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Abstract. We study the semigroup IO∞(Zn

lex
) of monotone

injective partial selfmaps of the set of Ln ×lex Z having co-finite
domain and image, where Ln ×lex Z is the lexicographic product of
n-elements chain and the set of integers with the usual order. We
show that IO∞(Zn

lex
) is bisimple and establish its projective congru-

ences. We prove that IO∞(Zn

lex
) is finitely generated, and for n = 1

every automorphism of IO∞(Zn

lex
) is inner and show that in the

case n > 2 the semigroup IO∞(Zn

lex
) has non-inner automorphisms.

Also we show that every Baire topology τ on IO∞(Zn

lex
) such that

(IO∞(Zn

lex
), τ) is a Hausdorff semitopological semigroup is discrete,

construct a non-discrete Hausdorff semigroup inverse topology on
IO∞(Zn

lex
), and prove that the discrete semigroup IO∞(Zn

lex
) cannot

be embedded into some classes of compact-like topological semi-
groups and that its remainder under the closure in a topological
semigroup S is an ideal in S.

1. Introduction and preliminaries

In this paper all spaces will be assumed to be Hausdorff. We shall
denote the first infinite cardinal by ω and the cardinality of the set A
by |A|. Also we denote the additive group of integers by Z(+). We shall
identify all sets X with its cardinality |X|.
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An algebraic semigroup S is called inverse if for any element x ∈ S
there exists a unique x−1 ∈ S such that xx−1x = x and x−1xx−1 = x−1.
The element x−1 is called the inverse of x ∈ S. If S is an inverse semigroup,
then the function inv : S → S which assigns to every element x of S its
inverse element x−1 is called an inversion.

If C is an arbitrary congruence on a semigroup S, then we denote
by ΦC : S → S/C the natural homomorphisms from S onto the quotient
semigroup S/C. A congruence C on a semigroup S is called non-trivial if
C is distinct from universal and identity congruence on S, and group if
the quotient semigroup S/C is a group. Every inverse semigroup S admits
a least (minimum) group congruence σ:

aσb if and only if there exists e ∈ E(S) such that ae = be

(see [25, Lemma III.5.2])
If S is a semigroup, then we shall denote the subset of idempotents

in S by E(S). If S is an inverse semigroup, then E(S) is closed under
multiplication and we shall refer to E(S) a band (or the band of S). If
the band E(S) is a non-empty subset of S, then the semigroup operation
on S determines the following partial order 6 on E(S): e 6 f if and only
if ef = fe = e. This order is called the natural partial order on E(S). A
semilattice is a commutative semigroup of idempotents. A semilattice E
is called linearly ordered or a chain if its natural order is a linear order. A
maximal chain of a semilattice E is a chain which is properly contained
in no other chain of E.

The Axiom of Choice implies the existence of maximal chains in any
partially ordered set. According to [25, Definition II.5.12] a chain L is
called an ω-chain if L is isomorphic to {0, −1, −2, −3, . . .} with the usual
order 6. Let E be a semilattice and e ∈ E. We denote ↓e = {f ∈ E | f 6

e} and ↑e = {f ∈ E | e 6 f}. By (P<ω(λ), ⊆) we shall denote the free
semilattice with identity over a set of cardinality λ > ω, i.e., (P<ω(λ), ⊆)
is the set of all finite subsets (with the empty set) of λ with the semilattice
operation “union”.

If S is a semigroup, then we shall denote the Green relations on S by
R, L, J, D and H (see [6, Section 2.1]):

aRb if and only if aS1 = bS1;

aLb if and only if S1a = S1b;

aJb if and only if S1aS1 = S1bS1;

D = L ◦ R = R ◦ L;

H = L ∩ R.
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A semigroup S is called simple if S does not contain any proper two-sided
ideals and bisimple if S has a unique D-class.

For a non-empty subset A of an inverse semigroup S we say that
A generates S as an inverse semigroup, if the intersection of all inverse
subsemigroups of S whose contains A coincides with S. In this case we
write 〈A〉 = S and call A to be a set of generators of S as an inverse
semigroup.

An automorphism f : S → S of a semigroup S with a non-empty group
of units H1 is called inner if there exists a ∈ H1 such that (s)f = asa−1

for all s ∈ S.
A semitopological (resp. topological) semigroup is a Hausdorff topolog-

ical space together with a separately (resp. jointly) continuous semigroup
operation. An inverse topological semigroup with the continuous inversion
is called a topological inverse semigroup. A Hausdorff topology τ on a
(inverse) semigroup S such that (S, τ) is a topological (inverse) semigroup
is called a (inverse) semigroup topology.

If α : X ⇀ Y is a partial map, then by dom α and ran α we denote
the domain and the range of α, respectively.

Let Iλ denote the set of all partial one-to-one transformations of
an infinite set X of cardinality λ together with the following semigroup
operation: x(αβ) = (xα)β if x ∈ dom(αβ) = {y ∈ dom α | yα ∈ dom β},
for α, β ∈ Iλ. The semigroup Iλ is called the symmetric inverse semigroup
over the set X (see [6, Section 1.9]). The symmetric inverse semigroup
was introduced by Vagner [28] and it plays a major role in the theory of
semigroups. An element α ∈ Iλ is called cofinite, if the sets λ \ dom α
and λ \ ran α are finite.

Let (X,6) be a partially ordered set. We shall say that a partial map
α : X ⇀ X is monotone if x 6 y implies (x)α 6 (y)α for x, y ∈ X.

Let Z be the set of integers with the usual linear order 6. For any
positive integer n by Ln we denote the set {1, . . . , n} with the usual linear
order 6. On the Cartesian product Ln × Z we define the lexicographic
order, i.e.,

(i, m) 6 (j, n) if and only if (i < j) or (i = j and m 6 n).

