Algebra and Discrete Mathematics RESEARCH ARTICLE
Volume 17 (2014). Number 2, pp. 288 — 297

© Journal “Algebra and Discrete Mathematics”

On the group of unitriangular automorphisms
of the polynomial ring in two variables
over a finite field

Yuriy Yu. Leshchenko and Vitaly I. Sushchansky

ABSTRACT. The group UJa(F,) of unitriangular automor-
phisms of the polynomial ring in two variables over a finite field
F,, ¢ = p™, is studied. We proved that UJy(F,) is isomorphic to
a standard wreath product of elementary Abelian p-groups. Using
wreath product representation we proved that the nilpotency class
of UJy(Fy) is ¢ = m(p — 1) + 1 and the (k + 1)th term of the lower
central series of this group coincides with the (¢ — k)th term of its
upper central series. Also we showed that UJ,,(F,) is not nilpotent
if n > 3.

1. Introduction

Denote by UJ,(F) the group of unitriangular automorphisms of the
polynomial algebra in n variables over a field F. This group over a field
of characteristic zero was studied in [1] by V. Bardakov, M. Neshchadim
and Yu. Sosnovsky. The case of n = 2 and a field of prime characteristic
was considered by Zh. Dovhei and V. Sushchansky in [3,4].

Given a finite field F, with ¢ = p™ elements the group UJy(IF,) is
proved to be nilpotent and the nilpotency class has the upper bound
(¢g—1)(p — 1) + 1 and the lower bound m(p — 1) + 1 [3]. Some special
subgroups of UJs(IF), where F is an arbitrary field of positive characteristic,
were described in [4].
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In present paper we consider a wreath product representation of
UJs(F,) (section 3). Let the field F, and its additive group be denoted
by the same symbol (it is an elementary Abelian p-group of rank m). By
[y’ we denote the countable restricted direct power of F,. Considering
the standard wreath product W = F 1 Fy, where F, is the active group,
we prove that UJy(F,;) =)W (Lemma 2). Using results of H. Liebeck [5]
about nilpotent standard wreath products we obtain the nilpotency class
of UJQ (Fq)

Theorem 1. UJy(F,) is nilpotent of class m(p — 1) + 1.
In Section 4 we describe the central series of UJs(IF,). We prove

Theorem 2. Let ¢ =m(p — 1)+ 1. Then the (i + 1)th term of the lower
central series and the (c — i)th term of the upper central series of UJa(Fy)
are coincide.

Particularly, the center Z(UJy(Fy)) is the group of all pairs

[0, ci(z? — ),
€N
where ¢; € Fy and ¢; = 0 for all but finitely many i € N.
In Section 5 we consider the group UJs(R) over an integral domain
R of a prime characteristic. It is shown that if R is a polynomial ring in
one variable over a finite field then UJy(R) is not nilpotent (Lemma 8)
and we obtain

Theorem 3. For all n > 3 the group UJ,(Fy) is not nilpotent.

2. Basic definitions and notations

Let [F, be a finite field with ¢ = p™ elements. Denote by F,[z] and
F,[x,y] the algebras of polynomials over [, in one and two variables
respectively. Every automorphism of Fylz,y| is uniquely determined
by images of x and y, i.e. by a pair of polynomials (a(x,y),b(x,y)),
a(z,y),b(xz,y) € Fylz,y]. An automorphism corresponding to a pair
(ax + a, Py + f(z)), where a # 0 and 5 # 0, is called triangular. Addi-
tionally, if @ = § = 1 the automorphism is called unitriangular. Then
the group UJa(F,) of unitriangular automorphisms of Fy[x,y] is isomor-
phic to the group of all pairs u = [a, f(2)], a € Fy, f(z) € Fy[x], with
multiplication

[a, f(2)] - b, g(2)] = [a + b, f(x) + g(z + a)].
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Following [3,4] we define an elementary automorphism J, and a linear
operator Ay, a € Fy, on Fy[z] as follows:

da(f(z)) = flz+a) and A (f(x)) =da(f(z)) — f(2).

