A new characterization of alternating groups

Alireza Khalili Asboei, Syyed Sadegh Salehi Amiri, Ali Iranmanesh

Communicated by M. Sapir

ABSTRACT. Let G be a finite group and let $\pi_e(G)$ be the set of element orders of G. Let $k \in \pi_e(G)$ and let m_k be the number of elements of order k in G. Set $\operatorname{nse}(G) := \{m_k | k \in \pi_e(G)\}$. In this paper, we show that if n = r, r+1, r+2, r+3, r+4, or r+5 where $r \geq 5$ is the greatest prime not exceeding n, then A_n characterizable by nse and order.

1. Introduction

If n is an integer, then we denote by $\pi(n)$ the set of all prime divisors of n. Let G be a finite group. Denote by $\pi(G)$ the set of primes p such that G contains an element of order p. Also the set of element orders of G is denoted by $\pi_e(G)$. A finite group G is called a simple K_n -group, if G is a simple group with $|\pi(G)| = n$. We denote by ϕ the Euler totient function. We say $p^k \parallel m$ if $p^k \mid m$ and $p^{k+1} \nmid m$. All other notations are standard and we refer to [8], for example.

Set $m_i = m_i(G) = |\{g \in G| \text{ the order of } g \text{ is } i\}|$. In fact m_i is the number of elements of order i in G, and $nse(G) := \{m_i | i \in \pi_e(G)\}$, the set of sizes of elements with the same order.

In 1987, J. G. Thompson posed a very interesting problem related to algebraic number fields as follows. For each finite group G and each integer $d \ge 1$, let $G(d) = \{x \in G | x^d = 1\}$. Defining G_1 and G_2 is of the

²⁰¹⁰ MSC: 20D06, 20D60.

Key words and phrases: finite group, simple group, alternating groups.

same order type if, and only if, $|G_1(d)| = |G_2(d)|$, $d = 1, 2, 3, \ldots$ Suppose G_1 and G_2 are of the same order type. If G_1 is solvable, is G_2 necessarily solvable? ([11, Problem 12.37])

We see clearly that if groups G_1 and G_2 are of the same order type, then $|G_1| = |G_2|$ and $\operatorname{nse}(G_1) = \operatorname{nse}(G_2)$. So it is natural to investigate the Thompson's problem by |G| and $\operatorname{nse}(G)$.

In [3, 4, 6], it is proved that symmetric group S_r , where r is prime number, all sporadic simple groups and all simple K_4 -groups are characterizable by nse and order. In [5, 10], it is proved that alternating groups A_n , where $5 \le n \le 8$ are characterizable by only nse. In [2], it is proved that $L_2(p)$, where p is a prime number, is characterizable by nse(G) and $p \in \pi(G)$. Also in [1], it is proved that $PGL_2(p)$, where p > 3 is a prime number, is characterizable by nse(G) and $p \in \pi(G)$.

Note that not all groups can be characterized by $\operatorname{nse}(G)$ and |G|. For instance, let $H_1 = C_4 \times C_4$ and $H_2 = C_2 \times Q_8$ where C_2 and C_4 are cyclic groups of orders 2 and 4, respectively and Q_8 is a quaternion group of order 8. It is easy to see that $\operatorname{nse}(H_1) = \operatorname{nse}(H_2) = \{1, 3, 12\}$ and $|H_1| = |H_2| = 16$, but H_1 is an abelian group and H_2 is a non-abelian group. Therefore $H_1 \not\cong H_2$.

In this paper, it is proved that some of the alternating groups, are characterizable by nse and their order. In fact the main theorem of our paper is as follows:

Main theorem. Let G be a group such that $|G| = |A_n|$ and let $nse(G) = nse(A_n)$. If n = r, r + 1, r + 2, r + 3, r + 4, or r + 5 where $r \ge 5$ is the greatest prime not exceeding n, then $G \cong A_n$.

2. Some lemmas

Lemma 2.1 ([7, Lemma 2.2]). Let G be a group and P be a cyclic Sylow p-subgroup of G of order p^a . If there is a prime r such that $p^a r \in \pi_e(G)$, then $m_{p^a r} = m_r(C_G(P))m_{p^a}$. In particular, $\phi(r)m_{p^a} \mid m_{p^a r}$.