Later the set Ln ×Z with the lexicographic order we denote by Ln ×lex Z.
Also, it is obvious that the Z × Ln with the lexicographic order is order
isomorphic to (Z,6).

By IO∞(Zn
lex) we denote a subsemigroup of injective partial monotone

selfmaps of Ln ×lex Z with co-finite domains and images. Obviously,
IO∞(Zn

lex) is an inverse submonoid of the semigroup Iω and IO∞(Zn
lex)

is a countable semigroup. Also, by IO∞(Z) we denote a subsemigroup
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of injective partial monotone selfmaps of Z with cofinite domains and
images.

Furthermore, we shall denote the identity of the semigroup IO∞(Zn
lex)

by I and the group of units of IO∞(Zn
lex) by H(I).

For a topological space X, a family {As | s ∈ A} of subsets of X
is called locally finite if for every point x ∈ X there exists an open
neighbourhood U of x in X such that the set {s ∈ A | U ∩ As} is finite.
A subset A of X is said to be

• co-dense on X if X \ A is dense in X;

• an Fσ-set in X if A is a union of a countable family of closed subsets
in X.

We recall that a topological space X is said to be

• compact if each open cover of X has a finite subcover;

• countably compact if each open countable cover of X has a finite
subcover;

• pseudocompact if each locally finite open cover of X is finite;

• a Baire space if for each sequence A1, A2, . . . , Ai, . . . of nowhere
dense subsets of X the union

⋃∞
i=1 Ai is a co-dense subset of X;

• Čech complete if X is Tychonoff and for every compactification cX
of X the remainder cX \ X is an Fσ-set in cX;

• locally compact if every point of X has an open neighbourhood with
the compact closure.

According to Theorem 3.10.22 of [11], a Tychonoff topological space X is
pseudocompact if and only if each continuous real-valued function on X
is bounded.

It is well known that topological algebra studies the influence of
topological properties of its objects on their algebraic properties and
the influence of algebraic properties of its objects on their topological
properties. There are two main problems in topological algebra: the
problem of non-discrete topologization and the problem of embedding
into objects with some topological-algebraic properties.

In mathematical literature the question about non-discrete (Hausdorff)
topologization was posed by Markov [23]. Pontryagin gave well known
conditions a base at the unity of a group for its non-discrete topologization
(see Theorem 4.5 of [19] or Theorem 3.9 of [26]). Various authors have
refined Markov’s question: can a given infinite group G endowed with
a non-discrete group topology be embedded into a compact topological
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group? Again, for an arbitrary Abelian group G the answer is affirmative,
but there is a non-Abelian topological group that cannot be embedded
into any compact topological group (see Section 9 of [7]).

Also, Ol’shanskiy [24] constructed an infinite countable group G such
that every Hausdorff group topology on G is discrete. Eberhart and Selden
showed in [10] that every Hausdorff semigroup topology on the bicyclic
semigroup C(p, q) is discrete. Bertman and West proved in [4] that every
Hausdorff topology τ on C(p, q) such that ( C(p, q), τ) is a semitopological
semigroup is also discrete. Taimanov gave in [27] sufficient conditions on
a commutative semigroup to have a non-discrete semigroup topology.

Many mathematiciants have studied the problems of embeddings of
topological semigroups into compact or compact-like topological semi-
groups (see [5]). Neither stable nor Γ-compact topological semigroups
can contain a copy of the bicyclic semigroup [1, 20]. Also, the bicyclic
semigroup cannot be embedded into any countably compact topological
inverse semigroup [16]. Moreover, the conditions were given in [2] and
[3] when a countably compact or pseudocompact topological semigroup
cannot contain the bicyclic semigroup.

However, Banakh, Dimitrova and Gutik [3] have constructed (assuming
the Continuum Hypothesis or Martin Axiom) an example of a Tychonoff
countably compact topological semigroup which contains the bicyclic
semigroup. The problems of topologization of semigroups of partial trans-
formations and their embeddings into compact-like semigroup were studied
in [12–15].

Doroshenko in [8, 9] studied the semigroups of endomorphisms of lin-
early ordered sets N and Z and their subsemigroups of cofinite endomor-
phisms. In [9] he described the Green relations, groups of automorphisms,
conjugacy, centralizers of elements, growth, and free subsemigroups in
these subgroups. In [8] there was shown that both these semigroups do
not admit an irreducible system of generators. In their subsemigroups of
cofinite functions all irreducible systems of generators are described there.
Also, here the last semigroups are presented in terms of generators and
relations.

Gutik and Repovš in [17] showed that the semigroup Iր
∞(N) of partial

cofinite monotone injective transformations of the set of positive integers
N has algebraic properties similar to those of the bicyclic semigroup:
it is bisimple and all of its non-trivial semigroup homomorphisms are
either isomorphisms or group homomorphisms. There were proved that
every locally compact topology τ on Iր

∞(N) such that (Iր
∞(N), τ) is a

topological inverse semigroup, is discrete and the closure of (Iր
∞(N), τ)

in a topological semigroup was described.
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In [18] Gutik and Repovš studied the semigroup Iր
∞(Z) of partial

cofinite monotone injective transformations of the set of integers Z and
they showed that Iր

∞(Z) is bisimple and all of its non-trivial semigroup
homomorphisms are either isomorphisms or group homomorphisms. Also
they proved that every Baire topology τ on Iր

∞(Z) such that (Iր
∞(Z), τ)

is a Hausdorff semitopological semigroup is discrete and construct a
non-discrete Hausdorff semigroup inverse topology τW on Iր

∞(Z).
In this paper we study the semigroup IO∞(Zn

lex). We describe Green’s
relations on IO∞(Zn

lex), show that the semigroup IO∞(Zn
lex) is bisimple

and establish its projective congruences. We prove that IO∞(Zn
lex) is

finitely generated, every automorphism of IO∞(Z) is inner and show
that in the case n > 2 the semigroup IO∞(Zn

lex) has non-inner automor-
phisms. Also we prove that every Baire topology τ on IO∞(Zn

lex) such
that (IO∞(Zn

lex), τ) is a Hausdorff semitopological semigroup is discrete
and construct a non-discrete Hausdorff semigroup inverse topology on
IO∞(Zn

lex). We show that the discrete semigroup IO∞(Zn
lex) cannot be

embedded into some classes of compact-like topological semigroups and
that its remainder under the closure in a topological semigroup S is an
ideal in S.

