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Abstract. We consider several equivalent definitions of the
so-called Milnor laws (or Milnor identities) that is the laws which
are not satisfied in ApA varieties. The purpose of this article is to
provide algorithms that allow us to check whether a given identity
w(x, y) has one of the following properties:

• w(x, y) is a Milnor law,

• every nilpotent group satisfying w(x, y) is abelian,

• every finitely generated metabelian group satisfying w(x, y) is
finite-by-abelian.

1. Introduction

Many authors considered a special type of group laws using different
names. All these laws have a common property which fully characterizes
them. Namely, every solvable group satisfying such a law is nilpotent-by-
(locally finite of finite exponent). We call these laws the Milnor laws after
Point [31].

Let F2 = 〈x, y〉 be a free group and w := w(x, y) be a word in F2. We
speak of a group law w, meaning the law w ≡ 1.

The aim of this work is to provide algorithms that allow us to check
whether a given word defines a Milnor law, and whether it satisfies the
additional properties.
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If 〈x〉F2 denotes the normal closure of x and [x, y] = x−1y−1xy =
x−1xy = x−1+y, then every word in F ′

2 is conjugate to a word xP (y)ξ
where ξ ∈ (〈x〉F2 )′, and P (y) is a polynomial over integers.

All polynomials considered here have integer coefficients. Recall that
such a polynomial is called primitive if it has coprime coefficients.

Point [31] introduced a Milnor identity w(x, y) as the one which
implies a law of the form xP (y), where the polynomial P (y) is primitive.
She used this name since groups satisfying such laws satisfy also the
property considered by Milnor [21]. Later Endimioni [4] proved that such
a property holds if and only if the law is not satisfied in a variety ApA

for any prime p.

Unfortunately, for a given law the implication of a law xP (y) with prim-
itive P (y) is not constructive. For example, the laws [x, y]2 = x(−1+y)2 and
[x2, y2] = x−2+2y2

, written as xP (y), both have non-primitive P (y) with
even coefficients. However, only the second law is a Milnor law, because
it is a positive law, so it is not satisfied in any of ApA, since the wreath
product Cp wr C, generating this variety contains a free subsemigroup [1]
(the law [x2, y2] is discussed in Example 6.4).

Results

Every word w(x, y) ∈ F ′
2 can be written in the form [x, y]P (x,y)ξ, where

P (x, y) is a polynomial with integer coefficients and ξ ∈ F ′′
2 . Our main

aim is to give algorithms which allow us to recognize properties of the
law w(x, y). We give:

• An algorithm for writing w(x, y) in the form [x, y]P (x,y)ξ and a
criterion for P (x, y) which allows us to check whether the word
defines a Milnor law.

• Three algorithms for writing w(x, y) as a product
∏

kl[x,k y,l x]bklζ
and a criterion for bkl’s which allows us to check whether the word
defines a Milnor law.

• A condition for P (x, y) such that every nilpotent group satisfying
the law [x, y]P (x,y)ξ is abelian.

• A condition for P (x, y) such that every solvable group satisfying
the law [x, y]P (x,y)ξ is (locally finite)-by-abelian.
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Notations

All notations concerning varieties of groups can be found in [23]. For
example A is the variety of all abelian groups and Ap is the variety of all
abelian groups of exponent p, where p is a prime number. Then An is a
variety of solvable groups of derived length less or equal to n. If e is a
positive integer, then Be is the variety of all groups of exponent dividing
e, and for an integer c ≥ 1, Nc is the variety of nilpotent groups of class
at most c.

If g, h, k are elements of a group G then we write gh = h−1gh and
gh+k = ghgk. Under this convention we have ghk = (gh)k. Multiplication
and addition of exponents is left and right distributive but not commuta-
tive. However, if G is a metabelian group and g lies in the commutator
subgroup of G then gh+k = gk+h and ghk = gkh for every h, k ∈ G.

As usual, [g, h] = [g,1 h] = g−1h−1gh = g−1+h and for every integer
c > 0 we define [g,c+1 h] = [[g,c h], h]. It can be proved by induction on c
that

[x,c+1 y] = [x, y](−1+y)c

= x(−1+y)c+1
. (1)

Commutator laws

We will use the commutator law (cf. [23] 33.34):

[xy, zt] = [x, t]y[y, t][x, z]yt[y, z]t (2)

and its particular forms (for t = 1 or y = 1):

[xy, z] = [x, z]y[y, z], [x, zt] = [x, t][x, z]t. (3)

We will also use the law:

[x, y−1] = [x, y]−y−1
. (4)

Definitions of a Milnor law

We identify a word w(x, y) ∈ F ′
2 with the group law w(x, y) ≡ 1.

One can find in the literature the following properties of the laws w(x, y):

(Mil 1) A variety of groups satisfying the law w(x, y) does not contain a
subvariety ApA for any prime p [7].

(Mil 2) Every metabelian group satisfying w(x, y) is nilpotent-by-(locally
finite of finite exponent) [7].
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(Mil 3) w(x, y) implies a law xP (y)ξ, where P (y) is a primitive polynomial
over Z, and ξ ∈ (〈x〉F2)′ [31]

Proposition 1.1. Conditions (Mil 1)–(Mil 3) are equivalent.

Proof. (Mil 1)⇒(Mil 2). Let W be a variety of groups satisfying a law
w(x, y). Groves in [7] proved that if a solvable variety does not contain any
ApA then every group in it is nilpotent-by-(finite exponent). Moreover,
Endimioni showed in [4] (Theorem 2 (v)) that if W satisfies (Mil 1), then
there exist c, e such that every solvable group in W belongs to NcBe.
Now, let G be a finitely generated metabelian group in W. Then G has
a normal nilpotent subgroup N such that G/N has a finite exponent.
The group G/N is finitely generated and metabelian. So by [8] G/N is
residually finite and by Zelmanov’s positive solution to the restricted
Burnside problem [38] G/N is finite. Hence G is nilpotent-by-(locally
finite of finite exponent).

(Mil 2)⇒(Mil 3). Let G be a metabelian group satisfying a law w(x, y).
So by assumption it is nilpotent-by-(finite exponent). Hence G has a
normal nilpotent subgroup N such that G/N has a finite exponent, e say.
Thus he ∈ N for every h ∈ G and [g, he] ∈ N for every g ∈ G. Since N is
nilpotent there exists c such that [[g, he],c he] ≡ 1. Hence w(x, y) implies
a law [x,c+1 ye]ξ, where ξ ∈ F ′′

2 . Thus w(x, y) implies a law x(−1+ye)c+1
ξ,

where ξ ∈ F ′′
2 . The law x(−1+ye)c+1

ξ satisfies condition (Mil 3) because
the polynomial P (y) = (−1 + ye)c+1 = (−1)c+1 + . . . + ye(c+1) is primitive
and ξ ∈ F ′′

2 ⊆ (〈x〉F2)′.
(Mil 3)⇒(Mil 1). Consider a group law xP (y)ξ, where P (y) = n0 +

n1y + . . . + nty
t is primitive and ξ ∈ (〈x〉F2)′. It is sufficient to show that

a wreath product Cp wr C ∈ ApA of a cyclic group of prime order p and
an infinite cyclic group does not satisfy the law xP (y)ξ. If Cp = 〈d〉 and
C = 〈c〉 then every element of Cp wr C has a unique representation of

the form d...+m−1ck
−1 +m0ck0 +m1ck1 +...cℓ. If we substitute x → d, y → c

then ξ(d, c) = 1 because ξ ∈ (〈x〉F2)′ and dci

, dcj

commute for every i, j.
Moreover, dP (c) = dn0+n1c+...+ntct

6= 1 since gcd(n0, . . . , nt) = 1, which
implies that at least one ni is not zero modulo p.

