA =

Qn1

1 ⊕ . . .⊕Qns
s ) be the canonical decomposition of A into a direct product

of right (left) principal modules.

Let M be a right A-module and N be a left A-module. We set topM =
M/MR and topN = N/RN . Now we give a definition of a Nakayama
permutation.

Definition 6.2. We say that a two-sided Artinian ring A admits a
Nakayama permutation ν(A) : i → ν(i) of {1, . . . , s} if the following
conditions are satisfied

(1) soc Pk = top Pν(k)

(2) socQν(k) = topQk

Definition 6.3. A two-sided Artinian ring A is called quasi-Frobenius, if
A admits a Nakayama permutation ν(A) of {1, . . . , s}. A quasi-Frobenius
ring is called Frobenius if nν(i) = ni for all i = 1, . . . , s.

The following theorem is a variant of the Morita theorem for semiper-
fect rings.

Theorem 6.4. Let A be a semiperfect ring and AA = Pn1

1 ⊕ . . . ⊕ Pns
s

be a decomposition of AA into a direct sum of pairwise nonisomorphic
sight ideals. Let B = End (P1 ⊕ . . .⊕ Ps) be the ring of endomorphisms
of the module P = P1 + . . .+ Ps. Then the categories of A-modules and
B-modules are equivalent.
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Denote by radB the Jacobson radical of the ring B. Obviously,
B/radB is a direct product of skew-fields. The ring B is called a basic
ring of the ring A. If a ring A is quasi-Frobenius, B is Frobenius.

Definition 6.5. An indecomposable projective right module over a semi-
perfect ring A is called principal right module. Analogously, a principal
left module can be defined.

7. Examples

7.1.

Definition 7.1. An A-lattice M is said to be relatively injective if
M ≃A P ∗, where AP is a finitely generated projective left A-module. An
A-lattice M is called completely decomposable if it is a direct sum of
irreducible A-lattices.

Denote by ∆ the completely decomposable left A-lattice A∗

A.

Let A = {O, E(A)}, where E(A) = (αij) be a reduced exponent matrix.

Let

E(A) =











0 α12 . . . α1n

α21 0 . . . α2n

. . . . . . . . . . . .
αn1 αn2 . . . 0











.

Lemma 7.2. A completely decomposable left A-lattice ∆ is complete
decomposable right A-lattice, and

E(∆) =













0 −α21 . . . −αn1

−α12 0 . . . −αn2
...

...
. . .

...
−α1n −α2n . . . 0













.

Let us show that the k-th row (−α1k,−α2k, . . . ,−αnk) of the matrix
E(∆) defines an irreducible right A-lattice. Let βi = −αik. We can rewrite
the inequality αij + αjk > αik in the form −αik + αij > −αjk, i.e.,
βi + αij > βj , which implies the assertion of the lemma.

Corollary 7.3. A fractional ideal ∆ is a relatively injective right and a
relatively injective left A-lattice.



Dokuchaev, Kasyanuk, Khibina, Kirichenko 199

Let A be a reduced tiled order and R = radA. Then

E(R) =













1 α12 . . . α1n

α21 1 . . . α2n

...
...

. . .
...

αn1 αn2 . . . 1













and

E(R∗

A) = E(AR
∗) =













−1 −α12 . . . −α1n

−α21 −1 − . . . −α2n

...
...

. . .
...

−αn1 −αn2 − . . . 1













write X =A R∗, ∆ = (AA)∗.
It is true the following lemma.

Lemma 7.4. For i = 1, . . . , n we have that eiiX(Xeii) is the unique
minimal overmodule of eiiA(∆eii) and eiiX/eii∆ = Ui, Xeii/∆eii = Vi,
where Ui is simple right A-module and Vi is a simple left A-module.

Lemma 7.5. Every relatively injective irreducible A-lattice Q has only
one minimal overmodule. Let Q1 and Q2 be relatively injective irreducible
A-lattices and let X1 ⊃ Q and X2 ⊃ Q2 be the unique minimal overmod-
ules of Q1 and Q2 respectively. Then the simple A-modules X1/Q1 and
X2/Q2 are isomorphic if and only if Q1 ≃ Q2.

Proposition 7.6. An irreducible A-lattice is relatively injective if and
only if it has exactly one minimal overmodule.

Consider the tiled order

Hn(O) =











O O . . . O
πO O . . . O
. . . . . . . . . . . .
πO πO . . . O











,

i.e., H = Hn(O) = {O, E(Hn(O))}, where

E(Hn(O)) =











0 0 . . . 0
1 0 . . . 0
. . . . . . . . . . . .
1 1 . . . 0











,
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i.e., αij = 0 for i 6 j and αij = 1 for i > j; i, j = 1, . . . , n.
Let ∆ = H∗

H . Obviously,

E(∆) =













0 −1 . . . −1
0 0 . . . −1
...

...
. . .

...
0 0 . . . 0













.

Let Mn(Z) be the ring of n × n-matrices over the ring of integers

Z. Let Un =







1 . . . 1
...

. . .
...

1 . . . 1






∈ Mn(Z) and all elements of Un are 1 ∈ Z.

Consider

E(∆) + Un =













1 0 . . . 0
1 1 . . . 0
...

...
. . .

...
1 1 . . . 1













.

Obviously, E(∆) + Un is the serial ring with the quiver

Q =















1 2 n− 1 n
• // • // . . . // • // •
OO















The quiver Q is the simple cycle (1 2 . . . n) and the adjacency matrix
[Q] is the permutation matrix which corresponds to the simple cycle
(1 2 . . . n). Obviously, (1 2 . . . n) = σ−2, where σ is the permutation for
Gorenstein matrix E(Hn(O)). Moreover, the quotient ring Hn/R

2 is the
Frobenius ring with Nakayama permutation ν = (1 2 . . . n) (the simple
cycle σ−1).

7.2.

Let O be a discrete valuation ring with the unique maximal ideal
M = πO = Oπ and let

Kn = Kn(O) =















O M . . . M M

M O . . . M M

. . . . . . . . . . . . . . .

. . . . . . . . . O M

M M . . . M O














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be a tiled order. Obviously,

En = E(KnK
∗

n) = E(Kn
∗

Kn
) =















0 −1 . . . −1 −1
−1 0 . . . −1 −1
. . . . . . . . . . . .
−1 −1 . . . 0 −1
−1 −1 . . . −1 0















and

Un + En =















1 0 . . . 0 0
0 1 . . . 0 0
. . . . . . . . . . . .
0 0 . . . 1 0
0 0 . . . 0 1















.

Denote ei = (0, . . . 0, 1, 0, . . . 0) (1 is on the i-th place). By lemmas 7.4
and 7.5 irreducible A-lattices Qi with O-basis (O,O, . . . ,O, πO,O, . . . ,O)
(πO is on the i-th place) are relatively injective and has exactly one
minimal overmodule (O,O, . . . ,O,O,O, . . . ,O). Let σ : i → σ(i) be a
permutation of {1, 2, . . . , n}. Denote by In,m = (Mmij ) the two-sided
ideal of Kn(O), where wiσ(i) = m+ 1, wij = m, j 6= σ(i), i, j = 1, . . . , n.

Obviously, Im,n is relatively injective right and left A-lattice and
Nakayama permutation of Frobenius quotient ring Kn(O)/Im,n coincides
with σ.
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