2. Algebraic properties of the semigroup IO∞(Zn
lex)

Lemma 2.1. Let n be any positive integer > 2, α ∈ IO∞(Zn
lex) and

(i, l)α = (j, m). Then i = j.

Proof. We shall show the assertion of the lemma by induction. Let i = 1.
Suppose the contrary: there exists an integer l such that (1, l)α = (j, m)
and j > 2. Then the injectivity and monotonicity of α imply that (1, k)α >

(j, m) for every integer k > l. This contradicts the cofinality of α, and
hence we get j = 1.

Next we shall prove that if the assertion of the lemma is true for all
positive integers i < p, where p 6 n, then it is true for i = p. Suppose to the
contrary that there exists an integer l such that (p, l)α = (j, m) and j > p.
Then the injectivity and monotonicity of α imply that (p, k)α > (j, m)
for every integer k > l. By assumption of induction we get that the set
(Ln × Z) \ ran α is infinite, which contradicts the cofinality of α. The
obtained contradiction implies the equality j = p. This completes the
proof of the lemma.

Proposition 2.2. Let n be any positive integer > 2. Then every two
cofinite subset of Ln ×lex Z are order isomorphic.
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Proof. The statement of the lemma is trivial in the case when n = 1. Let
A and B are cofinite subset of Ln ×lex Z. Then for every i = 1, . . . , n, the
sets A∩({i}×Z) and B∩({i}×Z) are cofinite subsets of {i}×Z, and hence
are order isomorphic. This implies that the union of their coordinatewise
order isomorphisms on the first factor is an order isomorphism of A
and B.

For every i = 1, . . . , n we put

Si =
{

α ∈ IO∞(Zn
lex) : the restriction α|(Ln\{i})×Z is an identity map

}

.

It is obvious that Si is an inverse submonoid of the semigroup IO∞(Zn
lex)

for every i = 1, . . . , n.

Proposition 2.3. Let n be any positive integer > 2. Then the following
assertions hold:

(i) for every i = 1, . . . , n the semigroup Si is isomorphic to IO∞(Z);

(ii) Si ∩ Sj = {I} for all distinct i, j = 1, . . . , n;

(iii) if i 6= j, i, j = 1, . . . , n, then αiβj = βjαi for all αi ∈ Si and
βj ∈ Sj;

(iv) the semigroup IO∞(Zn
lex) is isomorphic to the direct product

∏n
i=1 Si,

and hence it is isomorphic to the direct power (IO∞(Z))n.

Proof. (i) For fixed i = 1, . . . , n we identify the semigroups Si and IO∞(Z)
by the map Fi : Si → IO∞(Z), where (α)Fi = α|{i}×Z is the restriction
of α onto {i} × Z. Simple verifications show that such defined map
Fi : Si → IO∞(Z) is a semigroup isomorphism.

Statements (ii) and (iii) are trivial and follow from the definition of
the semigroup Si, i = 1, . . . , n.

(iv) We define the map I : IO∞(Zn
lex) →

∏n
i=1 Si : α 7→ (α1, . . . , αn),

where

(x)αi =
{

(x)α, if x ∈ {i} × Z;
x, otherwise,

i = 1, . . . , n. Simple verifications imply that the map Ii : IO∞(Zn
lex) → Si,

defined by the formula (α)Ii = αi is a homomorphism. This implies
that the map I : IO∞(Zn

lex) →
∏n

i=1 Si is a homomorphism. Also, for
arbitrary α1 ∈ S, . . . , αn ∈ Sn we have that (α)I = (α1, . . . , αn), where
α = α1 . . . αn, and hence the map I is surjective. If α and β are distinct
elements of the semigroup IO∞(Zn

lex), then there exists a positive integer
i ∈ {1, . . . , n} such that (x)α 6= (x)β for some x ∈ {i} × Z, and hence
we have that (x)αi 6= (x)βi. This implies that (α)I 6= (β)I, and hence
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the map I : IO∞(Zn
lex) →

∏n
i=1 Si is an isomorphism. The last statement

follows from (i).

Proposition 2.4. Let n be any positive integer. Then the following
assertions hold:

(i) An element α of the semigroup IO∞(Zn
lex) is an idempotent if and

only if (x)α = x for every x ∈ dom α.

(ii) If ε, ι ∈ E(IO∞(Zn
lex)), then ε 6 ι if and only if dom ε ⊆ dom ι.

(iii) The semilattice E(IO∞(Zn
lex)) is isomorphic to (P<ω(Ln × Z), ⊆)

under the mapping (ε)h = (Ln ×lex Z) \ dom ε.

(iv) Every maximal chain in E(IO∞(Zn
lex)) is an ω-chain.

(v) αRβ in IO∞(Zn
lex) if and only if dom α = dom β.

(vi) αLβ in IO∞(Zn
lex) if and only if ran α = ran β.

(vii) αHβ in IO∞(Zn
lex) if and only if dom α = dom β and ran α = ran β.

(viii) For all idempotents ε, ϕ ∈ IO∞(Zn
lex) there exist infinitely many

elements α, β ∈ IO∞(Zn
lex) such that α · β = ε and β · α = ϕ.