Definition 1.1. We say that w(x, y) is a Milnor law if it satisfies one
of the conditions (Mil 1)–(Mil 3).

Other conditions defining a Milnor law can be found in the literature,
see e.g. [2, 4, 5, 16–18]. A condition similar to the one of Point (Mil 3)
was used by Black [2]. However, Black wrote a word w(x, y) in two forms
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xP (y) and yQ(x), where P and Q are not necessary polynomials as they
may contain negative powers of y (and x respectively). It can be deduced
from ([34], Lemma 4.8) that w(x, y) is a Milnor law if and only if every
metabelian group satisfying it does not contain a free monoid on two
generators. A.I. Mal’tsev in [19] and independently Neumann and Taylor
[24] showed that every nilpotent group satisfies a positive law. Thus
w(x, y) is a Milnor law if and only if every solvable group satisfying it
satisfies a positive law.

The definition says that in the class of solvable groups every group
satisfying a Milnor law is nilpotent-by-(locally finite). There are some
papers in which authors describe larger classes of groups with this property.
For example Kim and Rhemtulla in [15] show that every residually finite
group satisfying a Milnor law is nilpotent-by-(finite exponent). Burns and
Medvedev extended this result to the class S [3]. The class S consists of
all soluble-by-(locally finite of finite exponent) groups and is closed under
the operators L and R, where for any group-theoretic class X , LX denotes
the class of all groups locally in X and RX the class of groups residually
in X . In particular, the class S contains all locally and residually finite
groups. The following Theorem is the consequence of Dichotomy Theorem
in [3].

Theorem 1.1 (Burns and Medvedev, Dichotomy Theorem, cf. [3]). If
w(x, y) is a Milnor law then every group in the class S satisfying the law
w(x, y) is nilpotent-by-(finite exponent).

2. A constructive condition for a Milnor law

In this section we give one more condition for a word in F ′
2 to be a

Milnor law. This condition allows us to check algorithmically whether a
given word is a Milnor law or not. Namely:

Theorem 2.1. Let w ∈ F ′
2. Then there exist integers m, n and a polyno-

mial P (x, y) over integers such that the word w equals to [x, y]P (x,y)x−my−n

modulo F ′′
2 . Therefore w is a Milnor law if and only if P (x, y) is primitive.

The proof of this theorem follows from two lemmas.

Lemma 2.1. Every word w ∈ F ′
2 is equal to [x, y]P (x,y)x−ny−m

ξ where
n, m are nonnegative integers, P (x, y) is a polynomial over Z and ξ ∈ F ′′

2 .

Proof. Every commutator word in F2 is a product of commutators of the
form [xk, yl]. So it is enough to prove the Lemma for commutators [xk, yl].
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We use commutator laws [ak, b] = [a, b]a
k−1+...+1 for k > 1, [a−1, b] =

[a, b]−a−1
and the fact that modulo F ′′

2 addition and multiplication of
exponents of [x, y] are commutative. Hence the commutator [xk, yl] is
equal to [x, y]Q(x,y)ξ where Q(x, y) belongs to Z[x, y, x−1, y−1] and ξ ∈ F ′′

2 .
Moreover, there exist nonnegative integers n, m such that Q(x, y) =
P (x, y)x−ny−m and P (x, y) is a polynomial over integers. Thus [xk, yl] =
[x, y]P (x,y)x−ny−m

ξ, as required.

Lemma 2.2. A word [x, y]P (x,y)x−my−n

ξ is a Milnor law if and only if
P (x, y) is primitive.

Proof. As we showed in Lemma 2.1 every word w ∈ F ′
2 is equal to

[x, y]P (x,y)x−my−n

ξ where ξ lies in F ′′
2 and P (x, y) is a polynomial with

integer coefficients. It is clear that the law w(x, y) is equivalent modulo F ′′
2

to [x, y]P (x,y) and the law w(x, y) is a Milnor law if and only if [x, y]P (x,y)

is a Milnor law.

First we prove that if P (x, y) is non-primitive then w is not a Milnor
law. It suffices to show that there exists a prime p such that every group
in ApA satisfies the law [x, y]P (x,y). If P (x, y) is non-primitive then there
exist p and a polynomial R(x, y) such that P (x, y) = pR(x, y). Hence
modulo F ′′

2 :

[x, y]P (x,y) = [x, y]pR(x,y) = ([x, y]R(x,y))p ∈ (F ′
2)p.

So [x, y]P (x,y) is a law in the variety ApA, whence it is not a Milnor law
(by (Mil 1)).

Conversely, let P (x, y) = m1xk1yl1 + m2xk2yl2 + . . . + msxksyls be
primitive. We can assume that li 6= lj for i 6= j. If not, choose n which
does not divide all li − lj > 0 and substitute x→ ynx, y → y. Then we
get [ynx, y]P (ynx,y) = [x, y]P (ynx,y) and

Q(x, y) := P (ynx, y) = m1xk1yl1+nk1 +m2xk2yl2+nk2 +. . .+msxksyls+nks .

Polynomials P (x, y) and Q(x, y) have the same coefficients and now the
exponents l′i = li + nki in the polynomial Q(x, y) are different. Moreover
laws [x, y]P (x,y) and [x, y]Q(x,y) are equivalent.

If we substitute x→ [x, y], we get the law [x,2 y]Q([x,y],y) = [x,2 y]Q(1,y)

and the polynomial Q(1, y) has the same coefficients as Q(x, y) and
P (x, y). Moreover, [x,2 y]Q(1,y) = x(−1+x)2Q(1,y) and if P (x, y) is primitive
then (−1 + x)2Q(1, y) is also primitive. So by condition (Mil 3) w(x, y) is
a Milnor law.
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3. The condition for Engel commutators

In this section we give one more condition for a commutator word to
be a Milnor law. Namely:

Theorem 3.1. Every word w(x, y) in F ′
2 can be expressed in the form

w(x, y) =
(

∏

[x,l y,k x]blk

)x−ny−m

ξ where n, m are nonnegative integers,

blk are integers and ξ ∈ F ′′
2 .

Moreover, w(x, y) =
(

∏

[x,l y,k x]blk

)x−ny−m

ξ is a Milnor law if and

only if exponents blk are coprime.

We divide the proof into several consecutive steps.

Lemma 3.1. Every word w(x, y) in F ′
2 can be expressed in the form

w(x, y) =
(

∏

[x,l y,k x]blk

)x−ny−m

ξ where n, m are nonnegative integers,

blk are integers and ξ ∈ F ′′
2 .

Proof. By Lemma 2.1 every word w ∈ F ′
2 is equal to [x, y]P (x,y)x−ny−m

ξ.
We show that [x, y]P (x,y) can be expressed modulo F ′′

2 in the form
∏

[x,l y,k x]blk . It is enough to prove that [x, y]x
kyl

has the required form.

Indeed, modulo F ′′
2 we have [x, y]x

kyl

= [x, y]y
lxk

and since [x,r y]y =

[x,r y][x,r+1 y] the word [x, y]y
l

is the product of words of the form [x,t y].

Similarly, every word [x,t y]x
k

is the product of words [x,t y,s x].

Lemma 3.2. The following equalities holds modulo F ′′
2 :

1) [x,l1 y,k1 x,l2 y,k2 x, . . . ,ls y,ks
x] = [x,l1+...+ls y,k1+...+ks

x],

2)
∏

k,l[x,l y,k x]blk = [x, y]
∑

k,l
blk(x−1)k(y−1)l−1

.

Proof. Indeed, modulo F ′′
2 we have

[x,l1 y,k1 x,l2 y,k2 x, . . . ,ls y,ks
x]

= [x, y](y−1)l1−1(x−1)k1 (y−1)l2 (x−1)k2 ...(y−1)ls (x−1)ks

= [x, y](y−1)l1+...+ls−1(x−1)k1+...+ks

= [x,l1+...+ls y,k1+...+ks
x].