Then Agf(xz) =0 and Ayc = 0 for every f(z) € Fy[z], a,c € F,, moreover,
AgAy = ApA, for all a,b € Fy.

The identity of UJy(F,) is the pair id = [0,0]. The inverse of u is
u~t = [~a,—f(z — a)] and the commutator of v and v = [b, g(x)] is the
pair

[u, v] = wou™'v™! = [0, Aa(g(x)) — Ay(f(2))]. (1)
Lemma 1. Let f(x) € Fy[z] and a € F,. Then

1) dg(2? —x) =29 — 2 and Ay(x? —x) =0;
2) bal(2? — z) f(2)] = (29 — x)0a(f(2));

3) Aa[(z? —z) f(2)] = (27 — 2)Aa(f(2));

4) N ack, Ker Ay = Fy [x7 — z].

Proof. Parts 1), 2) and 3) can be obtained by direct computations. Let us
prove part 4). From 1) we have Fy[z? — 2] C Ker A, for every a € F,. On
the other hand, any polynomial f(z) € ,ep, Ker A, can be written as

fz) = Z(Iq — )" fi(z), (2)

where deg fi(z) < ¢ for all i = 0,1,...,t. Then, according to part 3) of
this lemma, Ay (f(z)) = Sto(29 — 2) Al (fi)-

Assume that there exists ¢ such that deg f;(z) > 0. Denote g(z) =
Ay (fi(x)). Then ¢g(0) = fi(a) — fi(0). Since f;(z) is not a constant,
there exists a € I such that g(0) # 0. Thus, we obtain a contradiction
(Ay(fi(x)) should be 0 for every a € Fy). Hence, f;j(z) = const € F, for
alli=0,1,... 1 0

3. UJ(F,) as a wreath product

The group UJy(F,) can be represented as a wreath product of two
elementary Abelian p-groups. We consider the standard wreath product
of Fy by Fy:

W =FFy,
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where F, is the active group. Elements of W are pairs [a, f(x)] such that
a € Fy, f(z) is a function from F; into Fy. Each such function can be
uniquely determined by the almost-zero sequence (fo(z), fi(x),...) of
polynomials f;(x) reduced modulo the ideal generated by 27 — z, i € N
(in other words, each polynomial has degree less or equal to ¢ — 1 and
fi(xz) = 0 for all but finitely many ¢ € N). The identity of W is the pair
[0,(0,0,...)]. Now, if

u=la,{fo(x), fi(x),..)] and v=[b{g0(),01(x),...)]  (3)
then
ut = [—a, (—fo(z — a),—fi(z —a),...)];
wv = [a+b,(fo(z) + go(z + a), fi(z) + g1(z + a),...)]. (4)
Lemma 2. UJy(F,) =W

Proof. Let u = [a, f(z)] € UJ2(Fy) and f(z) € Fy[z] has the decomposi-
tion (2). Consider a mapping ¢ : UJa(F,;) — W which acts as follows:

o(u) = [a, (folx), fi(x),...)] e W.

Clearly, ¢ is a bijection. Now suppose v = [b, g(x)] € UJ2(F,). Then

w = a, f(z)]-[b,g(2)] = la+0b, f(z) +g(x +a)] =
= [a+0,f(z)+da <Z§N gi(x)(x? — W)] =
= [a+b, %:N fi(z)(2? — )’ + iZ:N 0algi(2))(2 — 2)'] =

= la+b, Py [fi(x) + gi(z + a)) (2 — 2)7].

