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Abstract. The power graph of a finite group is the graph
whose vertices are the elements of the group and two distinct vertices
are adjacent if and only if one is an integral power of the other. In
this paper we discuss the planarity and vertex connectivity of the
power graphs of finite cyclic, dihedral and dicyclic groups. Also we
apply connectivity concept to prove that the power graphs of both
dihedral and dicyclic groups are not Hamiltonian.

1. Introduction

The study of power graph associated to a semigroup or group has been
done by several authors, for instance, see [1–4,7]. Keralev and Quinn [7]
defined the directed power graph Pow(S) of a semigroup S as a directed
graph which has all elements of S as vertices and has arcs from u to v

for all u, v ∈ S such that u 6= v and v = um for some positive integer m.
Following this Chakrabarty et al. [3] defined the (undirected) power graph
G(S) of a semigroup S as an (undirected) graph whose vertex set is S

and two vertices u, v ∈ S are adjacent if and only if u 6= v and um = v

or vm = u for some positive integer m. Also in [3] it was shown that for
any finite group G the power graph of a subgroup of G is an induced
subgraph of G(G) and G(G) is complete if and only if G is a cyclic group
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of order 1 or pm, for some prime p and for some m ∈ N. In [1] Cameron
has proved that for a finite cyclic group G of non-prime-power order n, the
set of vertices T of G(G) which are adjacent to all other vertices of G(G)
consists of the identity and the generators of G, so that |T | = 1 + φ(n),
where φ(n) is the Euler’s totient or phi function.

The vertex connectivity (or simply connectivity) of a graph G, denoted
by κ(G), is the minimum size of a vertex set S such that G − S is
disconnected or has only one vertex. A graph G is said to be k−connected
if its connectivity is at least k. In [3] it was shown that G(G) is connected
for any finite group G as the identity element of G is adjacent to all other
vertices of G(G). This paper concerns on the problem: if we delete the
identity element from G(G) then the resulting graph is connected or not;
if connected then deletion of which vertices make the graph disconnected?
In other words our main concern is the connectivity of G(G). In this paper
we study the connectivity of the power graph of finite cyclic group and we
also prove that the power graph of dicyclic group is 2−connected whereas
of dihedral group is 1−connected. Moreover in [3] it was shown that for
any finite cyclic group G with |G| > 3, G(G) is Hamiltonian. However we
prove that the power graphs of both dihedral and dicyclic groups are not
Hamiltonian by applying connectivity concept.

A graph G is said to be planar if it can be drawn on a plane without
any crossing of its edges. Let Kn, Km,n denote the complete graph with
n vertices and complete bipartite graph with a bipartition into two sets
of m and n vertices.

Theorem 1 (Kuratowski). A graph G is planar if and only if G does not

contain K5 or K3,3 or any graph homeomorphic to them as a subgraph.

Theorem 2 (Sylow’s First Theorem). Let G be a finite group of order

prq, where p is a prime, r and q are positive integers and gcd(p, q) = 1.

Then G has a subgroup of order pk for all k satisfying 0 6 k 6 r.

In [3] Chakrabarty et al. proved that for any finite cyclic group G of
order n > 3, G(G) is non-planar when φ(n) > 7. They have also proved
that, the power graph of a cyclic group of order 2m, where m ∈ N and
m > 3, is non-planar. However, using Kuratowski’s Theorem and Sylow’s
First Theorem, we prove that a finite cyclic group of order n is non-planar
if and only if n > 5. In [4] it was shown that for n = pm(n > 5) or
n = 2q, where p is some prime, m ∈ N and q is some odd prime, the
power graph of dihedral group Dn is non-planar. Whereas in this paper
we find necessary and sufficient conditions for the planarity of the power
graphs of dihedral and dicyclic groups.
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2. Power graph of finite cyclic group

Theorem 3. For any finite cyclic group G of order n, the vertex connec-

tivity κ(G(G)) of the power graph of G satisfies the following:

(i) κ(G(G)) = n − 1 when n = 1 or pm for some prime p and for some

positive integer m.

(ii) κ(G(G)) > φ(n) + 1 when n is not a prime-power. The equality

holds for n = pq where p, q are distinct primes.

Proof. (i) Since G is a cyclic group of order 1 or pm for some prime p and
for some m ∈ N so G(G) is a complete graph on n vertices [3]. Therefore
κ(G(G)) = n − 1.

(ii) Number of generators of G is φ(n). So when n is not a prime-power,
φ(n) + 1 vertices of G(G) are adjacent to all the other vertices of G(G) [1].
Hence κ(G(G)) > φ(n) + 1.