The second equality is clear.
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Now we show how to rewrite the word [x, y]P (x,y) as a product of
commutators of the form [x,l y,k x]. There are three ways. The first one
follows from the proof of Lemma 3.1. The second one uses the Taylor’s
formula and is explained in Section 6. The third one is the matrix method.
We explain it now since it is useful to prove the main theorem of this
section.

By equality 2) of Lemma 3.2, in order to write [x, y]P (x,y) on the
form

∏

[x,l y,k x]blk we have to express the polynomial P (x, y) in the form
P (x, y)=

∑

blk(x−1)k(y−1)l−1.
Let us consider the following (upper unitriangular) matrix:

A =































1 1 1 1 . . . 1 1

0 1
(2

1

) (3
1

)

. . .
(n−1

1

) (n
1

)

0 0 1
(3

2

)

. . .
(n−1

2

) (n
2

)

...
...

...
...

. . .
...

...

0 0 0 0 . . . 1
( n

n−1

)

0 0 0 0 . . . 0 1































,

that is A = [aij ](n+1)×(n+1), such that aij =
(i−1

j−1

)

for i, j ∈ {1, . . . , n + 1}.
If f(x) = a0 + a1x + . . . + anxn = b0 + b1(x− 1) + . . . + bn(x− 1)n, then
we have

[b0, . . . , bn]t = A[a0, . . . , an]t.

Let Z[x]n, Z[y]n denote the free Z-module of polynomials of one
variable of degree less than or equal to n and let Z[x, y]n be the Z-module
of polynomials G(x, y) = a1xk1yl1 + a2xk2yl2 + . . . + asxksyls such that
ki ≤ n and li ≤ n for i = 1, . . . , s.

Lemma 3.3. Every polynomial

G(x, y) = a00 + . . . + aklx
kyl + . . . + annxnyn ∈ Z[x, y]n

can be written in the form

G(x, y) = b00 + . . . + bkl(x− 1)k(y − 1)l + . . . + bnn(x− 1)n(y − 1)n,

where

[b00, . . . , bkl, . . . , bnn]t = (A⊗A)[a00, . . . , akl, . . . , ann]t,

and A⊗A is the tensor product of matrix A by A.
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Proof. It is clear that Z[x, y]n as the Z-module is isomorphic to the
tensor product Z[x]n ⊗Z Z[y]n. Hence the matrix which changes the basis
{1, . . . , xkyl, . . . , xnyn} into the basis {1, . . . , (x − 1)k(y − 1)l, . . . , (x −
1)n(y − 1)n} is the tensor product of the matrix which changes the basis
{1, . . . , xn} into the basis {1, . . . , (x − 1)n} (that is A) by the matrix
which changes the basis {1, . . . , yn} into the basis {1, . . . , (y − 1)n} (that
is also A).

Lemma 3.4. Let [x, y]P (x,y) =
∏

k,l[x,l y,k x]blk modulo F ′′
2 . Then the

polynomial P (x, y) is primitive if and only if exponents blk are coprime.

Proof. We have by Lemma 3.3:

[b00, . . . , bkl, . . . , bnn]t = (A⊗A)[a00, . . . , akl, . . . , ann]t.

Moreover, A is the upper unitriangular matrix, so the matrix A⊗ A is
also upper unitriangular. Hence A ⊗ A has the determinant equal to 1
and defines the automorphism of the free abelian group Z

n2
.

By [25] (Theorem II.1, p.13) a vector [a00, . . . , akl, . . . , ann] has coprime
coefficients if and only if it can be extended to a basis of the free abelian
group Z

n2
. The lemma follows since the automorphism maps every basis

onto another basis.

Proof of Theorem 3.1.

By Theorem 2.1 w(x, y) = [x, y]P (x,y)ξ =
∏

k,l[x,l y,k x]blkζ is a Milnor
law if and only if P (x, y) is primitive and by Lemma 3.4 P (x, y) is primitive
if and only if exponents blk are coprime.

4. Varieties without non-abelian nilpotent groups

As an application of Theorem 2.1 we give a criterion for a word w(x, y)
to satisfy the condition that every nilpotent group satisfying w(x, y) is
abelian.

Proposition 4.1. Let w be a word in F2. If every nilpotent group satis-
fying the law w(x, y) is abelian then w(x, y) is a Milnor law.

Proof. Every variety ApA contains a finite non-abelian nilpotent group of
order p3. So the variety W defined by the law w satisfying the hypothesis
does not contain any ApA. Thus w(x, y) is a Milnor law.
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Corollary 4.1. If every nilpotent group satisfying a law w(x, y) is abelian
then every metabelian group satisfying the law is abelian-by-(locally finite).

Proof. By Proposition 4.1 if every nilpotent group satisfying w(x, y) is
abelian then w(x, y) is a Milnor law. Hence by the condition (Mil 2)
every metabelian group in W is nilpotent-by-(finite exponent) and by the
hypothesis it is abelian-by-(finite exponent). Let G be a finitely generated,
metabelian group satisfying w(x, y) and let N be an abelian, normal
subgroup of G such that G/N has finite exponent. The group G/N is
a finitely generated metabelian group. By [8] every finitely generated
solvable group is residually finite. So G/N is residually finite of finite
exponent and by Zelmanov’s positive solution of the restricted Burnside
problem [38] it is finite.

Proposition 4.2. A word w(x, y) = [x, y]f(x,y)x−ny−m

ξ, where ξ ∈ F ′′
2

belongs to γ3(F2) if and only if f(1, 1) = 0.

Proof. Every element of γ3(F2) is a product of commutators [a, b, c], where
a, b, c are arbitrary words in F2. We have an equality [a, b, c] = [a, b]−1+c

and for g(x, y) = 1− c(x, y) we have g(1, 1) = 1− c(1, 1) = 0.
Conversely, if f(1, 1) = 0, then f(x, y) = (−1 + x)a(x, y) + (−1 +

y)b(x, y) for some polynomials a(x, y), b(x, y) ∈ Z[x, y] (it can be deduced
from Lemma 3.3). Hence

[x, y]f(x,y)x−ny−m

= [x, y](−1+x)a(x,y)x−ny−m

[x, y](−1+y)b(x,y)x−ny−m

= [x, y, x]a(x,y)x−ny−m

[x, y, y]b(x,y)x−ny−mη,

where η ∈ F ′′
2 . Since F ′′

2 ⊆ γ3(F2) we have [x, y]f(x,y)x−ny−m

∈ γ3(F2).

Lemma 4.1. Let w(x, y) = [x, y]f(x,y)x−ny−m

ξ where f(x, y) ∈ Z, n, m
are nonnegative integers and ξ ∈ F ′

2. Then every nilpotent group satisfying
the law w(x, y) is abelian if and only if every nilpotent group satisfying
[x, y]f(x,y) is abelian.

Proof. First assume that every nilpotent group satisfying [x, y]f(x,y)x−ny−m

ξ
is abelian. Let G be a nilpotent group satisfying [x, y]f(x,y). The group G
is nilpotent so it is solvable. We show that G must be metabelian.

Let us assume that G is not metabelian. There exists n such that
G(n+1) = 1 and G(n) 6= 1. Thus G(n−1) is metabelian and it satisfies
laws [x, y]f(x,y) and ξ for every ξ ∈ F ′′

2 . Hence, it satisfies also the law
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[x, y]f(x,y)x−ny−m

ξ. So G(n−1) is abelian and G(n) = 1, which is a contra-
diction.

Thus G is metabelian and it satisfies the law [x, y]f(x,y)x−ny−m

ξ, so G
is abelian.