Thus,
puv) = la+0b,(fo(x) +g0(x +a), i(z) + gi(x +a),..)] =
= [a, (fo(x), fr(x), .. )] - [b, (90(x), g1(x), .. )] = p(u)p(v)
and ¢ is a homomorphism. O

Remark 1. Elements of UJ,(F,) can be considered as pairs of the type (3)
with group operation defined as (4). In subsequent sections we use this
representation.
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Additionally, for every i € N let the projection m; : UJa(F,) — Fy 1 F,
to be defined as

Wi([av <f07f17 NN T >D = [a7 fl]

Obviously, m; is an epimorphism. By W; we denote a subgroup of UJy(F,)
which consists of elements of the type [a, (0,...,0, f;,0,...)], where f; is
in the ith position. It is clear that W; = F, 1 F,.

In [2] G.Baumslag proved the following simple criteria: A B is
nilpotent if and only if both A and B are nilpotent p-groups, B has finite
exponent and A is finite. Additionally, H. Liebeck in [5] showed that if
B is an Abelian p-group of exponent p¥, and A is the direct product of
cyclic groups of orders p?t, ... pP», where 51 > B2 > ... > (3, then Al B
has the nilpotency class

(P =) +1+(k-D(p-1)p"" (5)
1

n

)

Now, using the wreath product representation of UJy(F,) we can prove
Theorem 1.

Proof of Theorem 1. According to Lemma 2, the group UJy(F,) is iso-
morphic to the wreath product of Fy' by F,. Thus in terms of Formula (5)
we obtain:

1) the exponent of F¢ equals p (i.e. k= 1);

2) the group F, as an elementary Abelian group is the direct product
of m cyclic groups of order p (i.e. f1 =2 =...= By =1).

Hence, c(UJ2(Fg)) =32 (p—1)+1=m(p—1) + 1. O

4. Central series of UJy(F,)

Denote by Sym(N) the group of all permutations on N = {0,1,2,...}.
Given o € Sym(N) the mapping @, : UJ2(F,) — UJa(F,) is defined as
follows:

(I)o([av <f0af17- : 'af'm - >]) = [aa <fa(0)7fa(1)? .- 'afa(n)v .- >]a

in other words, ®, permutes factors in [F". Simple calculations show that
®, is an automorphism of UJy(F,) for every o € Sym(N).

Lemma 3. If K is a characteristic subgroup of UJo(Fy) then mo(K) =
mi(K) for every i € N.
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Proof. Let us fix i. Suppose u = |a, fo] is an elements of my(K) and
v =la,{fo, f1,--, fi,...)] € K, where f1, fa,..., fi,... are polynomials
from FFy[x]/(z? — z). Consider the transposition (1,7) € Sym(N). Since
K is characteristic, w = ®(1 ;) (v) = [a, (fi, f1,-- -, fi-1, fo, fir1,.. )] € K.
Hence, m;(w) = [a, fo] = v € m(K) and 7o(K) C m;(K). Analogously, one
can show that m;(K) C my(K). O

The following lemma describes some properties of fully invariant
subgroups of UJy(Fy).

Lemma 4. If a fully invariant subgroup K of UJa(IFq) contains an element
u=lc,(...)] with c# 0 then K = UJy(F,).

Proof. For every i € N and h(z) € Fy[z]/(z? — ) we define the mapping
U Uy (F,) s UJy(F,) as follows:

UM (@, (for 1 Fir )] = 0,40, ..., 0, ah(x),0,...)].

Direct calculations show that \I/?(x) is an endomorphism.
Let us fix an index 7 and a polynomial f(z) € Fy[z]/(29 — z). Since
K is fully invariant and ¢ # 0, we obtain that K contains

K3 K3

i—1

Now, suppose fo(z) = go(z)+dz?!, where F, 3 d # 0 and deggo(z) <
g — 1. We define the endomorphism © : UJy(F,) — UJa(F,) as follows:

©(la, (fo, f1,---, fi,--)]) = [d,(0,0,...)].
Then for any given d € IF, the subgroup K contains
vg = O([0, (dz?71,0,0,...)]) = [d, (0,0,...)]. (7)
Finally, elements of types (6) and (7) generate UJ(F,). O

Corollary 1. If a fully invariant subgroup K of F, 1 F, contains an
element v = [a, f(x)] with a # 0 then K =T, F,.

