On the units of integral group ring of $C_{n} \times C_{6}$

Ömer Küsmüs

Communicated by I. Ya. Subbotin

Abstract. There are many kind of open problems with varying difficulty on units in a given integral group ring. In this note, we characterize the unit group of the integral group ring of $C_{n} \times C_{6}$ where $C_{n}=\left\langle a: a^{n}=1\right\rangle$ and $C_{6}=\left\langle x: x^{6}=1\right\rangle$. We show that $\mathcal{U}_{1}\left(\mathbb{Z}\left[C_{n} \times C_{6}\right]\right)$ can be expressed in terms of its 4 subgroups. Furthermore, forms of units in these subgroups are described by the unit group $\mathcal{U}_{1}\left(\mathbb{Z} C_{n}\right)$. Notations mostly follow [11].

1. Introduction

Let G given as a finite group. Its integral group ring is denoted by $\mathbb{Z} G$. Invertible elements in $\mathbb{Z} G$ is called by units and the set of units forms a group according to the multiplication and is shown by $\mathcal{U}(\mathbb{Z} G)$. The group of units with augmentation 1 is displayed by $\mathcal{U}_{1}(\mathbb{Z} G)$. If one pay attention to the corresponding literature, that can easily see that the obtained results mostly arises from finite groups especially finite abelian groups. Fundamentals of the unit problem have come from the thesis of G. Higman in 1940. Higman stated and proved the following [4]:

Lemma 1. If $U(\mathbb{Z} G)= \pm G$, then $U\left(\mathbb{Z}\left[G \times C_{2}\right]\right)= \pm\left[G \times C_{2}\right]$.
Also, the following useful lemma was shown in [4] and [3].
2010 MSC: 16U60, 16S34.
Key words and phrases: group ring, integral group ring, unit group, unit problem.

Lemma 2. $\mathcal{U}(\mathbb{Z} G)$ has a torsion-free complement of finite rank $\rho=$ $\frac{1}{2}\left(|G|+n_{2}+1-2 l\right)$ where n_{2} shows the number of elements of order 2 in G and l is the number of all distinct cyclic subgroups of G.

On the other hand, in [7], Li considered the question: If $\mathcal{U}(\mathbb{Z} G)$ has a normal complement generated by bicyclic units, does $\mathcal{U}\left(\mathbb{Z}\left[G \times C_{2}\right]\right)$ has also a normal complement generated by bicyclic units? Jespers showed that the answer for this question is yes while $G=D_{6}$ or D_{8} [8-10]. Li gave a counterexample for showing this is not true in general by considering the group $D_{8} \times C_{2} \times C_{2}$ [7]. However, Li proved that if $\mathcal{U}(\mathbb{Z} G)$ is generated by unitary units, then $\mathcal{U}\left(\mathbb{Z}\left[G \times C_{2}\right]\right)$ is also generated by unitary units [7]. Another description of $\mathcal{U}\left(\mathbb{Z}\left[G \times C_{2}\right]\right)$ was given by Low in [6] by linearly extending some group epimorphisms to the group ring homomorphisms. He also tried to generalize the problem for $\mathcal{U}\left(\mathbb{Z}\left[G \times C_{p}\right]\right)$ where p is a prime integer. In [6], He showed that

$$
\mathcal{U}\left(\mathbb{Z}\left[G \times C_{p}\right]\right)=K \rtimes \mathcal{U}(\mathbb{Z} G) \cong M \rtimes \mathcal{U}(\mathbb{Z} G)
$$

where K is the kernel of the natural group homomorphism: $\pi: \mathcal{U}\left(\mathbb{Z}\left[G \times C_{p}\right]\right) \longrightarrow \mathcal{U}(\mathbb{Z} G)$ and M is a subgroup of finite index in $\mathcal{U}(\mathbb{Z}[\zeta] G)$ such that ζ is a primitive $p^{t h}$ root of unity. Low also explicitly proved the following 4 lemmas [6]:
Lemma 3. Let $G^{*}=G \times\left\langle x: x^{2}=1\right\rangle$. Then, $\mathcal{U}\left(\mathbb{Z} G^{*}\right)$ is obtained as

$$
\left\{u=1+(x-1) \alpha: \alpha \in \mathbb{Z} G, u \in \mathcal{U}\left(\mathbb{Z} G^{*}\right)\right\} \rtimes \mathcal{U}(\mathbb{Z} G)
$$

