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Abstract. Let G be a finite group and let πe(G) be the set
of element orders of G. Let k ∈ πe(G) and let mk be the number
of elements of order k in G. Set nse(G):={mk|k ∈ πe(G)}. In this
paper, we show that if n = r, r + 1, r + 2, r + 3 r + 4, or r + 5 where
r > 5 is the greatest prime not exceeding n, then An characterizable
by nse and order.

1. Introduction

If n is an integer, then we denote by π(n) the set of all prime divisors
of n. Let G be a finite group. Denote by π(G) the set of primes p such
that G contains an element of order p. Also the set of element orders of
G is denoted by πe(G). A finite group G is called a simple Kn−group, if
G is a simple group with |π(G)| = n. We denote by φ the Euler totient
function. We say pk ‖ m if pk | m and pk+1 ∤ m. All other notations are
standard and we refer to [8], for example.

Set mi = mi(G)=|{g ∈ G| the order of g is i}|. In fact mi is the
number of elements of order i in G, and nse(G):={mi| i ∈ πe(G)}, the
set of sizes of elements with the same order.

In 1987, J. G. Thompson posed a very interesting problem related
to algebraic number fields as follows. For each finite group G and each
integer d > 1, let G(d) = {x ∈ G| xd = 1}. Defining G1 and G2 is of the
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same order type if, and only if, |G1(d)| = |G2(d)|, d = 1, 2, 3, . . .. Suppose
G1 and G2 are of the same order type. If G1 is solvable, is G2 necessarily
solvable? ( [11, Problem 12.37])

We see clearly that if groups G1 and G2 are of the same order type,
then |G1| = |G2| and nse(G1) = nse(G2). So it is natural to investigate
the Thompson’s problem by |G| and nse(G).

In [3, 4, 6], it is proved that symmetric group Sr, where r is prime
number, all sporadic simple groups and all simple K4−groups are charac-
terizable by nse and order. In [5, 10], it is proved that alternating groups
An, where 5 6 n 6 8 are characterizable by only nse. In [2], it is proved
that L2(p), where p is a prime number, is characterizable by nse(G) and
p ∈ π(G). Also in [1], it is proved that PGL2(p), where p > 3 is a prime
number, is characterizable by nse(G) and p ∈ π(G).

Note that not all groups can be characterized by nse(G) and |G|.
For instance, let H1 = C4 × C4 and H2 = C2× Q8 where C2 and C4

are cyclic groups of orders 2 and 4, respectively and Q8 is a quaternion
group of order 8. It is easy to see that nse(H1) = nse(H2)={1, 3, 12} and
|H1| = |H2| = 16, but H1 is an abelian group and H2 is a non-abelian
group. Therefore H1 6∼= H2.

In this paper, it is proved that some of the alternating groups, are
characterizable by nse and their order. In fact the main theorem of our
paper is as follows:

Main theorem. Let G be a group such that |G| = |An| and let nse(G)=
nse(An). If n = r, r + 1, r + 2, r + 3, r + 4, or r + 5 where r > 5 is the
greatest prime not exceeding n, then G ∼= An.

2. Some lemmas

Lemma 2.1 ([7, Lemma 2.2]). Let G be a group and P be a cyclic Sylow
p-subgroup of G of order pa. If there is a prime r such that par ∈ πe(G),
then mpar = mr(CG(P ))mpa . In particular, φ(r)mpa | mpar.

Lemma 2.2 ([9]). Let G be a finite group, n > 4 with n 6= 8, 10 and r be
the greatest prime not exceeding n. If |G|=|An| and |NG(R)| = |NAn

(S)|
where R ∈Sylr(G) and S ∈Sylr(An), then G ∼= An.

3. Proof of the main theorem

In [10], it is proved that the alternating groups A5 and A6 are char-
acterizable only by nse(G). Note that if n = 7, 8, 9, or 10, then An is
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a simple K4−group. In [6], it is proved that all simple K4−groups are
characterizable by nse(G) and |G|. Therefore if n < 11, then G ∼= An.

Suppose that n > 11 and r > 5 is the greatest prime not exceeding
n. Since r ‖ |G| and the Sylow r-subgroups of G have trivial pairwise
intersections, it follows that mr = t(r − 1) where t is the number of Sylow
p-subgroups of G. Futhermore since t ≡ 1 (mod r) by Sylow’s theorem, it
follows that mr(G) ≡ −1 (mod r).

Claim 3.1. mr(G) = mr(An).

Let mr(G) 6= mr(An). Since nse(G)=nse(An), mr(G) ∈ nse(An). Sup-
pose that there exists r 6= k ∈ πe(G) such that mr(G) = mk(An). Thus
mk(An) ≡ −1 (mod r). We know that mk(An) =

∑
|clAn

(xi)| such that
|xi| = k for every i. Since mk(An) ≡ −1 (mod r), (r, mk(An)) = 1.

If for every i, the cyclic structure of xi is 1r12r2 . . . lrl such that r ∤
1r12r2 . . . lrlr1!r2! . . . rl!, then

|clAn
(xi)| =

n!

1r12r2 . . . lrlr1!r2! . . . rl!
≡ 0 (mod r).