Lemma 2.2 ([9]). Let G be a finite group, $n \ge 4$ with $n \ne 8$, 10 and r be the greatest prime not exceeding n. If $|G|=|A_n|$ and $|N_G(R)|=|N_{A_n}(S)|$ where $R \in \text{Syl}_r(G)$ and $S \in \text{Syl}_r(A_n)$, then $G \cong A_n$.

3. Proof of the main theorem

In [10], it is proved that the alternating groups A_5 and A_6 are characterizable only by nse(G). Note that if n = 7, 8, 9, or 10, then A_n is

a simple K_4 -group. In [6], it is proved that all simple K_4 -groups are characterizable by nse(G) and |G|. Therefore if n < 11, then $G \cong A_n$.

Suppose that $n \ge 11$ and $r \ge 5$ is the greatest prime not exceeding *n*. Since $r \parallel |G|$ and the Sylow *r*-subgroups of *G* have trivial pairwise intersections, it follows that $m_r = t(r-1)$ where *t* is the number of Sylow *p*-subgroups of *G*. Furthermore since $t \equiv 1 \pmod{r}$ by Sylow's theorem, it follows that $m_r(G) \equiv -1 \pmod{r}$.

Claim 3.1. $m_r(G) = m_r(A_n)$.

Let $m_r(G) \neq m_r(A_n)$. Since $\operatorname{nse}(G) = \operatorname{nse}(A_n)$, $m_r(G) \in \operatorname{nse}(A_n)$. Suppose that there exists $r \neq k \in \pi_e(G)$ such that $m_r(G) = m_k(A_n)$. Thus $m_k(A_n) \equiv -1 \pmod{r}$. We know that $m_k(A_n) = \sum |c|_{A_n}(x_i)|$ such that $|x_i| = k$ for every *i*. Since $m_k(A_n) \equiv -1 \pmod{r}$, $(r, m_k(A_n)) = 1$.

If for every *i*, the cyclic structure of x_i is $1^{r_1}2^{r_2} \dots l^{r_l}$ such that $r \not\models 1^{r_1}2^{r_2} \dots l^{r_l}r_1!r_2! \dots r_l!$, then

$$|cl_{A_n}(x_i)| = \frac{n!}{1^{r_1}2^{r_2}\dots l^{r_l}r_1!r_2!\dots r_l!} \equiv 0 \pmod{r}.$$

Hence $(r, m_k(A_n)) \neq 1$, which is a contradiction. Hence

 $r \mid 1^{r_1} 2^{r_2} \dots l^{r_l} r_1! r_2! \dots r_l!.$

Therefore, there exists at least a x_i with cyclic structure $1^{r_1}2^{r_2} \dots l^{r_l}$ such that $r_j = r + t$ for some $1 \leq j \leq l$, where t is a non-negative integer, or one of the numbers 1, 2, ..., l is equal to r.

Now for the completion of our claim, we consider the following cases:

Case a. Let n = r. By the above discussion in this case there exists x_i such that the cyclic structure of x_i is 1^r or r^1 .

If the cyclic structure of x_i is 1^r , then $|x_i| = 1$, which is a contradiction. If the cyclic structure of x_i is r^1 , then $|x_i| = k = r$. Therefore $m_r(G) = m_r(A_n)$.

Case b. Let n = r + 1. In this case, there exists x_i such that the cyclic structure of x_i is 1^{r+1} or 1^1r^1 .

If the cyclic structure of x_i is 1^{r+1} , then $|x_i| = 1$, which is a contradiction.

If the cyclic structure of x_i is 1^1r^1 . Then $|x_i| = k = r$ and $m_r(G) = m_r(A_n)$.

Case c. Let n = r + 2. In this case, there exists x_i such that the cyclic structure of x_i is 1^2r^1 . Thus $|x_i| = k = r$ and $m_r(G) = m_r(A_n)$.