Further, $1+(x-1) \alpha \in \mathcal{U}\left(\mathbb{Z} G^{*}\right) \Leftrightarrow 1-2 \alpha \in \mathcal{U}(\mathbb{Z} G)$.
Lemma 4. Let $P=\left\langle a, b: a^{4}=b^{4}=1,[b, a]=a^{2}\right\rangle$ be the indecomposable group of order 16. Then,

$$
\mathcal{U}\left(\mathbb{Z}\left[P \times C_{2}\right]\right)= \pm\left[F_{65} \rtimes F_{9}\right] \rtimes\left(P \times C_{2}\right)
$$

where F_{i} denotes a free group of rank i.
Lemma 5. Let $C_{5}^{*}=\left\langle c: c^{5}=1\right\rangle \times\left\langle x: x^{2}=1\right\rangle$. Then, the unit group

$$
\mathcal{U}\left(\mathbb{Z} C_{5}^{*}\right)=\langle 1+(x-1) P\rangle \times\langle v\rangle \times C_{5}^{*}
$$

where $P=-3-c+3 c^{2}+3 c^{3}-c^{4}$ and $v=(c+1)^{2}-\widehat{c}$.
Lemma 6. Let $C_{8}^{*}=\left\langle c: c^{8}=1\right\rangle \times\left\langle x: x^{2}=1\right\rangle$. Then, the unit group

$$
\mathcal{U}\left(\mathbb{Z} C_{8}^{*}\right)=\langle 1+(x-1) P\rangle \times\langle v\rangle \times C_{8}^{*}
$$

where $P=-4-3 c+3 c^{3}+4 c^{4}+3 c^{5}-3 c^{7}$ and $v=3-\widehat{c}+2\left(c+c^{7}\right)+\left(c^{2}+c^{6}\right)$.

Kelebek and Bilgin considered the finite abelian group $C_{n} \times K_{4}$ where K_{4} is the Klein 4-group and characterized the unit group of its integral group ring in terms of 4 components as follows [1]:
Theorem 1. $\mathcal{U}_{1}\left(\mathbb{Z}\left[C_{n} \times K_{4}\right]\right)=\mathcal{U}_{1}\left(\mathbb{Z} C_{n}\right) \times\left(1+K^{x}\right) \times\left(1+K^{y}\right) \times\left(1+K^{x y}\right)$ where

$$
\begin{aligned}
1+K^{x} & =\left\{1+(x-1) P: 1-2 P \in \mathcal{U}_{1}\left(\mathbb{Z} C_{n}\right)\right\} \\
1+K^{y} & =\left\{1+(y-1) P: 1-2 P \in \mathcal{U}_{1}\left(\mathbb{Z} C_{n}\right)\right\} \\
1+K^{x y} & =\left\{1+(x-1)(y-1) P: 1+4 P \in \mathcal{U}_{1}\left(\mathbb{Z} C_{n}\right)\right\}
\end{aligned}
$$

2. Motivation for construction of $\mathcal{U}_{1}\left(\mathbb{Z}\left[C_{n} \times C_{6}\right]\right)$

Now, let us begin with some remarks.
Remark 1. The following maps are group epimorphisms:

$$
\begin{aligned}
\pi_{x^{2}}: C_{n} \times C_{6} & \longrightarrow C_{n} \times\left\langle x^{2}\right\rangle \\
a & \mapsto a \\
x & \mapsto x^{2} \\
\pi_{x^{3}}: C_{n} \times C_{6} & \longrightarrow C_{n} \times\left\langle x^{3}\right\rangle \\
a & \mapsto a \\
x & \mapsto x^{3}
\end{aligned}
$$

Remark 2. $\operatorname{Ker}\left(\pi_{x^{2}}\right)=\left\langle x^{3}\right\rangle$ and $\operatorname{Ker}\left(\pi_{x^{3}}\right)=\left\langle x^{2}\right\rangle$.
Since $C_{n} \times\left\langle x^{2}\right\rangle \hookrightarrow C_{n} \times C_{6}, C_{n} \times\left\langle x^{3}\right\rangle \hookrightarrow C_{n} \times C_{6}$ and i denotes the inclusion map, we get the following short exact sequences at group level:

$$
\begin{aligned}
& 0 \longrightarrow\left\langle x^{3}\right\rangle \xrightarrow{i} C_{n} \times C_{6} \xrightarrow{\pi_{x^{2}}} C_{n} \times\left\langle x^{2}\right\rangle \longrightarrow 0 \\
& 0 \longrightarrow\left\langle x^{2}\right\rangle \xrightarrow{i} C_{n} \times C_{6} \xrightarrow{\pi_{x^{3}}} C_{n} \times\left\langle x^{3}\right\rangle \longrightarrow 0 \\
& 0 \longrightarrow\langle x\rangle \xrightarrow{i} C_{n} \times C_{6} \xrightarrow{\pi_{x^{2}} \pi_{x^{3}}} C_{n} \longrightarrow 0
\end{aligned}
$$