The proof of the converse implication is similar.

Theorem 4.1. Let w(x, y) = [x, y]f(x,y)x−nx−m

ξ where f(x, y) ∈ Z[x, y],
n, m are nonnegative integers and ξ ∈ F ′

2. Then every nilpotent group
satisfying the law w(x, y) is abelian if and only if f(1, 1) = ±1.

Proof. By Lemma 4.1 it is sufficient to consider the law [x, y]f(x,y).
Let f(1, 1) = d. Then [x, y]f(x,y) can be written in the form [x, y]dv(x, y)

where v(x, y) = [x, y]g(x,y) and g(x, y) is a polynomial with g(1, 1) = 0.
Thus by Proposition 4.2 v(x, y) lies in γ3(F2).

We have three cases.
Case 1. d = ±1. Then the law [x, y]f(x,y) has the form [x, y]±1v(x, y)

for some v(x, y) ∈ γ3(F2). Let G be a nilpotent group satisfying the law
[x, y]±1v(x, y). We show by induction on the class of nilpotency of G
that G is abelian. Let G be a nilpotent group of class 2 satisfying the
law [x, y]±1v(x, y), then G satisfies the law v(x, y) and it satisfies the law
[x, y]±1. Thus G is abelian.

Now, let us assume that every nilpotent group of nilpotency class less
than c > 2 satisfying the law [x, y]f(x,y) is abelian and let G be a nilpotent
group of class c satisfying [x, y]f(x,y). Then γc+1(G) = 1 and G/γc(G) is
nilpotent of class c − 1. So G/γc(G) is abelian. Thus γc(G) ⊇ G′ and
because the opposite inclusion is also valid we have γc(G) = G′ = γ2(G).
Hence γc+1(G) = [γc(G), G] = [γ2(G), G] = γ3(G) = 1 and G is of class 2.
So G is abelian.

Case 2. d = 0. Then [x, y]f(x,y) = v(x, y) ∈ γ3(F2) and every nilpotent
group of class 2 satisfies the law v(x, y). So a nilpotent group satisfying
the law [x, y]f(x,y) need not be abelian.

Case 3. |d| > 1. Let p be any prime divisor of d. Let G be a group of
3×3 (upper) unitriangular matrices UT (3, p) over a prime field of order p.
Then G is nonabelian, nilpotent group , satisfying the law [x, y]p. Hence
G also satisfies [x, y]f(x,y).

Case 1 shows that if f(1, 1) = ±1 then every nilpotent group satisfying
the law [x, y]f(x,y) is abelian. Cases 2 and 3 show that if f(1, 1) 6= 1 then
there are nilpotent non-abelian groups satisfying the law [x, y]f(x,y).

Now, we show a few examples of varieties each nilpotent group in
which is abelian.
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4.1. A variety of A-groups

A finite group is called an A-group if all its Sylow p-subgroups are
abelian (cf. [35]). Ol’shanskii in [26] studied varieties in which every group
is residually finite. He proved the following theorem:

Theorem 4.2 (A. Yu. Ol’shanskii, cf. [26]). Let V be a variety of groups.
Then every group in V is residually finite if and only if V is generated by
a finite A-group.

The question is what can be said about a variety of groups in which
every finite group is an A-group. And the answer is:

Proposition 4.3. Let V be a variety of groups. Then every finite group
in V is an A-group if and only if every nilpotent group in V is abelian.

Proof. It is clear that if every nilpotent group in V is abelian then every
finite group in V is an A-group.

Now, let every finite group in the variety V be an A-group. Then
every finite nilpotent group in V is abelian.

Let G be a non-abelian nilpotent group in V. Then there exists a
two generated nonabelian nilpotent subgroup H of G. By Hirsch theorem
([37], 2.13), H is polycyclic. By another Hirsch theorem ([33], 5.4.18) H
has a non-abelian finite (nilpotent) image, which is a contradiction.

Ol’shanskii posed the question whether a variety in which every finite
group is an A-group has a finite basis of identities ([14], 4.48).

4.2. Pseudo-abelian laws

We say that a law w(x, y) is a pseudo-abelian law if every metabelian
group satisfying it is abelian but there are non-abelian groups satisfying
this law. Oates showed that w(x, y) is pseudo-abelian if and only if every
finite group satisfying w(x, y) is abelian ([23], 21.4). Neumann posed
the question whether there exist pseudo-abelian laws ([23], Problem 5).
O’lshanskii in ([27], section 9.29) gave the positive answer to this question.

Proposition 4.4. If w(x, y) is a pseudo-abelian law then every nilpotent
group satisfying it is abelian.

Proof. Every nilpotent group is solvable. So if G is a nilpotent group
satisfying w(x, y) then there exists n such that G(n) = 1 and G(n−1) 6= 1.
Let us assume that G is not abelian. Then G(n−2) is metabelian and it
satisfies w(x, y). Hence G(n−2) is abelian and G(n−1) = 1, a contradiction.
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4.3. Laws of the form u(x, y)v(x, y) ≡ v(x, y)u(x, y)

Let u, v be words in F2. We consider laws of the form u(x, y)v(x, y) ≡
v(x, y)u(x, y). The question is: for which words u, v the law u(x, y)v(x, y) ≡
v(x, y)u(x, y) is equivalent to the abelian law, that is every group sat-
isfying u(x, y)v(x, y) ≡ v(x, y)u(x, y) is abelian. For example Gupta [9]
showed that groups satisfying the law [x, y] ≡ [x,n y] for n = 2, 3 are
abelian and asked whether the laws [x, y] ≡ [x,n y] for n ≥ 4 are equivalent
to the abelian law. This question is still open. Next Ghandi, Moravec and
Tomkinson and Kappe investigated laws of the form [x, y] ≡ [a, b, c] or
[x, y] ≡ [a, b, c, d] where a, b, c, d ∈ {x±1, y±1} [6,13,22]. They proved that
all these laws are equivalent to the abelian law. All laws considered in
their papers are of the form [u, x±1] ≡ [x, y] or [u, y±1] ≡ [x, y]. If a law
has the form [u, y] ≡ [x, y], then we can transform it as follows:

[u, y] ≡ [x, y]

←→ u−1y−1uy ≡ x−1y−1xy ←→ u−1y−1u ≡ x−1y−1x

←→ xu−1y−1 ≡ y−1xu−1 ←→ (xu−1)y ≡ y(xu−1).

So it can be written in the form ab ≡ ba where a = y and b = xu−1.
Psomopoulos in [32] investigated laws of the form xt[xn, y] ≡ [x, ym]xs

in rings. He showed that in many cases rings satisfying such laws are
commutative. For example, if m and n are coprime then every ring
satisfying the law xt[xn, y] ≡ [x, ym]xs is commutative ([32], Theorem 2).
He also noticed that the last statement for groups may not be true. For
example, the symmetric group on three symbols, which is non-abelian
satisfies the law x6[x7, y] ≡ [x, y]x6. However, he showed that in some
cases groups satisfying such laws are abelian. The following proposition
describes such case.

Proposition 4.5 ([32], Theorem 3). Every group satisfying a law [xn, y] ≡
[x, yn+1] is abelian.

Proof. First we substitute yx for x and obtain [(yx)n, y] ≡ [yx, yn+1] =
[x, yn+1] ≡ [xn, y]. Hence we get the law [(yx)n, y] ≡ [xn, y]. Now we
replace y by yx−1 and get [yn, yx−1] ≡ [xn, yx−1]. Thus [yn, x−1] ≡
[xn, y]x

−1
and [yn, x]−x−1

≡ [xn, y]x
−1

. We conjugate the last law by x
and get [yn, x]−1 ≡ [xn, y]. Thus we have

[x, yn+1] ≡ [xn, y] ≡ [yn, x]−1 = [x, yn]

and it is easy to check that the law [x, yn+1] ≡ [x, yn] is equivalent to the
abelian law.
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We can see that every law of the form [xk, yn] ≡ [xm, yl] is equivalent
to a law of the form uv ≡ vu, which is actually positive. Namely

Proposition 4.6. Laws [xk, yn] ≡ [xm, yl] and (xkyl)(xmyn) ≡
(xmyn)(xkyl) are equivalent.

