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Abstract. Let K be an algebraically closed field of char-
acteristic zero and K[x, y] the polynomial ring. Every element
f ∈ K[x, y] determines the Jacobian derivation Df of K[x, y] by the
rule Df (h) = detJ(f, h), where J(f, h) is the Jacobian matrix of the
polynomials f and h. A polynomial f is called weakly semisimple if
there exists a polynomial g such that Df (g) = λg for some nonzero
λ ∈ K. Ten years ago, Y. Stein posed a problem of describing all
weakly semisimple polynomials (such a description would character-
ize all two dimensional nonabelian subalgebras of the Lie algebra
of all derivations of K[x, y] with zero divergence). We give such a
description for polynomials f with the separated variables, i.e. which
are of the form: f(x, y) = f1(x)f2(y) for some f1(t), f2(t) ∈ K[t].

Introduction

Let K be an algebraically closed field of characteristic zero and K[x, y]
the polynomial ring. For any polynomials f, g ∈ K[x, y] let us denote
[f, g] = detJ(f, g), where detJ(f, g) is their Jacobian matrix. The vector
K-space K[x, y] with operation (f, g) → [f, g] is a Lie algebra over K. The
center of this algebra coincides with K, the quotient algebra K[x, y]/K
is isomorphic to the Lie algebra sa2(K) of all derivations of K[x, y] with
zero divergence (see, for example, [2]). For a fixed polynomial f, the linear
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derivation.
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operator Df on K[x, y] defined by the rule Df (h) = [f, h] is a K-derivation
of the ring K[x, y]. The derivation Df is called the Jacobian derivation.

In [7], a polynomial f ∈ K[x, y] was called weakly semisimple if there
exists a polynomial g such that Df (g) = λg for a nonzero λ ∈ K, the
polynomial g here is an eigenfunction for f with respect to λ. The latter
means that every weakly semisimple polynomial f induces the Jacobian
derivation Df which can be included in a two-dimensional nonabelian
subalgebra Lf =< Df > ⋌ < Dg > of the Lie algebra sa2(K). The
structure of two-dimensional (abelian and nonabelian) subalgebras of
the Lie algebra sa2(K) is very important for better understanding the
structure of subalgebras of sa2(K), and it is closely connected with the
jacobian conjecture for n = 2.

In [7], some properties of weakly semisimple polynomials were pointed
out and a question was asked about their description. We give a description
of weakly semisimple polynomials f with separated variables, i.e. of the
form f(x, y) = f1(x)f2(y).

We use standard notations. Let us remind that a polynomial f ∈
K[x, y] is called closed if there exist no polynomials F (t) ∈ K[t] and
g(x, y) ∈ K[x, y] such that degF (t) > 2, and that f(x, y) = F (g(x, y)).
The polynomial f has a Jacobian mate g if [f, g] = 1. If D is a derivation
of K[x, y] and D(f) = hf for some h ∈ K[x, y], then f will be called a
Darboux polynomial for D and h its cofactor.

1. Preliminaries

We will often use the next statements which can be found in [7].

Lemma 1. Let f, g ∈ K[x, y] be such polynomials that g is irreducible
and [f, g] = hg for some h ∈ K[x, y]. Then there exists c ∈ K such that g
divides the polynomial f − c.

The first statement of the next lemma summarizes Proposition 2.1
from [7]

Lemma 2. Let f ∈ K[x, y] be a polynomial such that there exist a poly-
nomial g ∈ K[x, y], g 6= 0 and λ ∈ K

⋆ with Dn
f (g) = λg for some n > 1.

Then:

1) f is a closed polynomial;

2) the polynomial f − c is square-free for any c ∈ K, i.e f − c is not
divisible by square of any irreducible polynomial.
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Proof. 1) Let on the contrary f = F (h) for some F (t) ∈ K[t], degF > 2
and h ∈ K[x, y]. Then

Df (g) = [F (h), g] = F ′(h)[h, g] = F ′(h)Dh(g).