If we linearly extend $\pi_{x^{2}}$ and $\pi_{x^{3}}$ to integral group rings over \mathbb{Z}, we obtain the following ring homomorphisms:

$$
\begin{aligned}
\bar{\pi}_{x^{2}}: \mathbb{Z}\left[C_{n} \times C_{6}\right] & \longrightarrow \mathbb{Z}\left[C_{n} \times\left\langle x^{2}\right\rangle\right] \\
\sum_{j=0}^{5} P_{j} x^{j} & \mapsto\left(P_{0}+P_{3}\right)+\left(P_{1}+P_{4}\right) x^{2}+\left(P_{2}+P_{5}\right) x^{4}
\end{aligned}
$$

and

$$
\begin{aligned}
\bar{\pi}_{x^{3}}: \mathbb{Z}\left[C_{n} \times C_{6}\right] & \longrightarrow \mathbb{Z}\left[C_{n} \times\left\langle x^{3}\right\rangle\right] \\
\sum_{j=0}^{5} P_{j} x^{j} & \mapsto\left(P_{0}+P_{2}+P_{4}\right)+\left(P_{1}+P_{3}+P_{5}\right) x^{3}
\end{aligned}
$$

Lemma 7. $K^{x^{2}}:=\operatorname{Ker}\left(\bar{\pi}_{x^{2}}\right)=\left(x^{3}-1\right) \mathbb{Z}\left[C_{n} \times\left\langle x^{2}\right\rangle\right]$

Proof.

$$
\begin{aligned}
\operatorname{Ker}\left(\bar{\pi}_{x^{2}}\right) & =\left\{\sum_{i=0}^{5} P_{i} x^{i}: \bar{\pi}_{x^{2}}\left(\sum_{i=0}^{5} P_{i} x^{i}\right)=0, P_{i} \in \mathbb{Z} C_{n}\right\} \\
& =\left\{\sum_{i=0}^{5} P_{i} x^{i}: P_{0}+P_{3}=P_{1}+P_{4}=P_{2}+P_{5}=0\right\} \\
& =\left\{\sum_{i=0}^{5} P_{i} x^{i}: P_{0}=-P_{3}, P_{1}=-P_{4}, P_{2}=-P_{5}\right\} \\
& =\left\{-P_{3}-P_{4} x-P_{5} x^{2}+P_{3} x^{3}+P_{4} x^{4}+P_{5} x^{5}\right\} \\
& =\left\{\left(x^{3}-1\right) P_{3}+\left(x^{4}+x\right) P_{4}+\left(x^{5}-x^{2}\right) P_{5}\right\} \\
& =\left(x^{3}-1\right)\left[\mathbb{Z} C_{n} \oplus x^{2} \mathbb{Z} C_{n} \oplus x^{4} \mathbb{Z} C_{n}\right] \\
& =\left(x^{3}-1\right) \mathbb{Z}\left[C_{n} \times\left\langle x^{2}\right\rangle\right]
\end{aligned}
$$

Lemma 8. $K^{x^{3}}:=\operatorname{Ker}\left(\bar{\pi}_{x^{3}}\right)=\left(x^{2}-1\right)\left[\mathbb{Z} C_{n} \oplus x \mathbb{Z} C_{n} \oplus x^{2} \mathbb{Z} C_{n} \oplus x^{3} \mathbb{Z} C_{n}\right]$
Proof.

$$
\begin{aligned}
\operatorname{Ker}\left(\bar{\pi}_{x^{3}}\right) & =\left\{\sum_{i=0}^{5} P_{i} x^{i}: \bar{\pi}_{x^{3}}\left(\sum_{i=0}^{5} P_{i} x^{i}\right)=0, P_{i} \in \mathbb{Z} C_{n}\right\} \\
& =\left\{\sum_{i=0}^{5} P_{i} x^{i}: P_{0}+P_{2}+P_{4}=P_{1}+P_{3}+P_{5}=0\right\} \\
& =\left\{\sum_{i=0}^{5} P_{i} x^{i}: P_{0}=-\left(P_{2}+P_{4}\right), P_{1}=-\left(P_{3}+P_{5}\right)\right\} \\
& =\left\{\left(x^{2}-1\right)\left[P_{2}+x P_{3}+\left(x^{2}+1\right) P_{4}+\left(x^{2}+1\right) x P_{5}\right]\right\} \\
& =\left(x^{2}-1\right)\left[\mathbb{Z} C_{n} \oplus x \mathbb{Z} C_{n} \oplus x^{2} \mathbb{Z} C_{n} \oplus x^{3} \mathbb{Z} C_{n}\right]
\end{aligned}
$$