(ix) IO∞(Zn
lex) is a bisimple semigroup and hence J = D.

Proof. The proofs of assertions (i)–(iv) are trivial and they follow from
the definition of the semigroup IO∞(Zn

lex).
The proofs of (v)–(vii) follow trivially from the fact that IO∞(Zn

lex)
is a regular semigroup, and by [21, Proposition 2.4.2, Exercise 5.11.2].

Proposition 2.2 implies assertion (viii). Assertion (ix) follows from
(viii) and Proposition 3.2.5(1) of [22].

By Lemma 2.1, for every α ∈ IO∞(Zn
lex) and any (i, k) ∈ dom α ⊆

Ln × Z there exists an integer (k)αi such that (i, k)α = (i, (k)αi). This
implies that the notion (k)αi well-defined for every α ∈ IO∞(Zn

lex) and
any (i, k) ∈ dom α. Also, later we shall identify αi with the restriction
α|{i}×Z of α on the set {i} × Z. This makes to possible to consider αi as
an element of the semigroup IO∞(Z).

Lemma 2.5. Let n be any positive integer. Then a partial injective
monotone selfmap α of Ln×lexZ is an element of the semigroup IO∞(Zn

lex)
if and only if there exist integers dα and uα such that for any i = 1, . . . , n
the following conditions hold:

(i, k − 1)α = (i, (k − 1)αi) = (i, (k)αi − 1)

and (i, l + 1)α = (i, (l + 1)αi) = (i, (l)αi + 1),
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for all integers k 6 dα and l > uα. Moreover α ∈ H(I) in IO∞(Zn
lex) if

and only if

(i, m + 1)α = (i, (m + 1)αi) = (i, (m)αi + 1),

for any i = 1, . . . , n and any integer m.

Proof. By Lemma 1.1 from [18] we have that a partial injective monotone
selfmap α of Z is an element of the semigroup IO∞(Z) if and only if there
exist integers dα and uα such that the following conditions hold:

(k − 1)α = (k)α − 1 and (l + 1)α = (l)α + 1

for all integers k 6 dα and l > uα,

and α ∈ H(I) in IO∞(Z) if and only if (m + 1)α = (m)α + 1 for any
integer m. Then Proposition 2.3 implies that a partial injective monotone
selfmap α of Ln ×lex Z is an element of the semigroup IO∞(Zn

lex) if and
only if for every i = 1, . . . , n there exist integers di

α and ui
α such that

(i, k − 1)α = (i, (k − 1)αi) = (i, (k)αi − 1)

and (i, l + 1)α = (i, (l + 1)αi) = (i, (l)αi + 1),

for all integers k 6 di
α and l > ui

α. We put dα = min{d1
α, . . . , dn

α} and
uα = max{u1

α, . . . , un
α}. Simple verifications show that the integers dα

and uα are requested.
The last statement immediately follows from Proposition 2.3 and

Lemma 1.1 of [18].

The second part of Lemma 2.5 implies the following proposition:

Proposition 2.6. For any positive integer n the group of units H(I) of
the semigroup IO∞(Zn

lex) is isomorphic to the direct power (Z(+))n.

Theorem 2.20 of [6], Proposition 2.4(ix) and Proposition 2.6 imply
the following corollary:

Corollary 2.7. Let n be any positive integer. Then every maximal sub-
group of the semigroup IO∞(Zn

lex) is isomorphic to the direct power
(Z(+))n.

Proposition 2.8. Let n be any positive integer. Then for every ele-
ments α, β ∈ IO∞(Zn

lex), both sets {χ ∈ IO∞(Zn
lex) : α · χ = β} and {χ ∈

IO∞(Zn
lex) : χ · α = β} are finite.
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Proof. We denote A = {χ ∈ IO∞(Zn
lex) : α · χ = β} and B = {χ ∈

IO∞(Zn
lex) : α−1 · α · χ = α−1 · β}. Then A ⊆ B and the restriction of

any partial map χ ∈ B to dom(α−1 · α) coincides with the partial map
α−1 · β. Since every partial map from IO∞(Zn

lex) is monotone we conclude
that the set B is finite and hence so is A. The proof of the other case is
similar.

The following theorem describes the least group congruence σ on the
semigroup IO∞(Zn

lex).

Theorem 2.9. Let n be any positive integer. Then the quotient semigroup
IO∞(Zn

lex)/σ is isomorphic to the direct power (Z(+))2n.

Proof. Let α and β be σ-equivalent elements of the semigroup IO∞(Zn
lex).

Then by Lemma III.5.2 from [25] there exists an idempotent ε0 in
IO∞(Zn

lex) such that α · ε0 = β · ε0. Since IO∞(Zn
lex) is an inverse semi-

group we conclude that α · ε = β · ε for all ε ∈ E(IO∞(Zn
lex)) such that

ε 6 ε0. Then Lemma 2.5 implies that there exist integers dα, uα, dβ and
uβ such that for any i = 1, . . . , n the following conditions hold:

(i, k − 1)α = (i, (k − 1)αi) = (i, (k)αi − 1),

(i, l + 1)α = (i, (l + 1)αi) = (i, (l)αi + 1),

(i, k − 1)β = (i, (k − 1)βi) = (i, (k)βi − 1),

(i, l + 1)β = (i, (l + 1)βi) = (i, (l)βi + 1),

for all integers k 6 d = min{dα, dβ} and l > u = max{uα, uβ}. We put

d0 = min
{

(d)α1, . . . , (d)αn, (d)β1, . . . , (d)βn
}

and u0 = max
{

(u)α1, . . . , (u)αn, (u)β1, . . . , (u)βn
}

.