Analogously we get the next relation

D2
f (g) = Df (F ′(h)Dh(g)) = [F (h), F ′(h)Dh(g)] =

= F ′(h)[F (h), Dh(g)] = F ′(h)2D2
h(g).

Using induction on k one can easily show that Dk
f (g) = F ′(h)kDk

h(g).
By the conditions of this lemma

Dn
f (g) = F ′(h)nDn

h(g) = λg (1)

Write g as g = F ′(h)m · u, where m > n by (1) and the polynomial u
is not divisible by any nonconstant polynomial of h. Then

Dh(g) = [h, F ′(h)mu] = F ′(h)m[h, u] = F ′(h)mDh(u).

Using induction on k it is easily to show that Dk
h(g) = F ′(h)mDk

h(u).
Inserting the last equality in (1) we obtain

Dn
f (g) = F ′(h)nDn

h(g) = F ′(h)nF ′(h)mDn
h(u) = λg.

But g = F ′(h)mu and therefore F ′(h)m+nDh(u) = λF ′(h)mu
The last equality shows that u divides on F ′(h) which contradicts to our
choice of the polynomial u. The obtained contradiction proves that f is a
closed polynomial.

2) Let on the contrary c ∈ K be such an element that we have equality
f − c = wkf1, where w, f1 ∈ K[x, y], k > 2 and f1 is not divisible by w.
Write g = wmg1, where m > 0, g1 ∈ K[x, y] and g1 is not divisible by w.
Then

Df (g) = [f, g] = [f − c, g] = [wkf1, wmg1] = wk[f1, wmg1] + f1[wk, wmg1]

= wk+m[f1, g1] + wkg1mwm−1[f1, w] + f1wmkwk−1[w, g1] = wk+m−1t1

for some t1 ∈ K[x, y]. Thus, Df (g) = wk+m−1t1.
Using induction on i it is easily to show that Di

f (g) = wm+ki−1ti for
some ti ∈ K[x, y], i = 2, 3, . . . . But then for i = n we obtain Dn

f (g) =

wm+kn−1tn = λwmg1. From here, it follows that λg1 = wkn−1tn which
is impossible since k > 2 and g1 is not divisible by w because of choice
g1. This contradiction shows that f − c is not divisible by square of any
irreducible polynomial.
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Corollary 1. If f = f1(x)f2(y) is a weakly semisimple polynomial then
the polynomials f1(t), f2(t) ∈ K[t] have no multiple roots.

Proof. Since [f, g] = g then putting in Lemma 2 n = 1 and c = 0 we have
that f(x, y) = f1(x)f2(y) is not divisible by square of any irreducible
polynomial. The latter means that f1(t) and f2(t) do not have multiple
roots.

Lemma 3 (see [3]). Let f(x, y) =
n
∏

i=1
li(x, y)ri be a product of linear poly-

nomials li(x, y), i = 1, . . . , n. Assume that n > 2 and the lines l1(x, y) = 0
and l2(x, y) = 0 do intersect. If gcd(r1, . . . , rn) = 1 then f(x, y) is a closed
polynomial and the polynomial f(x, y) + c is irreducible for any c ∈ K

⋆.

Corollary 2. Let p(x) ∈ K[x] and q(y) ∈ K[y] be nonconstant polynomials
such that p(x) has no multiple roots. Then the polynomial p(x)q(y) + c is
irreducible for any c ∈ K

⋆.

Lemma 4. (see, for instance [1]). Let D be a derivation of the polynomial
ring K[x, y] and g a Darboux polynomial for D. Then any divisor of g
is a Darboux polynomial for D. If f1, f2 are Darboux polynomials for D
with cofactors h1 and h2 respectively, then f1f2 is a Darboux polynomial
for D with the cofactor h1 + h2.

2. Weakly semisimple polynomials of the form f1(x)f2(y)

In this section we give a description of all weakly semisimple poly-
nomials f ∈ K[x, y] of the form f(x, y) = f1(x)f2(y) (that is with sep-
arated variables) and their eigenfunctions g(x, y) ∈ K[x, y] such that
[f, g] = λg, λ ∈ K

⋆. In fact, we can assume that λ = 1 because in other
case we can consider λ−1f instead of f . So, we will consider only the case
[f, g] = g.