Similarly, we can write the following ring homomorphism:

$$
\begin{aligned}
\bar{\pi}_{x^{2}} \bar{\pi}_{x^{3}}: \mathbb{Z}\left[C_{n} \times C_{6}\right] & \longrightarrow \mathbb{Z} C_{n} \\
\sum_{j=0}^{5} P_{j} x^{j} & \mapsto \sum_{j=0}^{5} P_{j} .
\end{aligned}
$$

Lemma 9. $K^{x^{2} x^{3}}:=\operatorname{Ker}\left(\bar{\pi}_{x^{2}} \bar{\pi}_{x^{3}}\right)=\oplus_{j=1}^{5}\left(x^{j}-1\right) \mathbb{Z} C_{n}$
Proof.

$$
\begin{aligned}
\operatorname{Ker}\left(\bar{\pi}_{x^{2}} \bar{\pi}_{x^{3}}\right) & =\left\{\sum_{i=0}^{5} P_{i} x^{i}: \bar{\pi}_{x^{2}} \bar{\pi}_{x^{3}}\left(\sum_{i=0}^{5} P_{i} x^{i}\right)=0, P_{i} \in \mathbb{Z} C_{n}\right\} \\
& =\left\{\sum_{i=0}^{5} P_{i} x^{i}: \sum_{i=0}^{5} P_{i}=0, P_{i} \in \mathbb{Z} C_{n}\right\} \\
& =\left\{\sum_{i=0}^{5} P_{i} x^{i}: P_{0}=-\sum_{i=1}^{5} P_{i}, P_{i} \in \mathbb{Z} C_{n}\right\} \\
& =\left\{-\sum_{i=1}^{5} P_{i}+\sum_{i=1}^{5} P_{i} x^{i}: P_{i} \in \mathbb{Z} C_{n}\right\} \\
& =\left\{\sum_{j=1}^{5}\left(x^{j}-1\right) P_{j}: P_{j} \in \mathbb{Z} C_{n}\right\} \\
& =\oplus_{j=1}^{5}\left(x^{j}-1\right) \mathbb{Z} C_{n} .
\end{aligned}
$$

By Remarks 1 and 2, we get the following short exact sequences at group ring level:

$$
\begin{gathered}
0 \longrightarrow K^{x^{2}} \xrightarrow{i} \mathbb{Z}\left[C_{n} \times C_{6}\right] \xrightarrow{\bar{\pi}_{x} x^{2}} \mathbb{Z}\left[C_{n} \times\left\langle x^{2}\right\rangle\right] \longrightarrow 0 \\
0 \longrightarrow K^{x^{3}} \xrightarrow{i} \mathbb{Z}\left[C_{n} \times C_{6}\right] \xrightarrow{\bar{\pi}_{x^{3}}} \mathbb{Z}\left[C_{n} \times\left\langle x^{3}\right\rangle\right] \longrightarrow 0 \\
0 \longrightarrow K^{x^{2} x^{3}} \xrightarrow{i} \mathbb{Z}\left[C_{n} \times C_{6}\right] \xrightarrow{\bar{\pi}_{x^{2}} \bar{\pi}_{x^{3}}} \mathbb{Z} C_{n} \longrightarrow 0
\end{gathered}
$$

If we restrict $\bar{\pi}_{x^{2}}$ and $\bar{\pi}_{x^{3}}$ to the unit level, we conclude that the followings are also short exact sequences:

$$
\begin{gathered}
1 \longrightarrow \mathcal{U}_{1}\left(1+K^{x^{2}}\right) \xrightarrow{i} \mathcal{U}_{1}\left(\mathbb{Z}\left[C_{n} \times C_{6}\right]\right) \xrightarrow{\bar{\pi}_{x^{2}}} \mathcal{U}_{1}\left(\mathbb{Z}\left[C_{n} \times\left\langle x^{2}\right\rangle\right]\right) \longrightarrow 1 \\
1 \longrightarrow \mathcal{U}_{1}\left(1+K^{x^{3}}\right) \xrightarrow{i} \mathcal{U}_{1}\left(\mathbb{Z}\left[C_{n} \times C_{6}\right]\right) \xrightarrow{\bar{\pi}_{x^{3}}} \mathcal{U}_{1}\left(\mathbb{Z}\left[C_{n} \times\left\langle x^{3}\right\rangle\right]\right) \longrightarrow 1 \\
1 \longrightarrow \mathcal{U}_{1}\left(1+K^{x^{2} x^{3}}\right) \xrightarrow{i} \mathcal{U}_{1}\left(\mathbb{Z}\left[C_{n} \times C_{6}\right]\right) \xrightarrow{\bar{\pi}_{x^{2}} \bar{\pi}_{x} x^{3}} \mathcal{U}_{1}\left(\mathbb{Z} C_{n}\right) \longrightarrow 1
\end{gathered}
$$