Proof. We transform the second law as follows:

(xkyl)(xmyn) ≡ (xmyn)(xkyl)

←→ x−mylxmy−l ≡ x−kynxky−n ←→ [xm, y−l] ≡ [xk, y−n].

After the substitution y → y−1 we get [xk, yn] ≡ [xm, yl].

Now, we give conditions for words u, v providing that every group
satisfying the law uv ≡ vu is abelian. Note that words u(x, y) and v(x, y)
can be written as u(x, y) = xkylc, v(x, y) = xmynd where m, n are integers
and c, d are commutator words.

Proposition 4.7. Let u(x, y) = xkylc, v(x, y) = xmynd where c, d are

integers and c, d are commutator words. If W =

∣

∣

∣

∣

∣

k l
m n

∣

∣

∣

∣

∣

= ±1 then

a law u(x, y)v(x, y) ≡ v(x, y)u(x, y) is a Milnor law. Moreover, every
nilpotent group satisfying such a law is abelian.

Proof. We can write the law xkylcxmynd ≡ xmyndxkylc in the form:

[xmyn, xkyl] ≡ c[c, xmyn]dc−1[d, xkyl]d−1. (5)

The word on the right side of (5) belongs to γ3(F2). Indeed, [c, xmyn]
and [d, xkyl] are in γ3(F2) since c, d lie in F ′

2. Hence

c[c, xmyn]dc−1[d, xkyl]d−1 = (c[c, xmyn]c−1)cdc−1d−1(d[d, xkyl]d−1)

belongs to γ3(F2) since cdc−1d−1 ∈ F ′′
2 ⊆ γ3(F2). Thus by Proposition

4.2 the right side of (5) can be written in the form [x, y]f(x,y) where
f(1, 1) = 0. The word [xmyn, xkyl] modulo F ′′

2 equals

[xmyn, xkyl] = [xm, yl]y
n

[yn, xk]y
l

= [x, y](1+...+xm−1)(1+...+yl−1)yn+(1+...+xk−1)(1+...+yn−1)yl

Thus the law (5) can be written in the form [x, y]g(x,y)−f(x,y) ≡ 1 where
g(x, y) = (1+ . . .+xm−1)(1+ . . .+yl−1)yn +(1+ . . .+yn−1)(1+ . . .+y)yl.
Consequently, g(1, 1) − f(1, 1) = g(1, 1) = ml − kl = −W = ±1. So
g(x, y)− f(x, y) is primitive and by Theorem 2.1 uv ≡ vu is a Milnor law.
Moreover, by Theorem 4.1, every nilpotent group satisfying this law is
abelian.
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The next two propositions show that condition W = ±1 is necessary
but not sufficient for the identity uv ≡ vu to be equivalent to the abelian
identity.

Proposition 4.8. Let u = xkylc, v = xmynd be words in F2 where
c, d ∈ F ′

2. If the law uv ≡ vu is equivalent to the abelian law then
∣

∣

∣

∣

∣

k l
m n

∣

∣

∣

∣

∣

= ±1.

Proof. Let

∣

∣

∣

∣

∣

k l
m n

∣

∣

∣

∣

∣

= t 6= ±1. Then there exists a prime number p

dividing t. Let G be the group of 3× 3 (upper) unitriangular matrices
UT (3, p). The group G is nilpotent of class 2 and satisfies the following
identities:

[xy, z] ≡ [x, z][y, z], [x, yz] ≡ [x, y][x, z], [x, y]p ≡ 1, [xc, yd] ≡ [x, y],

for every c, d ∈ F ′
2. Thus:

[u, v] = [xkylc, xmynd] ≡ [x, y]kn−ml = [x, y]t ≡ 1.

So G is a non-abelian nilpotent group satisfying uv ≡ vu, a contradiction.

Proposition 4.9. Let un = x−1[x,n y] and vn = y−1[y,n x] where n is a
positive integer. Then the symmetric group S3 satisfies laws unvn ≡ vnun

for n ≥ 1 and W = ±1.

Proof. The symmetric group S3 is metabelian and satisfies the following
laws:

[x, y]3 ≡ 1, [x, y]x ≡ [x, y]x
−1

, [x, y]xy+x+y+1 ≡ 1, [x,2 y] ≡ [x,3 y]. (6)

Thus the group S3 also satisfies laws

[x,2 y] ≡ [x,n y], (7)

for every integer n > 1. By the law (2) we get

[un, vn] = [x−1[x,n y], y−1[y,n x]]

= [x−1, [y,n x]][x,ny][[x,n y], [y,n x]][x−1, y−1][x,ny][y,nx][[x,n y], y−1][y,nx].

Since S3 is metabelian it satisfies the laws [x, y]c ≡ [x, y] where c ∈ F ′
2. So,

we get [un, vn] ≡ [x−1, [y,n x]][x−1, y−1][[x,n y], y−1]. Next, we use (4) and
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obtain [un, vn] ≡ [y,n+1 x]x
−1

[x, y]x
−1y−1

[x,n+1 y]−y−1
. Now by the law (7)

we get [un, vn] ≡ [y,2 x]x
−1

[x, y]x
−1y−1

[x,2 y]−y−1
, and using the law (1)

for c = 1 we have [un, vn] ≡ [x, y]x
−1y−1−x−1(−1+x)−y−1(−1+y). Hence, by

laws (6):

[un, vn] ≡ [x, y]xy+x+y−2 ≡ [x, y]xy+x+y+1 ≡ 1.

So S3 satisfies all laws [un, vn] ≡ 1. Moreover W =

∣

∣

∣

∣

∣

−1 0
0 −1

∣

∣

∣

∣

∣

= 1.

4.4. SM-varieties

Let w(x1, . . . , xn) be a word in n variables and let G be any group. A
word w defines an n- ary operation f in G in the following way:

f : Gn → G, f(g1, . . . , gn) = w(g1, . . . , gn).

We define fσ(g1, . . . , g1) = (g1σ , . . . , gnσ ) for σ ∈ Sn. We say that f is n-
symmetric in G if fσ = f for every σ ∈ Sn. In other words, the operation
f is symmetric if and only if w ≡ wσ is the identity in the group G for
every σ ∈ Sn. Then w is called a symmetric word in G.

We say that G is an SM -group if the group operation xy in G is
a composition of symmetric operations (not necessarily with the same
number of arguments), that is there are symmetric words w, w1, . . . , wn

such that x · y ≡ w(w1, . . . , wn) is a law in G. It is clear that all abelian
groups are SM -groups. We can also show the following fact:

Proposition 4.10. If G is an SM -group then every group in var(G) is
an SM -group.

Proof. It is clear because both x ·y ≡ w(w1, . . . , wn) and symmetric words
are identities in G.

So we can define SM -variety as the variety of groups in which every
group is an SM -group.

Marczewski asked whether only abelian groups are SM -groups (see
[20]). Płonka gave in [28] an example of a non-abelian SM -group. But
which groups are SM -groups is still the question (see [29]). It follows
from [28] that

Proposition 4.11. The variety A3A2 is an SM -variety.

Proof. Płonka showed that S3 is an SM -group. The variety var(S3) is
A3A2, so by Proposition 4.10 it is an SM -variety.
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In [30] Płonka described symmetric words in nilpotent groups of class
at most 3 and from his description we get:

Proposition 4.12. Let V be a variety of groups. If V is an SM -variety
then every nilpotent group in V is abelian.