Lemma 5. Let V' be a proper verbal subgroup of UJ2(F,) generated by a
collection of words V and V; be verbal subgroups of W; with respect to the
same collection V. Then V = [[;en Vi-
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Proof. Given a word w(z1,x2,...,2,) € V and uy, ug, ..., u, € UJa(Fy)
consider u = w(uy,ug,...,u,) € V. Then, according to the group opera-
tion (4), we obtain m;(u) = w(mw;(u1), m;(uz), ..., m(uy,)) for every i € N,

i.e. u is contained in the direct product [[;cy Vi.

On the other hand, given v = [0, (fo, f1,.-., fi,.. )] €V (by Lemma 4,
since V' is a proper fully invariant subgroup of UJy(IF,), the first component
of v equals 0) we consider the element v; = [0, (0,...,0, f;,0,...)] € V;. As-
sume v; = id for all i > n. Then v = vov1 ... v, and v; = w; Wi 2 . . . Wi m,,
where w; j, j =1,2,...,m;, is a value of a word (from V) in group W;.
The latter implies [[;cy Vi C V. O

By 7i(G) and ¢;(G) we denote the ith and jth terms of the lower central
series and upper central series of G respectively (note that i = 1,2, ...,
while 7 = 0,1,...). Given a word w = w(z1,z9,...,2;) and g € G
let wf = w(...,zi1,%9,Ti1,...) and Yw; = w(...,Ti1, 9T, Tit1, .. .)-
Recall that the marginal subgroup of G for the word w is the set of all g € G
such that w = wy = 9w; for all z1, 25 ..., 25 € Gand alli € {1,2,...,k}.
Particularly, terms of the upper central series are marginal subgroups
corresponding to simple commutators.

Proof of Theorem 2. Consider the (¢ — i)th member of the upper central
series as a marginal subgroup of UJy(F,) corresponding to the word
[...[z1,22], 23], ..., Tc—it1]. Suppose u € (.—i(UJ2(F,)). Then, according
to (4), we obtain 7j(u) € (.—;(Wj) for all j € N. Thus,

Ce— z UJ2 < H e z H'Yz—i—l
JEN jEN

The last equality follows from the fact that the lower central series and
upper central series of Fy 1 [F, are coincide (for details see [7]). Since mem-
bers of the lower central series are verbal subgroups, by Lemma 5 we have
[Lien Yit1(W;) = %i41(UJ2(Fy)). Thus, (c—i(UJ2(Fq)) < vit1(UJ2(Fy)).

On the other hand, vi41(UJ2(Fy)) < (—i(UJ2(Fy)), i € {0,1,....¢c}
(see, for example, [6], Theorem 5.31) and we obtain the result. O

In particular, the center Z(UJ2(F,)) of UJ2(IF,) is the subgroup of all
pairs
[0, Z ci(z? —
€N
where ¢; € Fy and ¢; = 0 for all but finitely many 7 € N. In terms of the
wreath product representation Z(UJz(FF,)) is the group of pairs

[O, <Co,01, ey Ciyn >]
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Hence, Z(UJ2(Fy)) = ITien Fq-

5. UJy(R), where R is an integral domain

Let R be an integral domain (a non-trivial commutative ring with no
non-zero zero divisors). Denote by char(R) the characteristic of R. In this
section we assume that 1 € R and char(R) = p (p is prime). Elements of
UJa(R) are represented by pairs [a, b(x)], where a € R and b(z) € R[x].

Lemma 6. Ifu =0, f(z)] and v = [b, g(z)] are elements of UJ2(R) then
[u,v] = vou"to™! =0, —Ay(f(x))].

The latter is a special case of Formula (1) that also holds for arbitrary
integral domain.