Let n = pq where p, q are distinct primes. It is known [6] that every
finite cyclic group G of order n is isomorphic to the additive group Zn.
So we prove the equality only for the additive group Zn = Zpq.

There are exactly pq − φ(pq) − 1 = (q − 1) + (p − 1) elements of
Zn = Zpq, namely, p, 2p, · · · , (q − 1)p, q, 2q, · · · , (p − 1)q which are neither
identity nor generators. If possible suppose that rp is adjacent to sq for
some r, s satisfying 1 6 r 6 q − 1, 1 6 s 6 p − 1. Then for some positive
integers m1 and m′

1,

rp = m1sq or sq = m′

1rp,

We first consider rp = m1sq. This implies rp = m1sq + m2pq for some
m2 ∈ Z. Then q | rp. Since q is a prime and q | rp then either q | r or q | p.
But as 1 6 r < q so q ∤ r. Also by our assumption q ∤ p. A contradiction
arises and so rp 6= msq. Similarly it can be proved that sq 6= mrp.

Thus none of the vertices in {p, 2p, · · · , (q − 1)p} is adjacent to any
vertex in {q, 2q, · · · , (p − 1)q}.

So after deleting identity and all the generators of Zn = Zpq we get
a vertex deleted subgraph of G(Zpq) which is a disconnected graph with
two components, namely,

(a) the graph induced by {p, 2p, · · · , (q − 1)p}, which is the complete
graph on q − 1 vertices, and

(b) the graph induced by {q, 2q, · · · , (p − 1)q}, which is the complete
graph on p − 1 vertices.

Thus κ(G(Zpq)) = φ(pq) + 1 and hence the proof follows.
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Theorem 4. Let G = 〈a〉 be a finite cyclic group of order n. Then G(G)
is non-planar if and only if n > 5.

Proof. Let G = 〈a〉 be a finite cyclic group of order n > 5. We can write
any positive integer n > 5 (except 6 and 12) as prq with pr > 5, where p

is a prime, r and q are positive integers and gcd(p, q) = 1.

Case I: Let n 6= 6, 12. Then n = prq with pr > 5, where p,q,r satisfy
the above conditions. By Sylow’s First Theorem G has a subgroup C of
order pr. Since every subgroup of a cyclic group is cyclic, so C is a cyclic
subgroup of G of order pr > 5. Thus G(C) = Kpr is a supergraph of K5.
Hence by Kuratowski’s theorem G(C) and so G(G) is non-planar.

Case II: Let n = 6 or 12 and the identity element of G be denoted
by e.

For n = 6, G = 〈a〉 has exactly two generators, say, a, a5 and exactly
three elements, say, a2, a3, a4 which are neither identity nor generators.
The vertices e, a and a5 are adjacent to all other vertices of G(G) [1], in
particular to all the vertices in {a2, a3, a4}. Thus the power graph induced
by {e, a, a5} ∪ {a2, a3, a4} that is G(G) is a supergraph of K3,3. Hence by
Kuratowski’s theorem G(G) is non-planar.

For n = 12, 〈a2〉 is a cyclic subgroup of G of order 6 and hence from
above we get that the power graph of 〈a2〉 is non-planar. Therefore G(G),
being a supergraph of the power graph of 〈a2〉, is non-planar.

For the converse part it is sufficient to prove that G(G) is planar for
n < 5. However for n < 5, G(G) is nothing but the complete graph Kn,
which is planar if and only if n < 5.

3. Power graph of dihedral group

For each positive integer n > 3, the dihedral group [6] Dn = 〈a, b〉 is
a non-commutative group of order 2n whose generators a and b satisfy:

(i) o(a) = n, o(b) = 2;

(ii) ba = a−1b = an−1b.

3.1. Structure of the power graph of Dn

Since o(a) = n, H = 〈a〉 is a cyclic subgroup of Dn with |H| = n.
So G(H) is a connected subgraph of G(Dn). Since an = e = b2 so
(ab)2 = a(ba)b = a(an−1b)b = e and (an−1b)2 = an−1(ba)an−2b =
an−1(an−1b)an−2b = (an−2b)2. Continuing in this way we get (an−1b)2 =
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(an−2b)2 = · · · = (a2b)2 = (ab)2 = e. So for 1 6 k 6 n − 1 power of any of
{b, akb} is either itself or e. Again for 1 6 k 6 n − 1 power of any ak is
some power of a, which is none of {b, akb}. Thus b and akb are adjacent
to only e, for all k satisfying 1 6 k 6 n − 1. Therefore the graph G(Dn)
is of the form given in Figure 1.

e

ab 

a
n!1
b

!(H)

b 

a
2
b

Figure 1. Power Graph of Dn for n > 3

Recall that a cut-vertex of a graph is a vertex whose deletion increases
the number of components.