Since we can consider embeddings $\mathcal{U}_{1}\left(\mathbb{Z}\left[C_{n} \times\left\langle x^{2}\right\rangle\right]\right) \hookrightarrow \mathcal{U}_{1}\left(\mathbb{Z}\left[C_{n} \times C_{6}\right]\right)$ and $\mathcal{U}_{1}\left(\mathbb{Z}\left[C_{n} \times\left\langle x^{3}\right\rangle\right]\right) \hookrightarrow \mathcal{U}_{1}\left(\mathbb{Z}\left[C_{n} \times C_{6}\right]\right)$, the following split extensions hold:

$$
\begin{aligned}
\mathcal{U}_{1}\left(\mathbb{Z}\left[C_{n} \times C_{6}\right]\right) & =\mathcal{U}_{1}\left(1+K^{x^{2}}\right) \times \mathcal{U}_{1}\left(\mathbb{Z}\left[C_{n} \times\left\langle x^{2}\right\rangle\right]\right) \\
& =\mathcal{U}_{1}\left(1+K^{x^{3}}\right) \times \mathcal{U}_{1}\left(\mathbb{Z}\left[C_{n} \times\left\langle x^{3}\right\rangle\right]\right) \\
& =\mathcal{U}_{1}\left(1+K^{x^{2} x^{3}}\right) \times \mathcal{U}_{1}\left(\mathbb{Z} C_{n}\right)
\end{aligned}
$$

Remark 3. In $\mathcal{U}_{1}\left(\mathbb{Z}\left[C_{n} \times C_{6}\right]\right)$ the normal subgroups $\mathcal{U}_{1}\left(1+K^{x^{2}}\right)$, $\mathcal{U}_{1}\left(1+K^{x^{3}}\right)$ and $\mathcal{U}_{1}\left(1+K^{x^{2} x^{3}}\right)$ are determined as in the following forms respectively:
(i) $\left\{u=1+\left(x^{3}-1\right)\left[P_{0}+P_{2} x^{2}+P_{4} x^{4}\right]: u\right.$ is a unit $\}$;
(ii) $\left\{u=1+\left(x^{2}-1\right)\left[P_{0}+P_{1} x+P_{2} x^{2}+P_{3} x^{3}\right]: u\right.$ is a unit $\}$;
(iii) $\left\{u=1+\sum_{j=1}^{5}\left(x^{j}-1\right) P_{j}: u\right.$ is a unit $\}$.

3. An explicit characterization of $\mathcal{U}_{1}\left(\mathbb{Z}\left[C_{n} \times C_{6}\right]\right)$

In this section, an explicit characterization of $\mathcal{U}_{1}\left(\mathbb{Z}\left[C_{n} \times C_{6}\right]\right)$ is given with the help of the results in the previous section. First, we should give some restrictions of the maps $\bar{\pi}_{x^{2}}, \bar{\pi}_{x^{3}}$ and $\bar{\pi}_{x^{2}} \bar{\pi}_{x^{3}}$. Let $\left.\bar{\pi}_{x^{3}}\right|_{\mathcal{U}_{1}\left(1+K^{x^{2}}\right)}$ denote the restriction of $\bar{\pi}_{x^{3}}$ on $\mathcal{U}_{1}\left(1+K^{x^{2}}\right)$.
Lemma 10. $W_{1}:=\operatorname{Im}\left(\left.\bar{\pi}_{x^{3}}\right|_{\mathcal{U}_{1}\left(1+K^{x^{2}}\right)}\right)=1+\left(x^{3}-1\right) \mathbb{Z} C_{n}$.
Proof. Let us take an element from $\mathcal{U}_{1}\left(1+K^{x^{2}}\right)$ as $\gamma=1+\left(x^{3}-1\right)\left[P_{0}+\right.$ $\left.P_{2} x^{2}+P_{4} x^{4}\right]$ where $P_{i} \in \mathbb{Z} C_{n}$. Then,

$$
\bar{\pi}_{x^{3}}: \gamma \mapsto 1+\left(x^{3}-1\right)\left[P_{0}+P_{2}+P_{4}\right] .
$$

Say $P_{0}+P_{2}+P_{4}=P$. Thus, $\operatorname{Im}\left(\left.\bar{\pi}_{x^{3}}\right|_{\mathcal{U}_{1}\left(1+K^{\left.x^{2}\right)}\right)}\right)$ consists of elements of the form $1+\left(x^{3}-1\right) P$.