One can find a description of symmetric words in several groups in
[10–12,36].

5. (Locally finite)-by-abelian groups

In this section we give a condition for a Milnor law w(x, y) such that
every metabelian group satisfying the law w(x, y) is (locally finite)-by-
abelian. We prove

Theorem 5.1. Let w(x, y) = [x, y]P (x,y) be a law which modulo F ′′
2

implies two laws [x,2 y]P (y) and [x,2 y]Q(y). If P (y) and Q(y) are coprime
and P (1, 1) 6= 0 then w(x, y) implies modulo F ′′

2 a law [x, y]n for some
n. In particular, every metabelian group satisfying w(x, y) is (locally
finite)-by-abelian.

We will first prove some auxiliary statements.

Lemma 5.1. If a metabelian group G satisfies laws [x, y]P (x,y) and
[x, y]Q(x,y) then it also satisfies a law [x, y]A(x,y)P (x,y)+B(x,y)Q(x,y), where
A(x, y) and B(x, y) are polynomials over integers.

Proof. It suffices to observe that a law [x, y]P (x,y) implies [x, y]mxkylP (x,y)

for all integers m, k, l and if [x, y]H(x,y) and [x, y]K(x,y) are laws in G then
[x, y]H(x,y)+K(x,y) is also the law in G.

Lemma 5.2. Let G be a metabelian group satisfying laws [x, y]P (x,y) and
[x,2 y]n then G also satisfies the law [x, y]nP (1,1).

Proof. It follows from [23], 34.33 that if [x,2 y]k ≡ 1 is a law then
[x, y, x]k ≡ 1 also is a law. Therefore in metabelian groups for a ∈ {x, y}
we have [[x, y]n, a] = [x, y, a]n = 1 and [x, y]na = [x, y]n. Now we raise
[x, y]P (x,y) to the power n and obtain the law

[x, y]nP (x,y) = [x, y]n(m1xk1 yl1 +m2xk2 yl2 +...+msxks yls )

= [x, y]n(m1+m2+...+ms),

and since m1 + . . . + ms = P (1, 1), the statement follows.
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Proof of Theorem 5.1. If P (y) and Q(y) are coprime then there exist
polynomials A(y), B(y) with rational coefficients such that

A(y)Q(y) + B(y)P (y) = 1.

Thus there exists an integer n such that both nA(y) and nB(y) have
integer coefficients and

(nA(y))Q(y) + (nB(y))P (y) = n.

By Lemma 5.1 a law w(x, y) implies a law

[x,2 y](nA(y))Q(y)+(nB(y))P (y)) = [x,2 y]n,

and by Lemma 5.2 it implies a law [x, y]nP (1,1) which is nontrivial since
by assumption P (1, 1) 6= 0.

Corollary 5.1. Let w(x, y) = [x, y]P (x,y) be a law which modulo F ′′
2 im-

plies two laws [x,2 y]P (y) and [x,2 y]Q(y) such that P (y), Q(y) are coprime
and P (1, 1) 6= 1. If w(x, y) is a Milnor law and G is a finitely generated
metabelian group satisfying w(x, y) then G is finite-by-abelian. Moreover,
there exists a positive integer d such that w(x, y) implies modulo F ′′

2 laws
[xd, y] ≡ 1 and [x, y]d ≡ 1.

Proof. Let G be a finitely generated free group in a variety of all groups
satisfying a law w(x, y) ≡ 1. It is proved in [16] (Theorem 3) that a
finitely generated metabelian group satisfying a Milnor law has a finitely
generated commutator subgroup G′. So it follows from Theorem 5.1 that
G′ is finite and abelian and thus it satisfies a law [x, y]n, where n is an
exponent of G′.

Since G′ is finite, then there exist integers k, l such that 0 ≤
k < l and [xk, y] = [xl, y]. Hence we get [x, y]1+x+...+xk−1

=

[x, y]1+x+...+xl−1
and [x, y]x

k+...+xl−1
= [x, y]x

k(1+x+...+xl−k−1). Conse-

quently [x, y]1+x+...+xl−k−1
= [xl−k, y]. If d = l − k then from a law

[xd, y] = [x, y]1+x+...+xd−1
, by substituting x→ [x, y], we get a law [x,2 y]d

. Thus n|d and [x, y]d is a law in G.

In practise, there are many ways for obtaining polynomials P (y)
and Q(y) satisfying hypotheses of Theorem 5.1. One of the methods is
described in Propositions 5.1 and 5.2 below.

Proposition 5.1. Let P (x, y) be any polynomial over integers and let
P (y) = P (1, y), Q(y) = ytP (1/y), where t is a degree of P (y). Then a
law [x, y]P (x,y) implies (modulo F ′′

2 ) laws [x,2 y]P (y) and [x,2 y]Q(y).
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Proof. We substitute x→ [x, y] in [x, y]P (x,y) and we get modulo F ′′
2 :

[[x, y], y]P ([x,y],y) = [x,2 y]P (1,y) = [x,2 y]P (y).

Now we substitute y−1 for y and we obtain:

[x,2 y−1]P (y−1). (8)

So

[x,2 y−1] = [[x, y−1], y−1]

= [[x, y]−y−1
, y]−y−1

= [[x, y]−1, y]−y−2
= [x, y, y][x,y]−1y−2

.

Thus modulo F ′′
2 we have [x,2 y−1] = [x, y, y]y

−2
. So the word (8) is equal

to [x,2 y]y
−2P (1/y). If t is a degree of P (y) then we conjugate [x,2 y]y

−2P (1/y)

by yt+2 getting [x,2 y]y
tP (1/y) = [x,2 y]Q(y), which is the second law.

Proposition 5.2. Let P (x, y) be a polynomial such that P (y) = P (1, y) =
n0 +n1y + . . .+nty

t is not divisible over complex numbers by a polynomial
of the form y2 + zy + 1. Then polynomials P (y) and Q(y) = ytP (1/y) are
coprime. If, moreover, P (1) 6= 1 then the law [x, y]P (x,y) implies a law
[x, y]n for some integer n.

Proof. Suppose that P (y) and Q(y) are not coprime. Then P (y) and Q(y)
have a common complex root α. We can assume that α 6= 0. But if α is
a root of Q(y) = ytP (1/y) then α−1 is a root of P (y). Thus α and α−1

are roots of P (y) and (y − α)(y − α−1)|P (y). But (y − α)(y − α−1) =
y2 + zy + 1, where z = α + α−1 and by assumption it does not divide
P (y), a contradiction.

Example 5.1. Let w(x, y) = x−2y−3xy2xy. Then modulo F ′′
2

w(x, y) = [x2, y3][y3, x][x, y]

= [x, y](1+x)(1+y+y2)−(1+y+y2)+1 = [x, y]1+x+xy+xy2
.

Thus P (y) = 2 + y + y2 and Q(y) = 1 + y + 2y2. Using the Euclidean
algorithm we get:

(5− 2y)P (y) + (y − 2)Q(y) = 8.

Hence by Theorem 5.1 we get the law [x,2 y]8 ≡ 1 and since P (1, 1) = 4
we get by Lemma 5.2 the law [x, y]32 ≡ 1 modulo F ′′

2 .
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We can improve the above result. First, we substitute xy for y in w(x, y)
and we get w(x, xy) = [x, y]1+x+x2y+x3y2

. Next, we substitute [y, x] for y
and we obtain [x, [y, x]]1+x+x2+x3

= [y,2 x]−(1+x+x2+x3). We interchange
x and y, invert and we get [x,2 y]1+y+y2+y3

. If use the Euclidean algorithm
to 1 + y + y2 + y3 and 2 + y + y2 then we get α(x)(1 + y + y2 + y3) +
β(x)(2 + y + y2) = 4. Hence [x,2 y]4 ≡ 1 and finally [x, y]16 ≡ 1.