Let ε1 be an identity map from Ln × (Z \ {d0, d0 + 1, . . . , u0}) onto itself.
Then ε0 = ε1 · ε0 6 ε0 and hence we have that α · ε0 = β · ε0. Therefore
we have showed that if the elements α and β of the semigroup IO∞(Zn

lex)
are σ-equivalent, then there exist integers d and u such that

(i, k)α = (i, k)β and (i, l)α = (i, l)β,

for all integers k 6 d and l > u and any i = 1, . . . , n.
Conversely, suppose that exist integers d and u such that

(i, k)α = (i, k)β and (i, l)α = (i, l)β,
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for all integers k 6 d and l > u and any i = 1, . . . , n. Then we have that
d 6 u. If d = u or d = u − 1 then α = β in IO∞(Zn

lex) and hence α and β
are σ-equivalent. If d < u − 1 then we put ε0 to be the identity map of
the set

(Ln × Z) \
{(

1, (d + 1)α1
)

, . . . ,
(

1, (u − 1)α1
)

, . . .

. . . , (n, (d + 1)αn) , . . . , (n, (u − 1)αn)} .

Then we get that (i, k)(α ◦ ε0) = (i, k)(β ◦ ε0) for any (i, k) ∈ Ln ×
(Z \ {d + 1, . . . , u − 1}) and therefore α · ε0 = β · ε0. Hence Lemma III.5.2
from [25] implies that α and β are σ-equivalent elements of the semigroup
IO∞(Zn

lex).

Now we define the map H : IO∞(Zn
lex) → (Z(+) × Z(+))n by the

formula

(α)H =
((

(dα)α1 − dα, (uα)α1 − uα

)

, . . . , ((dα)αn − dα, (uα)αn − uα)
)

,

where the integers dα and uα are defined in Lemma 2.5.

We observe that

(dα − k)αi = (dα)αi − k and (uα + k)αi = (uα)αi + k,

for any i = 1, . . . , n and any positive integer k. Hence we have that

(k)αi − k = (dα)αi − dα and (l)αi − l = (uα)αi − uα,

for any i = 1, . . . , n and all integers k 6 dα and l > uα.

Lemma 2.5 implies that there exist integers d0 and u0 such that

(k − 1)αi = (k)αi − 1, (l + 1)αi = (l)αi + 1,

(k − 1)βi = (k)βi − 1, (l + 1)βi = (l)βi + 1,

(k − 1)(αi · βi) = (k)(αi · βi) − 1, (l + 1)(αi · βi) = (l)(αi · βi) + 1,

for any i = 1, . . . , n and all integers k 6 d0 and l > u0. Hence for any
i = 1, . . . , n and all integers k 6 d0 and l > u0 we have that

(k)(αi·βi)−k = (k)(αi·βi)−(k)αi+(k)αi−k = ((dβ)βi−dβ)+((dα)αi−dα),

(l)(αi ·βi)−l = (l)(αi ·βi)−(l)αi+(l)αi−l = ((uβ)βi−uβ)+((uα)αi−uα).

This implies that the map H : IO∞(Zn
lex) → (Z(+) × Z(+))n is a homo-

morphism. Simple verifications show that the map H is surjective and



O. Gutik, I. Pozdnyakova 267

ker H = σ, i.e., the homomorphism H generated the congruence σ on the
semigroup IO∞(Zn

lex).

Next we establish congruences on the semigroup IO∞(Zn
lex).

By Proposition 2.3(iv), the semigroup IO∞(Zn
lex) is isomorphic to the

direct power (IO∞(Z))n. Hence every element α of IO∞(Zn
lex) we can

present in the form (α1, α2, . . . , αn). Later by α◦
i we shall denote the

element of the form (I1, . . . , Ii−1, αi, Ii+1, . . . , In), where Ij is the identity
of j-th factor in (IO∞(Z))n.

For i = 1, . . . , n we define a relation σ[i] on IO∞(Zn
lex) in the following

way:

ασ[i]β if and only if

there exists an idempotent ε ∈ IO∞(Z) such that αε◦
i = βε◦

i .

Remark 2.10. For every α = (α1, . . . , αn) ∈ IO∞(Zn
lex) we have that

α = α◦
1 . . . α◦

n.

Proposition 2.11. σ[i] is a congruence on IO∞(Zn
lex) for every

i = 1, . . . , n.

Proof. It is obvious that σ[i] is reflexive and symmetric relation on
IO∞(Zn

lex). Suppose that ασ[i]β and βσ[i]γ. Then there exist idempo-
tents ε, ι ∈ IO∞(Z) such that αε◦

i = βε◦
i and βι◦

i = γι◦
i . Since in an

inverse semigroup idempotents commute we get that αε◦
i ι◦

i = βε◦
i ι◦

i =
βι◦

i ε◦
i = γι◦

i ε◦
i = γε◦

i ι◦
i , and hence ασ[i]γ.

Suppose that ασ[i]β for some α, β ∈ IO∞(Zn
lex) and γ be any element

of IO∞(Zn
lex). Then we have that αε◦

i = βε◦
i for some idempotent ε ∈

IO∞(Z). Now we get γαε◦
i = γβε◦

i and

αγ(γ−1
i εiγi)

◦ = α(γiγ
−1
i εi)

◦γ = α(εiγiγ
−1
i )◦γ = αε◦

i (γiγ
−1
i )◦γ =

= βε◦
i (γiγ

−1
i )◦γ = β(εiγiγ

−1
i )◦γ =

= β(γiγ
−1
i εi)

◦γ = βγ(γ−1
i εiγi)

◦,

where γi is the i-th coordinate of γ of the representation in (IO∞(Z))n.
Since γ−1

i εiγi is an idempotent of IO∞(Z) we have that (γα)σ[i](γβ) and
(αγ)σ[i](βγ). This completes the proof of the proposition.