Lemma 5. Let a polynomial g = g(x, y) satisfies the relation [f, g] = g,
where f(x, y) = f1(x)f2(y) ∈ K[x, y]. Then the only irreducible factors
of the polynomial g(x, y) are the polynomials of the form δ(f(x, y) + c)
with δ, c ∈ K

⋆ or β(x − c1), γ(y − c2) with β, γ ∈ K
⋆ and c1, c2 satisfying

f1(c1) = 0, f2(c2) = 0.

Proof. Let h be an irreducible factor of g. By Lemma 4 h is a Darboux
polynomial for Df , i.e. [f, h] = hu, u ∈ K[x, y], so by Lemma 1 there
exists c ∈ K such that f −c is divisible by h. If c 6= 0, then the polynomial
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f − c is irreducible by Lemma 3 and therefore h = (f + c)δ for some
δ ∈ K

⋆. Let c = 0. As h is irreducible and divides f(x, y) = f1(x)f2(y),
then h is linear of the form β(x − c1) or γ(y − c2).

Lemma 6. Let f(x, y) = f1(x)f2(y) and g = g(x, y) be polynomials from
K[x, y] satisfying the relation [f, g] = g. Then g = F (f)g1g2, where F (t) ∈
K[t] and g1 = g1(x), g2 = g2(y) satisfying the equality [f, g1g2] = g1g2.

Proof. Write the polynomial g as a product g = hk1

1 · · · hks

s of powers
of irreducible polynomials h1, . . . , hs. By Lemma 5 the polynomial hi

is either of the form hi = δi(f + ci) for δi ∈ K
∗, ci ∈ K or of the form

hi = αi(x − di), or hi = βi(y − ri) for αi, βi ∈ K
∗. The elements di, ri ∈ K

are such that f1(di) = 0, f2(ri) = 0. Denote by F (f) the product of all
irreducible divisors of the polynomial g which are of the form δi(f + ci)
(this is a polynomial of f). Group other irreducible divisors of g and write
their product in the form g1(x)g2(y). Then

[f, F (f)g1g2] = F (f)[f, g1g2] = F (f)g1g2.

From this it follows the equality [f, g1g2] = g1g2.

Thus the problem of finding polynomials f and g satisfying the relation
[f, g] = g, is reduced to searching polynomials f1(x)f2(y), g1(x)g2(y) with
separated variables such that

[f1(x)f2(y), g1(x)g2(y)] = g1(x)g2(y).

We have from the last relation that

[f1f2, g1g2] = f1[f2, g1g2] + f2[f1, g1g2] = f1g2[f2, g1] + f2g1[f1, g2]. (2)

Further, notice that [f2, g1] =

∣

∣

∣

∣

∣

0 ∂f2

∂y
∂g1

∂x
0

∣

∣

∣

∣

∣

= −f ′

2g′

1 and analogously

[f1, g2] = f ′

1g′

2 (we omit here signs of variables while differentiating).
Therefore we obtain from (2) that

[f1f2, g1g2] = −f1f ′

2g2g
′

1 + f2f ′

1g1g′

2 = g1g2.

Dividing both parts of this equality by g1g2 we get

−f1f ′

2

g′

1

g1
+ f2f ′

1

g′

2

g2
= 1. (3)

Note that every linear factor of g1 is a divisor of f1 by Lemma 5, so f1g′

1

is divisible by g1 and analogously f2g′

2 is divisible by g2. Therefore (3) is
in fact a relation for polynomials with separated variables.
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Lemma 7. Let a(x), c(x) ∈ K[x] and b(y), d(y) ∈ K[y] be polynomials
such that

a(x)b(y) + c(x)d(y) = 1. (4)

Then either a, c ∈ K or b, d ∈ K.