Lemma 11. $W_{2}:=\operatorname{Ker}\left(\left.\bar{\pi}_{x^{3}}\right|_{\mathcal{U}_{1}\left(\mathbb{Z}\left[C_{n} \times\left\langle x^{2}\right\rangle\right]\right)}\right)=1+\left(x^{2}-1\right) \mathbb{Z} C_{n} \oplus\left(x^{4}-1\right) \mathbb{Z} C_{n}$. Proof. Let us take an element from $\mathcal{U}_{1}\left(\mathbb{Z}\left[C_{n} \times\left\langle x^{2}\right\rangle\right]\right)$ as $\sigma=P_{0}+P_{2} x^{2}+$ $P_{4} x^{4}$. Here, we can manipulate the parameter $P_{0}=1+P_{0}^{\prime}$. Then, we get

$$
\bar{\pi}_{x^{3}}: \sigma \mapsto 1+P_{0}^{\prime}+P_{2}+P_{4}=1 \Longleftrightarrow P_{0}^{\prime}=-P_{2}-P_{4}
$$

This means that the kernel consists of elements of the form

$$
1+\left(-P_{2}-P_{4}\right)+P_{2} x^{2}+P_{4} x^{4}=1+\left(x^{2}-1\right) P_{2}+\left(x^{4}-1\right) P_{4}
$$

Hence the required is obtained.

Lemma 12.

$W_{3}:=\operatorname{Ker}\left(\left.\bar{\pi}_{x^{3}}\right|_{\mathcal{U}_{1}\left(1+K^{x^{2}}\right)}\right)=1+\left(x^{3}-1\right)\left(x^{2}-1\right) \mathbb{Z} C_{n} \oplus\left(x^{3}-1\right)\left(x^{4}-1\right) \mathbb{Z} C_{n}$.
Proof. Again, let us consider an element from $\mathcal{U}_{1}\left(1+K^{x^{2}}\right)$ as $\eta=1+$ $\left(x^{3}-1\right)\left[P_{0}+P_{2} x^{2}+P_{4} x^{4}\right]$. Then,

$$
\bar{\pi}_{x^{3}}: \eta \mapsto 1+\left(x^{3}-1\right)\left[P_{0}+P_{2}+P_{4}\right]=1 \Longleftrightarrow P_{0}=-P_{2}-P_{4}
$$

Thus, $\operatorname{Ker}\left(\left.\bar{\pi}_{x^{3}}\right|_{\mathcal{U}_{1}\left(1+K^{x^{2}}\right)}\right)$ consists of

$$
\begin{aligned}
1+\left(x^{3}-1\right)\left[P_{0}+P_{2} x^{2}+P_{4} x^{4}\right] & =1+\left(x^{3}-1\right)\left[-P_{2}-P_{4}+P_{2} x^{2}+P_{4} x^{4}\right] \\
& =1+\left(x^{3}-1\right)\left[\left(x^{2}-1\right) P_{2}+\left(x^{4}-1\right) P_{4}\right]
\end{aligned}
$$

Therefore, by Lemma 10, Lemma 11 and Lemma 12, we can construct the following commutative diagram:

Since we can take embeddings as the inverses of $\bar{\pi}_{x^{2}}$ and $\bar{\pi}_{x^{3}}$, this diagram splits as follows:

$$
\mathcal{U}_{1}\left(\mathbb{Z}\left[C_{n} \times C_{6}\right]\right)=W_{1} \times W_{2} \times W_{3} \times \mathcal{U}_{1}\left(\mathbb{Z} C_{n}\right)
$$

Now, let us characterize explicitly W_{1}, W_{2} and W_{3}.
Proposition 1. $u=1+\left(x^{3}-1\right) P \in W_{1}$ is a unit $\Longleftrightarrow 1-2 P \in \mathcal{U}_{1}\left(\mathbb{Z} C_{n}\right)$ Proof.

$$
\begin{aligned}
u=1+\left(x^{3}-1\right) P \text { is unit } & \Longleftrightarrow \exists v=1+\left(x^{3}-1\right) Q: u v=1 \\
& \Longleftrightarrow 1+\left(x^{3}-1\right)[P+Q-2 P Q]=1 \\
& \Longleftrightarrow P+Q-2 P Q=0 \\
& \Longleftrightarrow 1-2 P-2 Q+4 P Q=1 \\
& \Longleftrightarrow(1-2 P)(1-2 Q)=1 \\
& \Longleftrightarrow 1-2 P \in \mathcal{U}_{1}\left(\mathbb{Z} C_{n}\right) .
\end{aligned}
$$

Proposition 2. $u=1+\left(x^{2}-1\right) P+\left(x^{4}-1\right) Q \in W_{2}$ is a unit \Longleftrightarrow $P^{2}+Q^{2}-P Q-P-Q=0$