Proposition 2.12. σ[i] ◦ σ[j] = σ[j] ◦ σ[i] and hence σ[i] ◦ σ[j] = σ[i] ∨ σ[j]

for any i, j = 1, . . . , n.

Proof. Suppose that α(σ[i] ◦ σ[j])β for some α = (α1, . . . , αn),
β = (β1, . . . , βn) ∈ IO∞(Zn

lex). Then there exist γ = (γ1, . . . , γn) ∈
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IO∞(Zn
lex) such that ασ[i]γ and γσ[j]β. Then the definition of σ[i] implies

that the following equalities hold:

αk = γk, for all k ∈ {1, . . . , n} \ {i};

γl = βl, for all l ∈ {1, . . . , n} \ {j};

αiε = γiε, γjε = βjε for some idempotent ε ∈ IO∞(Z).

We put δ = (δ1, . . . , δn), where

δl =
{

βj , if l = j;
αl, if l 6= j.

Then we get that ασ[j]δ and δσ[i]β, and hence α(σ[j] ◦ σ[i])β. This implies
that σ[i] ◦ σ[j] ⊆ σ[j] ◦ σ[i] and hence by Lemma 1.4 from [6] we get that
σ[i] ◦ σ[j] = σ[i] ∨ σ[j].

Proposition 2.13. For any collection {i1, . . . , ik} ⊆ {1, . . . , n} of dis-
tinct indices, k 6 n, the following condition holds σ[i1] ◦ . . . ◦ σ[ik] =
σ[i1] ∨ . . . ∨ σ[ik], and hence σ[i1,...,ik] = σ[i1] ◦ . . . ◦ σ[ik] is a congruence on
IO∞(Zn

lex).

Proof. We prove the statements of the proposition by induction. Propo-
sition 2.12 implies that the statements hold for k = 2. Now we suppose
that the assertion holds for any integer j < k0 6 n and we shall show
that it is true for k0. Then we have

(σ[i1] ◦ . . . ◦ σ[ik0−1]) ◦ σ[ik0
] = (σ[i1] ◦ . . . ◦ σ[ik0−2]) ◦ (σ[ik0−1] ◦ σ[ik0

]) =

= (σ[i1] ◦ . . . ◦ σ[ik0−2]) ◦ (σ[ik0
] ◦ σ[ik0−1]) =

= σ[i1] ◦ . . . ◦ (σ[ik0
] ◦ σ[ik0−2]) ◦ σ[ik0−1] =

= (σ[i1] ◦ . . . ◦ σ[ik0
]) ◦ (σ[ik0−2] ◦ σ[ik0−1]) =

= . . . =

= σ[ik0
] ◦ (σ[i1] ◦ . . . σ[ik0−2] ◦ σ[ik0−1]).

This implies the following

σ[i1] ◦ . . . ◦ σ[ik0−1] ◦ σ[ik0
] = (σ[i1] ◦ . . . ◦ σ[ik0−1]) ◦ σ[ik0

] =

= (σ[i1] ◦ . . . ◦ σ[ik0−1]) ∨ σ[ik0
] =

= (σ[i1] ∨ . . . ∨ σ[ik0−1]) ∨ σ[ik0
],

and similar arguments as in the proof of Proposition 2.12 imply that
σ[i1,...,ik] = σ[i1] ◦ . . . ◦ σ[ik] is a congruence on IO∞(Zn

lex).
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Proposition 2.13 implies the following

Corollary 2.14. For any collections {i1, . . . , ik} ⊆ {1, . . . , n} and
{j1, . . . , jl} ⊆ {1, . . . , n} of indices, k 6 n, the following condition holds:

(i) σ[i1,...,ik] ⊆ σ[j1,...,jl] if and only if {i1, . . . , ik} ⊆ {j1, . . . , jl};

(ii) σ[i1,...,ik] = σ[j1,...,jl] if and only if {i1, . . . , ik} = {j1, . . . , jl};

(iii) σ[i1,...,ik] ◦ σ[j1,...,jl] = σ[p1,...,pm], where {p1, . . . , pm} = {i1, . . . , ik} ∪
{j1, . . . , jl}.

Proposition 2.15. For any collection {i1, . . . , ik} ⊆ {1, . . . , n} of dis-
tinct indices, k 6 n, ασ[i1,...,ik]β in IO∞(Zn

lex) if and only if αε◦
i1

. . . ε◦
ik

=
βε◦

i1
. . . ε◦

ik
for some idempotents ε◦

i1
, . . . , ε◦

ik
∈ IO∞(Zn

lex).

Proof. (⇒) Suppose that ασ[i1,...,ik]β in IO∞(Zn
lex). Without loss of gener-

ality we can assume that i1 = 1, . . . , ik = k. Then there exist γ1, . . . , γk−1

such that ασ[1]γ
1σ[2]γ

2σ[3] . . . σ[k−1]γ
k−1σ[k]β. This implies the existence

of idempotents ε◦
1, . . . , ε◦

k ∈ IO∞(Zn
lex) such that αε◦

1 = γ1ε◦
1, γ1ε◦

2 = γ2ε◦
2,

. . ., γk−1ε◦
k = βε◦

k. Since idempotents in an inverse semigroup commute
we have that

αε◦
1ε◦

2 . . . ε◦
k = γ1ε◦

1ε◦
2 . . . ε◦

k = γ1ε◦
2ε◦

1 . . . ε◦
k = γ2ε◦

2ε◦
1 . . . ε◦

k =

= γ2ε◦
3ε◦

1 . . . ε◦
k = γ3ε◦

3ε◦
1ε◦

2 . . . ε◦
k = · · · = γk−1ε◦

k−1ε◦
2ε◦

1 . . . ε◦
k =

= γk−1ε◦
kε◦

1ε◦
2 . . . ε◦

k−1 = βε◦
kε◦

1ε◦
2 . . . ε◦

k−1 = βε◦
1ε◦

2 . . . ε◦
k

(⇐) Suppose that αε◦
i1

. . . ε◦
ik

= βε◦
i1

. . . ε◦
ik

for some idempotents
ε◦

i1
, . . . , ε◦

ik
∈ IO∞(Zn

lex). Without loss of generality we can assume that
i1 = 1, . . . , ik = k. We put γ1 = αε◦