6. Algorithms and examples

Now we present two algorithms which summarize the steps from
sections 2 and 3. We call the first one a Milnor algorithm.

Algorithm I

Data: a binary word w(x, y) = xk1yl1xk2yl2 . . . xksyls in F ′
2.

Question: is w(x, y) a Milnor law?

Step 1. Write the word w(x, y) as the product of commutators:

w(x, y) = [xq2 , yp1 ]−1[xq2 , yp2 ][xq3 , yp2 ]−1 . . . [xqs , yps−1 ]−1[xqs , yps ], (9)

where qi = ki + . . . + ks, pi = li + . . . + ls for i = 1, . . . , s.

Step 2. Write every commutator [xm, yn] in (9) in the form [x, y]q(x,y)

(modulo F ′′
2 ), where

— if m, n > 0 then q(x, y) = (1 + . . . + xm−1)(1 + . . . + yn−1),

— if m>0, n<0 then q(x, y)=−(1+. . .+xm−1)(1+. . .+y|n|−1)yn,

— if m<0, n>0 then q(x, y)=−(1+. . .+x|m|−1)(1+. . .+yn−1)xm,

— if m, n < 0 then q(x, y) = (1 + . . . + x|m|−1)(1 + . . . +
y|n|−1)xmyn.

Step 3. Calculate Q(x, y) which is the sum of all functions obtained in
Step 2.

Step 4. Express Q(x, y) in the form Q(x, y) = P (x, y)x−my−n where
m, n are nonnegative integers and

P (x, y) = m1xs1yt1 + m2xs2yt2 + . . . + mrxsr ytr

is a polynomial over integers.

Step 5. w(x, y) is a Milnor law if and only if gcd(m1, . . . , mr) = 1.

Step 6. Every nilpotent group satisfying the law w(x, y) is abelian if
and only if P (1, 1) = m1 + . . . + mr = 1.
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Example 6.1. w(x, y) = xy2x2yx−1y−2x−2y−1.

• w(x, y) = [x−1, y−2][x−3, y−2]−1[x−3, y−3][x−2, y−3]−1[x−2, y−1]

• [x−1, y−2] = [x, y](1+y)x−1y−2

[x−3, y−2]−1 = [x, y]−(1+x+x2)(1+y)x−3y−2

[x−3, y−3] = [x, y](1+x+x2)(1+y+y2)x−3y−3

[x−2, y−3]−1 = [x, y]−(1+x)(1+y+y2)x−2y−3

[x−2, y−1] = [x, y](1+x)x−2y−1
,

• Q(x, y) = x−1y−1 − x−2y−2 + x−3y−3 = (1 − xy + x2y2)x−3y−3,
P (x, y) = 1− xy + x2y2,

• w(x, y) is a Milnor law since all the coefficients of P (x, y) are equal
to ±1. Moreover P (1, 1) = 1, so every nilpotent group satisfying
w(x, y) is abelian.

Example 6.2. While Example 6.1 was done by hand, the second one is
generated by a computer program (written in C language).

w(x, y) = xyx−1y−1xy2xy−1x−3y−1xyx−1y−1xyx2yx−1y−1x−1y−1.

• w(x, y) = [x−1, y−1][x−1, y−2][x−2, y−2]−1[x−2, y−1][x, y−1]−2

[x−2, y−1]−1[x−2, y−2][x−1, y−2]−1[x−1, y−1],

• Q(x, y) = 2(x−1y−1 + y−1) = 2(1 + x)x−1y−1, P (x, y) = 2(1 + x).

• w(x, y) is not a Milnor law since gcd(2, 2) 6= 1.

Example 6.3. Let w be an Engel word w = [x,c y] then w = [x, y](−1+y)c−1

and since coefficients of (−1 + y)c−1 are coprime, w is a Milnor law.

Example 6.4. The aim of this example is to compare the condition from
the Theorem 2.1 with the condition (Mil 3). We show that the method
described in the statement is more effective. Let us take an element w =
x−2y−2x2y2. We have w = [x2, y2] = [x, y](x+1)(1+y) = [x, y]x+1+xy+y, so
by the Theorem 2.1 w is a Milnor law.

However, if we write w as a power of x we get w = x−2+2y2
=

x−2(1−y)(1+y) with a non-primitive polynomial −2 + 2y2 in exponent. By
definition of Point (Mil 3) w must imply a law xP (y)ξ with primitive P (y).
Lemma 2.2 gives an algorithm how we can find P (y). All calculations are
done modulo F ′′

2 (and also modulo (〈x〉F2)′ ⊇ F ′′
2 ). We substitute ynx for

x in [x, y]1+y+x+yx and get [ynx, y]1+y+ynx+yn+1x = [x, y]1+y+ynx+yn+1x

which implies a law [x,2 y]1+y+yn[x,y]+yn+1[x,y]. This last word modulo F ′′
2

is equal to [x,2 y]1+y+yn+yn+1
. Since [x,2 y] = x(−1+y)2

we get

[x,2 y]1+y+yn+yn+1
= x(−1+y)2(1+y+yn+yn+1).
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Thus w implies modulo (〈x〉F2)′ a law x(−1+y)2(1+y+yn+yn+1), where the
polynomial P (y) = (−1 + y)2(1 + y + yn + yn+1) is primitive.

The second algorithm presents how to express a word w(x, y) ∈ F ′′
2

as the product of commutators of the form [x,k y,l y]. In the algorithm
we use the Taylor’s formula twice.

Algorithm II

Data: a binary word w(x, y) = xk1yl1xk2yl2 . . . xksyls in F ′
2.

Aim: express w(x, y) as the product of commutators of the form
[x,l y,k x] and check properties of the law w(x, y).

Step 1. Write w(x, y) in the form w(x, y) = [x, y]P (x,y)x−my−n

, where
P (x, y) is a polynomial over integers.

Step 2. Write P (x, y) in the form P (x, y) = Py(x) = fn(y)xn + . . . +
f1(y)x + f0(y).

Step 3. Express P (x, y) in the form

P (x, y) = gn(y)(x− 1)n + . . . + g1(y)(x− 1) + g0(y),

where gi(y) =
P

(i)
y (1)

i! for i = 0, . . . , n and P
(i)
y (1) is the i-th

derivative of Py(x) at the point x.

Step 4. Express every function gi(y) for i = 0, . . . , n in the the form

gi(y) = bim(y − 1)m + . . . + bi1(y − 1)y + bi0,

where bij =
g

(j)
i

(1)
j! for j = 0, . . . , m and g

(j)
i (y) is the j-th

derivative of gi(y) at the point y.

Step 5. Multiply and order components of P (x, y) to obtain

P (x, y) =
∑

bkl(x− 1)k(y − 1)l−1.

Step 6. w(x, y) = [x, y]P (x,y)x−ny−m

=
(

∏

[x,l y,k x]bkl

)x−ny−m

.

Step 7. w(x, y) is a Milnor law if and only if bkl are coprime.

Step 8. Every nilpotent group satisfying the law w(x, y) is abelian if
and only if b10 = ±1.
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Example 6.5. Let w(x, y) = [x, y]xy3+x2y+x2y2+2x+3.

• fy(x) = P (x, y) = xy3 + x2y + x2y2 + 2x + 3
= 3 + (y3 + 2)x + (y + y2)x2.

• f ′
y(x) = y3 + 2 + 2(y + y2)x, f ′′

y (x) = 2(y + y2).