Proof. First, we need to define a closed operation. If we define $\alpha=x^{2}-1$ and $\beta=x^{4}-1$, we get the following straightforward computations:

$$
\begin{aligned}
\alpha^{2} & =\left(x^{2}-1\right)^{2}=-2\left(x^{2}-1\right)+\left(x^{4}-1\right)=-2 \alpha+\beta \\
\alpha \beta & =\left(x^{2}-1\right)\left(x^{4}-1\right)=-\left(x^{2}-1\right)-\left(x^{4}-1\right)=-\alpha-\beta \\
\beta^{2} & =\left(x^{4}-1\right)^{2}=-2\left(x^{4}-1\right)+\left(x^{2}-1\right)=\alpha-2 \beta
\end{aligned}
$$

Let us state this operation in a table as follows:

$$
\begin{array}{c|cc}
\bullet & \alpha & \beta \\
\hline \alpha & -2 \alpha+\beta & -\alpha-\beta \\
\beta & -\alpha-\beta & \alpha-2 \beta
\end{array}
$$

Now, we can give a necessary and sufficient condition to be a unit for the element u. $u=1+\left(x^{2}-1\right) P+\left(x^{4}-1\right) Q \in W_{2}$ is a unit if and only if $\exists v=1+\left(x^{2}-1\right) P^{\prime}+\left(x^{4}-1\right) Q^{\prime}$ such that $u v=1$. Hence,

$$
1+\alpha P+\beta Q+\alpha P^{\prime}+\beta Q^{\prime}+\alpha^{2} P P^{\prime}+\beta^{2} Q Q^{\prime}+\alpha \beta\left(P Q^{\prime}+P^{\prime} Q\right)=1
$$

By the above operation, we can arrange this equation as

$$
\begin{aligned}
& 1+\alpha\left(P+P^{\prime}\right)+\beta\left(Q+Q^{\prime}\right)+(-2 \alpha+\beta) P P^{\prime} \\
& \quad+(\alpha-2 \beta) Q Q^{\prime}+(-\alpha-\beta)\left(P Q^{\prime}+P^{\prime} Q\right)=1
\end{aligned}
$$

That is,

$$
\begin{aligned}
& 1+\alpha\left(P+P^{\prime}-2 P P^{\prime}+Q Q^{\prime}-P Q^{\prime}-P^{\prime} Q\right) \\
& \quad+\beta\left(Q+Q^{\prime}+P P^{\prime}-2 Q Q^{\prime}-P Q^{\prime}-P^{\prime} Q\right)=1
\end{aligned}
$$

This equation holds if and only if the following system of matrix has a unique solution:

$$
\left[\begin{array}{cc}
1-2 P-Q & Q-P \\
P-Q & 1-2 Q-P
\end{array}\right]\left[\begin{array}{c}
P^{\prime} \\
Q^{\prime}
\end{array}\right]=\left[\begin{array}{c}
-P \\
-Q
\end{array}\right]
$$

Therefore,

$$
\left[\begin{array}{cc}
1-2 P-Q & Q-P \\
P-Q & 1-2 Q-P
\end{array}\right] \in S L_{2}\left(\mathbb{Z} C_{n}\right)
$$

A straightforward calculation shows that $P^{2}+Q^{2}-P Q-P-Q=0$.

Proposition 3. $u=1+\left(x^{3}-1\right)\left(x^{2}-1\right) P+\left(x^{3}-1\right)\left(x^{4}-1\right) Q \in W_{3}$ is a unit if and only if the following equation holds:

$$
2 P^{2}+2 Q^{2}-2 P Q-P-Q=0
$$

Proof. First, let $\lambda=\left(x^{3}-1\right)\left(x^{2}-1\right)$ and $\mu=\left(x^{3}-1\right)\left(x^{4}-1\right)$. One can easily compute the followings:

$$
\begin{aligned}
\lambda^{2} & =\left(x^{3}-1\right)^{2}\left(x^{2}-1\right)^{2}=4 \lambda-2 \mu \\
\lambda \mu & =\left(x^{3}-1\right)^{2}\left(x^{2}-1\right)\left(x^{4}-1\right)=2 \lambda+2 \mu \\
\mu^{2} & =\left(x^{3}-1\right)^{2}\left(x^{4}-1\right)^{2}=-2 \lambda+4 \mu
\end{aligned}
$$

In a better expression, we write

$$
\begin{array}{c|cc}
\bullet & \lambda & \mu \\
\hline \lambda & 4 \lambda-2 \mu & 2 \lambda+2 \mu \\
\mu & 2 \lambda+2 \mu & -2 \lambda+4 \mu
\end{array}
$$