Case d. Let n = r + 3. In this case, there exists x_i such that the cyclic structure of x_i is $1^r 3^1$, $3^1 r^1$ or $1^3 r^1$. Since $m_k(A_n) \equiv -1 \pmod{r}$ and $m_k(A_n) = \sum |cl_{A_n}(x_i)|$ such that $|x_i| = k$ and $|cl_{A_n}(x_j)| \equiv 0 \pmod{r}$ for $j \neq i$, $|cl_{A_n}(x_i)| \equiv -1 \pmod{r}$.

If the cyclic structure of x_i is $1^r 3^1$, then $\frac{(r+3)!}{r!3} \equiv -1 \pmod{r}$. Thus $\frac{(r+3)(r+2)(r+1)}{3} \equiv -1 \pmod{r}$. It follows that $2 \equiv -1 \pmod{r}$. Then r = 3 and n = 6, a contradiction.

If the cyclic structure of x_i is 3^1r^1 , then $\frac{(r+3)!}{3r} \equiv -1 \pmod{r}$. Thus $\frac{(r+3)(r+2)(r+1)(r-1)!}{3} \equiv -1 \pmod{r}$. Then $2(r-1)! \equiv -1 \pmod{r}$. By Wilson's theorem, $(r-1)! \equiv -1 \pmod{r}$. So $2 \equiv 1 \pmod{r}$, a contradiction. Therefore the cyclic structure of x_i is 1^3r^1 . Then $|x_i| = k = r$ and $m_r(G) = m_r(A_n)$.

Case e. Let n = r + 4. In this case, there exists x_i such that the cyclic structure of x_i is $1^{r+1}3^1$, 1^r2^2 , 2^2r^1 , $1^13^1r^1$ or 1^4r^1 . By $|cl_{A_n}(x_i)| \equiv -1 \pmod{r}$, we can see easily the cyclic structures x_i is not equal to $1^{r+1}3^1$ or 1^r2^2 .

Let the cyclic structure of x_i be 2^2r^1 or $1^13^1r^1$. Then $\frac{(r+4)!}{8r} \equiv -1 \pmod{r}$ or $\frac{(r+4)!}{3r} \equiv -1 \pmod{r}$, respectively. Hence $3(r-1)! \equiv -1 \pmod{r}$ or $8(r-1)! \equiv -1 \pmod{r}$, respectively.

If $3(r-1)! \equiv -1 \pmod{r}$, then by Wilson's theorem, $3 \equiv 1 \pmod{r}$, a contradiction.

If $8(r-1)! \equiv -1 \pmod{r}$, then $8 \equiv 1 \pmod{r}$. Thus r = 7 and n = 11. Since r is the greatest prime not exceeding n, we get a contradiction.

Therefore the cyclic structure of x_i is 1^4r^1 . Then $|x_i| = k = r$ and $m_r(G) = m_r(A_n)$.

Case f. Let n = r + 5. In this case, there exists x_i such that the cyclic structure of x_i is $1^{r+2}3^1$, $1^{r+1}2^2$, 1^r5^1 , 5^1r^1 , $1^{1}2^2r^1$, $1^23^1r^1$, $1^23^1r^1$ or 1^5r^1 . By $|cl_{A_n}(x_i)| \equiv -1 \pmod{r}$, we can see easily the cyclic structures x_i is not equal to $1^{r+2}3^1$, $1^{r+1}2^2$, 1^r5^1 , $1^12^2r^1$ or $1^23^1r^1$.

Let cyclic structure of x_i be $r^{1}5^{1}$. Then $\frac{(r+5)!}{5r} \equiv -1 \pmod{r}$. Hence r = 23, n = 28 and $|x_i| = 23 \times 5 = 115$. Therefore $m_{23}(G) = m_{115}(A_{28}) = \frac{28!}{115}$.

If $115 \notin \pi_e(G)$, then the group P_5 acts fixed point freely on the set of elements of order 23. Thus $|P_5| \mid m_{23}(G) = \frac{28!}{115}$. Since $|G| = |A_n|$, $|P_5| = 5^6$, we get a contradiction.

Let $115 \in \pi_e(G)$. By Lemma 2.1, $\phi(5)m_{23} \mid m_{115}$. Then $4 \times \frac{28!}{115} \mid m_{115}$. On the other hand, there are $\frac{28!}{27}$ elements of order 27 in A_{28} . This is the greatest member in $nse(A_{28})=nse(G)$. But $m_{115} > \frac{28!}{27}$, a contradiction. Therefore the cyclic structure of x_i is 1^5r^1 . Then $|x_i| = k = r$ and $m_r(G) = m_r(A_n)$. This proves the claim.