Hence (r, mk(An)) 6= 1, which is a contradiction. Hence

r | 1r12r2 . . . lrlr1!r2! . . . rl!.

Therefore, there exists at least a xi with cyclic structure 1r12r2 . . . lrlsuch
that rj = r + t for some 1 6 j 6 l, where t is a non-negative integer, or
one of the numbers 1, 2, . . ., l is equal to r.

Now for the completion of our claim, we consider the following cases:

Case a. Let n = r. By the above discussion in this case there exists xi

such that the cyclic structure of xi is 1r or r1.
If the cyclic structure of xi is 1r, then |xi| = 1, which is a contradiction.
If the cyclic structure of xi is r1, then |xi| = k = r. Therefore

mr(G) = mr(An).

Case b. Let n = r + 1. In this case, there exists xi such that the
cyclic structure of xi is 1r+1 or 11r1.

If the cyclic structure of xi is 1r+1, then |xi| = 1, which is a contra-
diction.

If the cyclic structure of xi is 11r1. Then |xi| = k = r and mr(G) =
mr(An).

Case c. Let n = r +2. In this case, there exists xi such that the cyclic
structure of xi is 12r1. Thus |xi| = k = r and mr(G) = mr(An).
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Case d. Let n = r + 3. In this case, there exists xi such that the
cyclic structure of xi is 1r31, 31r1 or 13r1. Since mk(An) ≡ −1 (mod r)
and mk(An) =

∑
|clAn

(xi)| such that |xi| = k and |clAn
(xj)| ≡ 0 (mod

r) for j 6= i, |clAn
(xi)| ≡ −1 (mod r).

If the cyclic structure of xi is 1r31, then (r+3)!
r!3 ≡ −1 (mod r). Thus

(r+3)(r+2)(r+1)
3 ≡ −1 (mod r). It follows that 2 ≡ −1 (mod r). Then r = 3

and n = 6, a contradiction.

If the cyclic structure of xi is 31r1, then (r+3)!
3r

≡ −1 (mod r). Thus
(r+3)(r+2)(r+1)(r−1)!

3 ≡ −1 (mod r). Then 2(r − 1)! ≡ −1 (mod r). By
Wilson’s theorem, (r−1)! ≡ −1 (mod r). So 2 ≡ 1 (mod r), a contradiction.
Therefore the cyclic structure of xi is 13r1. Then |xi| = k = r and
mr(G) = mr(An).

Case e. Let n = r +4. In this case, there exists xi such that the cyclic
structure of xi is 1r+131, 1r22, 22r1, 1131r1 or 14r1. By |clAn

(xi)| ≡ −1
(mod r), we can see easily the cyclic structures xi is not equal to 1r+131

or 1r22.

Let the cyclic structure of xi be 22r1 or 1131r1. Then (r+4)!
8r

≡ −1

(mod r) or (r+4)!
3r

≡ −1 (mod r), respectively. Hence 3(r − 1)! ≡ −1 (mod
r) or 8(r − 1)! ≡ −1 (mod r), respectively.

If 3(r − 1)! ≡ −1 (mod r), then by Wilson’s theorem, 3 ≡ 1 (mod r),
a contradiction.

If 8(r −1)! ≡ −1 (mod r), then 8 ≡ 1 (mod r). Thus r = 7 and n = 11.
Since r is the greatest prime not exceeding n, we get a contradiction.

Therefore the cyclic structure of xi is 14r1. Then |xi| = k = r and
mr(G) = mr(An).

Case f. Let n = r + 5. In this case, there exists xi such that the cyclic
structure of xi is 1r+231, 1r+122, 1r51, 51r1, 1122r1, 1231r1, 1231r1 or 15r1.
By |clAn

(xi)| ≡ −1 (mod r), we can see easily the cyclic structures xi is
not equal to 1r+231, 1r+122, 1r51, 1122r1 or 1231r1.

Let cyclic structure of xi be r151. Then (r+5)!
5r

≡ −1 (mod r). Hence
r = 23, n = 28 and |xi| = 23×5 = 115. Therefore m23(G) = m115(A28) =
28!
115 .

If 115 /∈ πe(G), then the group P5 acts fixed point freely on the set
of elements of order 23. Thus |P5| | m23(G) = 28!

115 . Since |G| = |An|,
|P5| = 56, we get a contradiction.

Let 115 ∈ πe(G). By Lemma 2.1, φ(5)m23 | m115. Then 4 × 28!
115 | m115.

On the other hand, there are 28!
27 elements of order 27 in A28. This is the

greatest member in nse(A28)=nse(G). But m115 > 28!
27 , a contradiction.
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Therefore the cyclic structure of xi is 15r1. Then |xi| = k = r and
mr(G) = mr(An). This proves the claim.

Hence the number of Sylow r−subgroups of G is equal to the number
of Sylow r−subgroups of An. Since |G| = |An|, |NG(R)| = |NAn

(S)| where
R ∈Sylr(G) and S ∈Sylr(An). By Lemma 2.2, G ∼= An.

For an arbitrary n a question arises naturally as follows.

Problem. Let G be a group such that |G| = |An| and nse(G)= nse(An).
Is G isomorphic to An?

If r = 83 and n = 83 + 6 = 89, then n = 89 is the smallest n for which
the answer is not known.
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