• P (x, y) = f(y)(1)
0! +

f ′

y(1)

1! (x− 1) +
f ′′

y (1)

2! (x− 1)2

= 5+y+y2+y3+(2+2y+2y2+y3)(x−1)+(y+y2)(x−1)2.

Now, using the Taylor’s formula we write polynomials g0(y) = 5 + y +
y2 + y3, g1(y) = 2 + 2y + 2y2 + y3, g2(y) = y + y2 as linear combinations
of powers of y − 1. Thus we get

g0(y) = (y − 1)3 + 4(y − 1)2 + 6(y − 1) + 8,

g1(y) = (y − 1)3 + 5(y − 1)2 + 9(y − 1) + 7,

g2(y) = (y − 1)2 + 3(y − 1) + 2.

Hence we get

P (x, y) = 8 + 7(x− 1) + 2(x− 1)2 + 6(y − 1) + 9(y − 1)(x− 1)

+ 3(y − 1)(x− 1)2 + 4(y − 1)2 + (y − 1)3 + 5(y − 1)2(x− 1)

+ (y − 1)3(x− 1) + (y − 1)2(x− 1)2,

and w(x, y) equals modulo F ′′
2 :

[x, y]8[x, y, x]7[x, y,2 x]2[x,2 y]6[x,2 y, x]9[x,2 y,2 x]3[x,3 y]4[x,3 y, x]5

[x,3 y,2 x][x,4 y][x,4 y, x].

Acknowledgements

The author wishes to thank Olga Macedońska for many helpful re-
marks and valuable suggestions. The author also thanks Janusz Słupik
for reviewing and improving the computer program which is the imple-
mentation of algorithms.

References

[1] V.V. Belyaev, N.F. Sesekin, Free subsemigroups in solvable groups, Ural. Gos.
Univ. Mat. Zap. 12, (3) (1981) 13—18 (Russian).

[2] S. Black, Which words spell "almost nilpotent?”, J. Algebra 221 (1999), no. 2,
475–496.



W. Tomaszewski 331

[3] R.G. Burns R.G. and Yu. Medvedev, Group laws implying virtual nilpotence, J.
Austral. Math. Soc., 74, (2003), 295–312.

[4] G. Endimioni, Bounds for nilpotent-by-finite groups in certain varieties of groups,
J. Austral. Math. Soc. 73 (2002) 393–404.

[5] G. Endimioni, On conditions for a group to satisfy given laws. J. Group Theory 2
(1999), no. 2, 191–198.

[6] J.M. Gandhi, Some group laws equivalent to the commutative law. Bull. Austral.
Math. Soc. 2 (1970), 335–345.

[7] J.R.J. Groves, Varieties of soluble groups and a dichotomy of P.Hall, Bull. Austral.
Math. Soc., 5, (1971), 391–410.

[8] K. W. Gruenberg, Residual properties of infinite soluble groups, Proc. London
Math. Soc. (3) 7 (1957), 29–62.

[9] N.D. Gupta, Some group-laws equivalent to the commutative law, Arch. Math.
(Basel) 17 (1966) 97–102.

[10] W. Hołubowski, Symmetric words in metabelian groups, Comm. in Algebra 23
(1995), no. 14, 5161–5167.

[11] W. Hołubowski, Symmetric words in a free nilpotent group of class 5, Groups St.
Andrews 1997 in Bath, I, 363–367.

[12] W. Hołubowski, Symmetric words in free nilpotent groups of class 4, Publ. Math.
Debrecen 57 (2000), no. 3-4, 411-–419.

[13] L.-C. Kappe, M.J. Tomkinson, Some Conditions Implying that a Group is Abelian,
Algebra Colloq., 3 (3) (1996), 199–212.

[14] E. I. Khukhro and V. D. Mazurov (eds.), Unsolved problems in group

theory, The Kourovka Notebook, no. 17, Novosibirsk, 2010.

[15] Y.K. Kim, A.H. Rhemtulla, Weak maximality condition and polycyclic groups,
Proc. Amer. Math. Soc. 123 (1995), no. 3, 711–714.

[16] O. Macedońska, What do the Engel and semigroup identities have in common?
(Russian. English, Russian summary) Fundam. Prikl. Mat. (2008), no. 7, 175–183;
translation in J. Math. Sci. (N. Y.) 164 (2010), no. 2, 272—277

[17] O. Macedońska and W. Tomaszewski, On Engel and positive laws, London Math.
Soc. Lecture Notes, 388(2), (2011), 461–472.

[18] O. Macedońska O. and W. Tomaszewski, Group laws [x, y−1] ≡ u(x, y) and varietal
properties, Comm. Algebra 40 (12) (2012) 4661–4667.

[19] A.I. Mal’tsev, Nilpotent semigroups, Ivanov. Gos. Ped. Inst. Uc. Zap. 4, (1953)
107–111 (in Russian).

[20] E. Marczewski, Problem P 619, Colloq. Math. 17 (1967), 369.

[21] J. Milnor, Growth of finitely generated solvable groups, J. Diff. Geom. 2 (1968)
447–449.

[22] P. Moravec, Some commutator group laws equivalent to the commutative law,
Comm. Algebra 30 (2002), no. 2, 671—691

[23] H. Neumann, Varieties of groups, (Springer-Verlag, 1967).



332 The algorithms that recognize Milnor laws

[24] B.H. Neumann and T. Taylor, Subsemigroups of nilpotent groups, Proc. Roy. Soc.
(Series A) 274 (1963) 1–4.

[25] M. Newman, Integral matrices, Pure and Applied Mathematics (Book 45),
(Academic Press, 1972).

[26] A.Yu. Ol’shanskii, Varieties of finitely approximable groups, Izv. Akad. Nauk SSSR
Ser. Mat. 33 (1969), 915—927 (Russian).

[27] A.Yu. Ol’shanskii A.Yu., Geometry of defining relations in groups,
Mathematics and its applications (Soviet Series), 70; Kluwer Academic Publishers:
Dordrecht, 1991.

[28] E. Płonka, Symmetric operations in goups, Colloq. Math. 21 (1970), 179—186.

[29] E. Płonka, Problem P 684, Colloq. Math. 21 (1970), 339.

[30] E. Płonka, Symmetric words in nilpotent groups of class 6 3, Fundamenta Math.
XCVII (1977), 95–103.

[31] F. Point, Milnor identities, Comm. Algebra 24 (12) (1996) 3725–3744.

[32] E. Psomopoulos, Commutativity theorems for rings and groups with constraints
on commutators, Internat. J. Math. Math. Sci. 7 (1984), no. 3, 513—517.

[33] D.J.S. Robinson, A course in the theory of groups, second edition,
GTM 80, (Springer-Verlag, 1996).

[34] J.R. Rosenblatt, Invariant, measures and growth conditions, Trans. Amer. Math.
Soc. 193 (1974), 33–53,

[35] D. R. Taunt, On A-groups, Proc. Cambridge Philos. Soc. 45, (1949). 24—42.

[36] W. Tomaszewski, Fixed points of automorphisms preserving the length of words
in free solvable groups, Arch. Math. (Basel) 99 (2012), no. 5, 425—432.

[37] B. Wehrfritz, Group and Ring Theoretic Properties of Poly-

cyclic Groups, Series: Algebra and Applications, Vol. 10, (Springer-Verlag,
2009).

[38] E.I. Zel’manov, On the restricted Burnside problem. (Russian) Sibirsk. Mat. Zh.
30 (1989), no. 6, 68-–74; english translation in Siberian Math. J. 30 (1989), no. 6,
885—891 (1990).

Contact information

W. Tomaszewski Institute of Mathematics, Silesian University
of Technology, Kaszubska 23, 44-100 Gliwice,
Poland
E-Mail: Witold.Tomaszewski@polsl.pl

Received by the editors: 07.12.2013
and in final form 02.04.2014.