Proof. Let us differentiate the equality (4) on the variable x. Then we
have a′(x)b(y) + c′(x)d(y) = 0. If a′(x) = 0 and c′(x) = 0 then a, c ∈ K

and all is done. If c′(x) 6= 0, then a′(x)
c′(x) = −d(y)

b(y) and therefore there exists

λ ∈ K such that d = λb. Substituting this equality into (4) we obtain
b(y)(a(x) + λc(x)) = 1. The latter equality implies b, d ∈ K.

Lemma 8. Let f1(x), g1(x) ∈ K[x] and f2(y), g2(y) ∈ K[y] be polynomials
satisfying the equality (3). Then either f1(x) is linear and then g1(x) =
c1f l

1(x), or f2(y) is linear and then g2(y) = c2fk
2 (y) for some c1, c2 ∈

K
∗, k, l, ∈ N.

Proof. By Lemma 7 we obtain from (3) that either f ′

1,
f1g′

1

g1
∈ K or

f ′

2,
f2g′

2

g2
∈ K. For example, let the second case hold. Then f2 = αy +β and

f2g′

2

g2
= γ ∈ K, for some α, γ ∈ K

⋆, β ∈ K. From the relation f2g′

2 = λg2

we have that g2 is divisible by g′

2. But the latter is possible only in the
case g2 = λ(y + δ)k for some λ ∈ K

⋆, δ ∈ K, k ∈ N.
From the equality

f2g′

2

g2
=

(αy + β)kλ(y + δ)k−1

λ(y + δ)k
= γ ∈ K

it follows that (αy + β)k = γ(y + δ). But then γ = kα and γδ = kβ which
gives us δ = β

α
. The latter equality means that g2(y) = c2fk

2 (y) for some

c2 ∈ K
⋆. The case f ′

1,
f1g′

1

g1
∈ K can be analogously considered.

Theorem 1. A polynomial f(x, y) = f1(x)f2(y) ∈ K[x, y] is weakly
semisimple if and only if it has no multiple roots and at least one of the
polynomials f1(x), f2(y) is linear, and if for example f2(y) = ay + b, a, b ∈
K and α1, · · · , αn are the roots of f1(x), then li = 1

af ′

1
(αi)

∈ Z, i = 1, . . . , n.

Besides, if g = g(x, y) is an eigenfunction for Df with eigenvalue 1, then
g = F (f)f2(y)k

∏n
i=1(x − αi)

k−li, where F (t) ∈ K[t], k ∈ N such that
k > li, i = 1, . . . , n.

Proof. ⇒ Let f = f(x, y) be a weakly semisimple polynomial of the
form f(x, y) = f1(x)f2(y), i.e. such that for some g ∈ K[x, y] it holds
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[f, g] = detJ(f, g) = g. By Corollary 1 f has no multiple roots and
taking into account Lemma 8 we see that at least one of the polynomials
f1(x), f2(y) is linear. Let for instance f2(y) = ay + b for some a, b ∈ K. By
Lemma 6 one can assume g = g1(x)g2(y) and any nonconstant polynomial
of f does not divide g. Using Lemma 8 we can assume that g2(y) = df2(y)k

for some d ∈ K
⋆ and k ∈ N. Then the equality (3) can be written in the

form

−f1a
g′

1

g1
+

f ′

1f2dkfk−1
2 a

dfk
2

= 1

Rewriting the latter relation we obtain

−af1g′

1

g1
+ akf ′

1 = 1,

and as consequence
akf ′

1 − 1

f1
=

ag′

1

g1
. (5)

The polynomial f1(x) has no multiple roots (by Lemma 6), let α1, . . . , αn

be all the roots of f1(x). Then f1(x) = c1(x − α1) · · · (x − αn) for some
element c1 ∈ K

⋆, and taking into account the relation (5) we have g1(x) =
d1(x − α1)m1 · · · (x − αn)mn for some d1 ∈ K, mi ∈ N ∪ {0}. The relation

(5) can be rewritten in the form
akf ′

1

f1
− 1

f1
=

ag′

1

g1
. Substituting f1 and g1

from the last expressions, we have
n
∑

i=1

ak

(x − αi)
−

n
∑

i=1

1

f ′

1(αi)(x − αi)
=

n
∑

i=1

ami

(x − αi)
(6)

(We used the decomposition of the rational function 1
f1

= 1
c1(x−α1)···(x−αn)

into the sum of elementary fraction of the form Ai

x−αi
, i = 1, . . . , n).