Assume R = F,[¢] is the polynomial ring in variable  over F,. Now,
elements of R[z]| can be considered as polynomials in variables £, z over
F,. If €F2! is a monomial then k is called the &-degree of the monomial
and [ is called the x-degree of that monomial. Also denote

Smo=p" A" "
where m,n € N (m < n). We need the following technical lemma.

Lemma 7. Suppose a polynomial f(&,x) € Fy[€, x] contains the monomial
¢lxsn such that no other term of f(&,x) has &-degree d. Then there
exists v € N such that the polynomial f(&,x+ &) — f(&,x) contains the
monomial €7 x¥m+1 and no other term of f(&,x + &) — f(€,x) has
E-degree d + rp™.

Proof. Let r denotes some fixed positive integer and &%xm, ¢;£% 201,
cob®2xb2 &%t are all terms of f(&,x); here a;,b; € N, ¢; € Fy.
Then

m n—m

Elx 4+ P — gl =
= " )T — gl =
glaP™st TP L (€, x) =
g gt mi (¢, 1),

i +€7)%h — glah

where h(&, z) does not contain monomials of ¢-degree d + rp™.

Let us also fix i € {1,2,...,t}. If b; = p™id;, where p t d;, then by
direct computations (as in the previous case) one can show that the
polynomial ¢;£% (z + €)% — ¢;€% 2% contains only terms of the form

iHirp™ P (di—j F :
&‘a e Il‘p z( j)7 ] - 1727""di7



296 UNITRIANGULAR AUTOMORPHISMS OF POLYNOMIAL RING

here we omit coefficients of respective monomials. Now, suppose that some
of those monomials has ¢-degree d + rp™. In other words, a; + jrp™ =
d+rp™ or
r(p™ —jp™) = ai — d. (8)
If p™ — jp™ = 0 then Equality (8) is false for all » € N, since a; — d # 0.
Otherwise, if for some ¢ and j we have p — jp™ # 0 then (8) can be
rewritten as
i ©)
pe—=Jp
Since t and all a;’s, b;’s are finite we can choose r such that (9) does
not hold for all possible ¢ and j and, hence, §d+”’mx%+1 is the unique
monomial of &-degree d 4+ rp™ in f(§,x +&") — f(§, x). O

Lemma 8. If R =F,[{] then UJy(R) is not nilpotent.

Proof. Let us fix n € N and u = [0,2°T] € UJo(R). We'll prove that there
exist elements vy, ...,v, € UJo(R) such that [u,vq,...,v,] # id.
Assume v; = [¢",0] for some r; € N. According to Lemma 6
we obtain [u,v1] = [0, fi(&,2)], where fi(§,2) = —Agn(2°7). Here
x°1 satisfies the conditions of Lemma 7, thus there exists 71 such that
f1(&,7) contains the monomial Pz (without considering the coef-
ficient) which has the unique &-degree among all terms of f1(&,z). In
general, there exist r1,79,...,7; € N such that after ¢ steps we obtain
[u,v1,...,v;] = [0, fi(§, x)], where f;(£,z) has a monomial of z-degree
si 1 satisfying the conditions of Lemma 7. Finally, after n steps we obtain
[u,v1,...,v,] # id and the lemma is proved. O

Regarding the latter lemma, it might be interesting to investigate the
necessary and sufficient conditions for UJa(R) to be nilpotent.
Finally, we consider UJ, (F,) for n > 3.

Proof of Theorem 3. Elements of the group UJ,(F,) are represented by
tuples
[a1,a2(z1),. .., an(z1,. .., Tn1)],

where a1 € Fy and a;(z1,...,xi—1) € Fy[z1,...,zi-1], i € {2,3,...,n}.
Let H be the subgroup of UJ, (F,) that consists of all tuples

[0,&1(:61),&2(:61,562),0, . .],

where aj(x1) € Fylz1] and ax(z1,22) € Fy[z1,22]. It is obvious that
H = UJy(F4[z1]). Using Lemma 8 we obtain the result. O
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