1, γ2 = αε◦
1ε◦

2, . . ., γk = αε◦
1ε◦

2 . . . ε◦
k =

βε◦
1ε◦

2 . . . ε◦
k, . . ., γ2k−1 = βε◦

1ε◦
2, γ2k = βε◦

1. Therefore we get that

ασ[1]γ
1σ[2]γ

2σ[2] . . . σ[k]γ
kσ[k+1]γ

k+1σ[k−2] . . . σ[2]γ
2k−1σ[1]β.

This implies that α(σ[1] ◦ σ[2] ◦ . . . σ[k] ◦ . . . σ[2] ◦ σ[1])β, end by Proposi-
tion 2.13 we have that ασ[i1,...,ik]β.

Proposition 2.16. σ[1,2,...,n] is the least group congruence on IO∞(Zn
lex),

i.e., σ[1,2,...,n] = σ.

Proof. For every i = 1, . . . , n the definition of σ[i] implies that σ[i] ⊆ σ.
Then by proposition 2.13 we have that σ[1] ◦ . . .◦σ[n] = σ[1] ∨ . . .∨σ[n], and
since the congruences form a lattice we conclude that σ[1] ◦ . . . ◦ σ[n] ⊆ σ.
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Let α = (α1, α2, . . . , αn) and β = (β1, β2, . . . , βn) be elements of the
semigroup IO∞(Zn

lex) such that ασβ. Then there exists an idempotent
ε = (ε1, ε2, . . . , εn) such that αε = βε, i.e.,

(α1ε1, α2ε2, . . . , αnεn) = (β1ε1, β2ε2, . . . , βnεn).

Now we put γ1 = (β1, α2, . . . , αn−1, αn), γ2 = (β1, β2, . . . , αn−1, αn), . . .,
γn−1 = (β1, β2, . . . , βn−1, αn). Then we have that ασ[1]γ

1, γ1σ[2]γ
2, . . .,

γn−1σ[2]β. Therefore we get that σ ⊆ σ[1] ◦ . . . ◦ σ[n], and hence σ =
σ[1] ◦ . . . ◦ σ[n].

For every i = 1, . . . , n we define a map πi : IO∞(Zn
lex) → IO∞(Zn

lex) by
the formula (α)πi = α◦

i , i.e., (α1, . . . , αi, . . . , αn)πi =
= (I1, . . . , Ii−1, αi, Ii+1, . . . , In). Simple verifications show that such de-

fined map πi : IO∞(Zn
lex) → IO∞(Zn

lex) is a homomorphism. Let πi♯ be the
congruence on IO∞(Zn

lex) which is generated by the homomorphism πi.
Let S be an inverse semigroup. For any congruence ρ on S we define

a congruence ρmin on S as follows:

aρminb if and only if ae = be for some e ∈ E(S), eρa−1aρb−1b,

(see: [25, Section III.2]).

Proposition 2.17. πi♯
min = σ[1] ◦ . . . ◦ σ[i−1] ◦ σ[i+1] ◦ . . . ◦ σ[n] for every

i = 1, . . . , n.

Proof. (⇐) Suppose that α(σ[1]◦. . .◦σ[i−1]◦σ[i+1]◦. . .◦σ[n])β in IO∞(Zn
lex)

for some α = (α1, . . . , αn) and β = (β1, . . . , βn). Then by Proposition 2.15
we have that αε◦

1 . . . ε◦
i−1ε◦

i+1 . . . ε◦
n = βε◦

1 . . . ε◦
i−1ε◦

i+1 . . . ε◦
n for some idem-

potent ε = (ε1, . . . , εi−1, Ii, εi+1, . . . , εn), i.e., αε = βε. Then we have that
αi = βi, and hence αε∗ = βε∗ for ε∗ = (ε1, . . . , εi−1, α−1

i αi, εi+1, . . . , εn).

It is obvious that ε∗πi♯
α−1απi♯

β−1β. This implies that σ[1] ◦ . . . ◦ σ[i−1] ◦

σ[i+1] ◦ . . . ◦ σ[n] ⊆ πi♯
min.

(⇒) Suppose that απi♯
minβ in IO∞(Zn

lex) for some α = (α1, . . . , αn)
and β = (β1, . . . , βn). The there exists an idempotent ε = (ε1, . . . , εn)

in IO∞(Zn
lex) such that αε = βε and επi♯

α−1απi♯
β−1β. The last

two equalities imply that α−1
i αi = β−1

i βi = εi. This and the equal-
ity αε = βε imply that αiεi = βiεi and hence αi = αiα

−1
i αi =

αiεi = βiεi = βiβ
−1
i βi = βi. Therefore we have that αε∗ = βε∗,

where ε∗ = (ε1, . . . , εi−1, Ii, εi+1, . . . , εn), i.e., αε◦
1 . . . ε◦

i−1ε◦
i+1 . . . ε◦

n =
βε◦

1 . . . ε◦
i−1ε◦

i+1 . . . ε◦
n. Then by Proposition 2.15 we have that α(σ[1] ◦
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. . . ◦ σ[i−1] ◦ σ[i+1] ◦ . . . ◦ σ[n])β in IO∞(Zn
lex). This implies that πi♯

min ⊆
σ[1] ◦ . . . ◦ σ[i−1] ◦ σ[i+1] ◦ . . . ◦ σ[n].