Theorem 5. The identity element e of Dn is a cut vertex of G(Dn) and

so κ(G(Dn)) = 1. Also G(Dn) is not Hamiltonian.

Proof. It is clear from the structure of G(Dn) (Figure 1) that deletion
of the identity e increases the number of components of G(Dn) that is
makes the graph G(Dn) disconnected. Hence e is a cut vertex of G(Dn)
and so κ(G(Dn)) = 1.
Since every Hamiltonian graph is 2-connected [8, pp 287], G(Dn) is not
Hamiltonian.

Theorem 6. G(Dn) is non-planar if and only if n > 5.

Proof. It is clear from the structure of G(Dn) (Figure 1) that G(Dn) is
non-planar if and only if G(H) is non-planar. However H = 〈a〉 is a cyclic
group with |H| = n and so by Theorem 4, G(H) is non-planar if and only
if n > 5.
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4. Power graph of dicyclic group

For any integer n > 2, the dicyclic group [5] Qn = 〈a, b〉 is a non-
commutative group of order 4n whose generators a and b satisfy:

(i) a2n = e, an = b2,

(ii) ab = ba−1 = ba2n−1.

Each element outside the big cyclic subgroup A = 〈a〉 of Qn has order
4, and there is a unique element an of order 2.

4.1. Structure of the power graph of Qn

For 1 6 k 6 2n − 1,

(akb)2 = ak−1(ab)akb = ak−1(ba2n−1)akb = (ak−1b)2.

Thus

(a2n−1b)2 = (a2n−2b)2 = · · · = (anb)2 = · · ·

= (a2b)2 = (ab)2 = b2 = an. (1)

Using ( 1) and a2n = e we get for 1 6 k 6 n − 1,

(akb)3 = (akb)2(akb) = an+kb (2)

(an+kb)3 = (an+kb)2(an+kb) = akb. (3)

So

H1 = {e, b, an, anb}, H2 = {e, ab, an, an+1b}, · · · ,

Hn = {e, an−1b, an, a2n−1b}

and A = 〈a〉 are the only cyclic subgroups of Qn with |Hi| = 4, |A| = 2n,
for all 1 6 i 6 n. Thus for 1 6 i 6 n each G(Hi) (which is the complete
graph K4) and G(A) are the induced subgraphs of G(Qn) on 4 and 2n

vertices respectively. Since for 1 6 k 6 2n − 1 power of any ak is some
power of a, which is none of {b, akb}, so it implies from ( 1),( 2),( 3) that
no other pair of vertices of G(Qn) are adjacent. Hence G(Qn) is of the
form given in Figure 2.

Theorem 7. κ(G(Qn)) = 2 for all n > 2.
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Figure 2. Power Graph of Qn for n > 2

Proof. The identity element e of Qn is adjacent to every other vertices of
G(Qn). If we delete e then also the vertex deleted subgraph G(Qn) − {e}
of G(Qn) remains connected for the following reasons:

(i) G(A) − {e} is connected since the vertex a is adjacent to any other
vertices of G(A) − {e}. In particular a is adjacent to an and so any vertex
ar(2 6 r 6 n − 1, n + 1 6 r 6 2n − 1) of G(A) − {e} is connected to an

by a path Pr : araan;

(ii) for 1 6 k 6 2n−1 any vertex of {b, akb} is adjacent to an. However
by deleting both the vertices e and an from G(Qn) the resulting graph
will be of the form given in Figure 3. Clearly the vertex deleted subgraph
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}

Figure 3. Power Graph of Qn − {e, an} for n > 2

G(Qn) − {e, an} of G(Qn) is disconnected with n + 1 components. Hence
κ(G(Qn)) = 2.

Theorem 8. G(Qn) is not Hamiltonian for all n > 2.
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Proof. It is known that [8, pp 287] if G is a Hamiltonian graph then for
each non-empty set S ⊆ V (G) the graph G−S has at most |S| components.
Here taking S = {e, an} we see that the number of components in G(Qn)−
S is n + 1 which is greater than |S| = 2 for all n > 2. So G(Qn) is not
Hamiltonian for all n > 2.

Theorem 9. G(Qn) is non-planar if and only if n > 2.

Proof. It is clear from the structure of G(Qn) (Figure 2) that G(Qn) is
non-planar if and only if G(A) is non-planar. However A = 〈a〉 is a cyclic
group of order 2n and so by Theorem 4, G(A) is non-planar if and only if
2n > 4 that is if and only if n > 2.
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