The relation (6) implies mi = k − 1
af ′

1
(αi)

and since mi > 0, k > 1

we have li = 1
af ′

1
(αi)

∈ Z, i = 1, . . . , n. Since mi > 0 we obtain k > li,

i = 1, . . . , n. But then g1(x) = d1

n
∏

i=1
(x − αi)

k−li , g2(y) = (ay + b)k, k > li

and therefore by Lemma 6 g(x, y) = F (f)(ay + b)k
n
∏

i=1
(x − αi)

k−li .

⇐ Let f = f1(x)f2(y) with f1(x) = c1(x − α1) · · · (x − αn) and

f2 = (ay + b), and let g(x, y) = F (f)g1g2 where g1 =
n
∏

i=1
(x − αi)

k−li and

g2 = (ay + b)k, where li = k − 1
af ′

1
(αi)

are integers. We will show that

[f, (ay + b)k
n
∏

i=1

(x − αi)
k−li ] = (ay + b)k

n
∏

i=1

(x − αi)
k−li
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Using the equality f(x, y) = f1(x)(ay + b) we have

[f, (ay + b)k
n
∏

i=1

(x − αi)
k−li ]

= [f1(x)(ay + b), (ay + b)k
n
∏

i=1

(x − αi)
k−li ]

= f ′

1(ay + b)ak(ay + b)k−1g1 − af1g′

1(ay + b)k

= (ay + b)ka(f ′

1kg1 − f1g′

1).

But the relation (5) yields af ′

1kg1 − af1g′

1 = g1, so we get [f, g1g2] =
g1g2 and the polynomial f is weakly semisimple.

The next statement allows us to produce infinitely many weakly
semisimple polynomials from a given one.

Corollary 3. Let f(x, y) be a weakly semisimple polynomial and g(x, y)
be such that [f, g] = g. If polynomials p, q satisfy the condition [p, q] = 1,
then f(p, q) is weakly semisimple and [f(p, q), g(p, q)] = g(p, q).

Example 1. Let f(x, y) = x(x − 1)y, g(x, y) = xk+1(x − 1)k−1yk, k ∈ N.
Then

[f, g] = [x(x − 1)y, xk+1(x − 1)k−1yk]

= [x(x − 1)y, yk]xk+1(x − 1)k−1 + [x(x − 1)y, xk+1(x − 1)k−1]yk

= yk(k[x(x − 1), y]xk+1(x − 1)k−1 + x(x − 1)[y, xk+1(x − 1)k−1])

= yk(xk+2(x − 1)k−1 − xk+1(x − 1)k) = xk+1(x − 1)k−1yk.

So, the polynomial f(x, y) = x(x − 1)y is weakly semisimple and g(x, y)
is its eigenfunction with eigenvalue λ = 1.

Example 2. The polynomial f(x, y) = y(x− 1)(x− 1
2) . . . (x− 1

n
), n ∈ N,

n > 2 is weakly semisimple. Really, putting f1(x) = (x−1)(x− 1
2) . . . (x− 1

n
)

1 6 i 6 n we obtain:

f ′

1

(

1

i

)

=

(

1

i

)n−2 1

n!
(1 − i)(2 − i) . . . (i − 1 − i)(i + 1 − i) . . . (n − i)

= (−1)i−1
(

1

i

)n−1 1

n!
i!(n − i)! = (−1)i−1

(

in−1

(

n

i

))

−1

∈ Z.

Therefore the polynomial f(x, y) satisfies the conditions of Theorem 1
and is weakly semisimple.
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