Hence the number of Sylow r-subgroups of G is equal to the number of Sylow r-subgroups of A_n . Since $|G| = |A_n|, |N_G(R)| = |N_{A_n}(S)|$ where $R \in \operatorname{Syl}_r(G)$ and $S \in \operatorname{Syl}_r(A_n)$. By Lemma 2.2, $G \cong A_n$.

For an arbitrary n a question arises naturally as follows.

Problem. Let G be a group such that $|G| = |A_n|$ and $nse(G) = nse(A_n)$. Is G isomorphic to A_n ?

If r = 83 and n = 83 + 6 = 89, then n = 89 is the smallest n for which the answer is not known.

4. Acknowledgment

The authors are thankful to the referee for carefully reading the paper and for his suggestions and remarks. Partial support by the Center of Excellence of Algebraic Hyper structures and its Applications of Tarbiat Modares University (CEAHA) is gratefully acknowledge by the third author (AI).

References

- A. K. Asboei, A new characterization of PGL₂(p), J. Algebra Appl., V. 12, N. 7, 2013, DOI: 10.1142/S0219498813500400.
- [2] A. K. Asboei, S. S. Amiri, Characterization of the linear groups L₂(p), Southeast Asian Bull. Math., V. 38, 2014, pp. 471-478.
- [3] A. K. Asboei, S. S. Amiri, A. Iranmanesh, A. Tehranian, A characterization of Symmetric group S_r, where r is prime number, Ann. Math. Inform., V. 40, 2012, pp.13-23.
- [4] A. K. Asboei, S. S. Amiri, A. Iranmanesh, A. Tehranian, A new characterization of sporadic simple groups by NSE and order, J. Algebra Appl., V. 12, N. 2, 2013, pp. 1-3.
- [5] A. K. Asboei, S. S. Amiri, A. Iranmanesh, A. Tehranian, A new characterization of A₇ and A₈, An. Stint. Univ. Ovidius Constanta Ser. Mat., V. **21**, N. 3, 2013, pp. 43-50.
- [6] C. G. Shao, W. Shi and Q. H. Jiang, *Characterization of simple K₄-groups*, Front Math, China., V. 3, 2008, pp. 355–370.
- [7] C. G. Shao and Q. H. Jiang, A new characterization of some linear groups by NSE, J. Alg. Appl., DOI:10.1142/S0219498813500941.
- [8] J. H. Conway, R. T. Curtis, S. P. Norton and R. A. Wilson, Atlas of finite groups, Clarendon, Oxford, 1985.
- J. Bi, Characteristic of Alternating Groups by Orders of Normalizers of Sylow Subgroups, Algebra Colloq., V. 8, N. 3, 2001, pp. 249-256.

- [10] R. Shen, C. G. Shao, Q. Jiang, W. Shi, V. Mazuro, A new characterization of A₅, Monatsh Math., V. 160, 2010, pp. 337-341.
- [11] V. D. Mazurov and E. I. Khukhro, Unsolved Problems in group theory, the Kourovka Notebook, 16 ed, Novosibirsk, Inst. Mat. Sibirsk. Otdel. Akad, 2006.

CONTACT INFORMATION

A. Khalili Asboei	Department of Mathematics, Farhangian Univer- sity, Shariati Mazandaran, Iran & Department of Mathematics, College of Engineering, Buin Zahra Branch, Islamic Azad University, Buin Zahra, Iran <i>E-Mail:</i> khaliliasbo@yahoo.com
S. S. Salehi Amiri	Department of Mathematics, Babol Branch, Is- lamic Azad University, Babol, Iran <i>E-Mail:</i> salehissss@yahoo.com
A. Iranmanesh	Department of Mathematics, Tarbiat Modares University P. O. Box: 14115-137, Tehran, Iran <i>E-Mail:</i> iranmanesh@modares.ac.ir

Received by the editors: 15.01.2014 and in final form 14.02.2014.