Now, let us determine the necessary and sufficient condition to be a unit for an element $u . u=1+\lambda P+\mu Q \in W_{3}$ is a unit if and only if $\exists v=1+\lambda P^{\prime}+\mu Q^{\prime}: u v=1$. Thus, a straight forward computation shows us that

$$
\begin{aligned}
& 1+\lambda\left(P+P^{\prime}+4 P P^{\prime}+2 P^{\prime} Q+2 P Q^{\prime}-2 Q Q^{\prime}\right) \\
& \quad+\mu\left(Q+Q^{\prime}-2 P P^{\prime}+2 P^{\prime} Q+2 P Q^{\prime}+4 Q Q^{\prime}\right)=1
\end{aligned}
$$

This equation holds if and only if the following system of matrix has a unique solution:

$$
\left[\begin{array}{cc}
1+4 P+2 Q & 2 P-2 Q \\
2 Q-2 P & 1+2 P+4 Q
\end{array}\right]\left[\begin{array}{c}
P^{\prime} \\
Q^{\prime}
\end{array}\right]=\left[\begin{array}{c}
-P \\
-Q
\end{array}\right]
$$

Then, the required result comes from the following:

$$
\left[\begin{array}{cc}
1+4 P+2 Q & 2 P-2 Q \\
2 Q-2 P & 1+2 P+4 Q
\end{array}\right] \in S L_{2}\left(\mathbb{Z} C_{n}\right)
$$

Consequently, we can summarize all the obtained results as follows:
Corollary 1. $\mathcal{U}_{1}\left(\mathbb{Z}\left[C_{n} \times C_{6}\right]\right)=\mathcal{U}_{1}\left(\mathbb{Z} C_{n}\right) \times U \times V \times W$ where

$$
\begin{aligned}
U & =\left\{1+\left(x^{3}-1\right) P: 1-2 P \in \mathcal{U}_{1}\left(\mathbb{Z} C_{n}\right)\right\} \\
V & =\left\{1+\alpha P+\beta Q: P^{2}+Q^{2}-P Q-P-Q=0\right\} \\
W & =\left\{1+\lambda P+\mu Q: 2 P^{2}+2 Q^{2}-2 P Q-P-Q=0\right\}
\end{aligned}
$$

such that

$$
\alpha=x^{2}-1, \quad \beta=x^{4}-1, \quad \lambda=\left(x^{3}-1\right)\left(x^{2}-1\right), \quad \mu=\left(x^{3}-1\right)\left(x^{4}-1\right) .
$$

Acknowledgements

The authors would like to thank to all the members of the journal Algebra and Discrete Mathematics.

References

[1] Kelebek I. G. and T. Bilgin, Characterization of $\mathcal{U}_{1}\left(\mathbb{Z}\left[C_{n} \times K_{4}\right]\right)$, Eur. J. Pure and Appl. Math., 7(4), 462-471, 2014.
[2] T. Bilgin, Characterization of $\mathcal{U}_{1}\left(\mathbb{Z} C_{12}\right)$, Int. J. Pure Appl. Math., 14, 531-535, 2004.
[3] Ayoub R. G. and Ayoub C., On The Group Ring of a Finite Abelian Group, Bull. Aust. Math. Soc., 1, 245-261, 1969.
[4] Higman G., The Units of Group Rings, Proc. London Math. Soc., 46(2), 1940.
[5] Karpilovsky G., Commutative Group Algebras. Marcel Dekker, New York, 1983.
[6] Low R. M., On The Units of Integral Group Ring $\mathbb{Z}\left[G \times C_{p}\right]$, J. Algebra Appl., 7, 393-403, 2008.
[7] Y Li. Units of $\mathbb{Z}\left(G \times C_{2}\right)$, Quaest. Math., 21(3-4), 201-218, 1998.
[8] Jespers E., Bicyclic Units in Some Integral Group Rings. Canad. Math. Bull, 38(1), 80-86, 1995.
[9] Jespers E. and Leal G., Describing Units of Integral Group Rings of Some 2-groups, Comm. Algebra. 19, 1809-1827, 1991.
[10] Jespers E. and Parmenter M. M., Bicyclic Units in $\mathbb{Z} S_{3}$, Bull. Soc. Math. Belg. Ser. B., 44, 141-146, 1992.
[11] Milies C. P. and Sehgal S. K., An Introduction to Group Ring, Kluwer Academic Publishers, London, 2002.

Contact information

Ö. Küsmüş
 Department of Mathematics, Faculty of Science, Yuzuncu Yil University, 65080, Van, TURKEY E-Mail(s): omerkusmus@yyu.edu.tr

Received by the editors: 21.02 .2015 and in final form 05.03.2015.