For every α ∈ IO∞(Zn
lex) and any (i, j) ∈ dom α ⊆ Ln × Z according

to Lemma 2.1 we denote (i, j)α = (i, (j)αi).

Proposition 2.18. Let {i1, . . . , ik} ⊆ {1, . . . , n} be any collection of
distinct indices, k 6 n. Then ασ[i1,...,ik]β in IO∞(Zn

lex) if and only if the
following conditions hold:

(i) there exists a positive integer p such that (j)αi = (j)βi for all
integers j with |j| > p and all i = i1, . . . , ik;

(ii) dom α ∩
((

{1, . . . n} \ {i1, . . . , ik}
)

× Z
)

= dom β ∩
((

{1, . . . n} \

{i1, . . . , ik}
)

×Z
)

and (j)αi = (j)βi for all (i, j) ∈ dom α∩
((

{1, . . . n}\

{i1, . . . , ik}
)

× Z
)

.

Proof. Without loss of generality we can assume that i1 = 1, . . . , ik = k.
(⇒) Suppose that ασ[1,...,k]β in IO∞(Zn

lex). Then there exist idem-
potents ε◦

1, . . . , ε◦
k in IO∞(Zn

lex) such that αε◦
1 . . . ε◦

k = βε◦
1 . . . ε◦

k. This
implies assertion (ii).

We observe that the definition of the idempotent ε◦
i , i = 1, . . . , n,

implies that the restriction ε◦
i |(Ln\{i})×Z is an identity map of the set

(Ln \ {i}) × Z. Therefore there exists a positive integer pi such that
(

{(i, j) : |j| > pi}
)

∪ (Ln \ {i}) × Z ⊆ dom ε◦
i .

We put p = max{p1, . . . , pk} and p requested as in (ii).
(⇐) Suppose that assertions (i) and (ii) hold. By IdM we denote the

partial identity map of the subset M for any M ⊆ Ln × Z. For every
i = 1, . . . , n we put

ε◦
i = Id{(i,j)||j|>p} ∪ Id(Ln\{i})×Z .

Simple verifications show that αε◦
1 . . . ε◦

k = βε◦
1 . . . ε◦

k and hence ασ[1,...,k]β
in IO∞(Zn

lex).

3. Generators and automorphisms
of the semigroup IO∞(Zn

lex)

We put O0
∞(Z) = {α ∈ IO∞(Z) : dom α = Z} and O

[0]
∞ (Z) = {α ∈

IO∞(Z) : ran α = Z}.

Proposition 3.1. O0
∞(Z) and O

[0]
∞ (Z) are antiisomorphic subsemigroups

of IO∞(Z).
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Proof. Simple verifications imply that O0
∞(Z) and O

[0]
∞ (Z) are subsemi-

groups of the semigroup IO∞(Z). We define i : O0
∞(Z) → O

[0]
∞ (Z) by the

formula (α)i = α−1. It is obvious that so defined map i : O0
∞(Z) → O

[0]
∞ (Z)

is surjective and since the map i is the restriction of inversion of the
inverse semigroup IO∞(Z) onto the subsemigroup O0

∞(Z) we get that it
is an antiisomorphism.

It is obvious that the group of units of the semigroup IO∞(Z) is

isomorphic to the group of units of O0
∞(Z) (O[0]

∞ (Z)), and moreover by
Proposition 2.6 it is isomorphic to the additive group of integers Z(+).

Simple observations imply the following proposition.

Proposition 3.2. The subsemigroups O0
∞(Z) and O

[0]
∞ (Z) (as a subset)

generate the inverse semigroup IO∞(Z), and moreover O
[0]

∞ (Z) · O0
∞(Z) =

IO∞(Z).

For an arbitrary integer k we define the maps εk : Z → Z and
ςk : Z → Z by the formulae

(i)εk =
{

i + 1, if i > k;
i, if i 6 k

and (i)ςk = i + k.

Obviously that εk ∈ O0
∞(Z), ε−1

k ∈ O
[0]

∞ (Z) and ςk is an element of the
group of units of IO∞(Z), for every k ∈ Z.

Proposition 3.3. The set {ε0, ς1} generates the semigroup IO∞(Z) as
an inverse semigroup.

Proof. By Theorem 4.2 of [8] the set {ε0, ς1} generates the semigroup
O0

∞(Z) and hence by Proposition 3.1 we get that the set {ε−1
0 , ς−1

1 =

ς−1} generates the semigroup O
[0]

∞ (Z). Next, Proposition 3.2 implies the
statement of the proposition.

Proposition 3.3 implies the following

Theorem 3.4. For every integer k the set {εk, ς1} generates the semigroup
IO∞(Z) as an inverse semigroup and hence IO∞(Z) is finitely generated.
Moreover, every minimal system of generators of the semigroup IO∞(Z)
(as an inverse semigroup) has the form {εk, ςi1 , . . . , ςim

}, where k is an
arbitrary integer and the set of indices i1, . . . , im is a minimal system of
generators of the semigroup Z(+) (as a group).

Remark 3.5. It is obvious that the {1} and {−1} are the minimal
systems of generators of the additive group group of integers Z(+) as a
group.
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For an arbitrary positive integer n we put

O0
∞(Zn

lex) =
{

α ∈ IO∞(Zn
lex) : dom α = Ln × Z

}

and O[0]
∞ (Zn

lex) =
{

α ∈ IO∞(Zn
lex) : ran α = Ln × Z

}

.

The proof of the following proposition is similar to the proof of Propo-
sition 3.1.

Proposition 3.6. O0
∞(Zn

lex) and O
[0]

∞ (Zn
lex) are antiisomorphic subsemi-

groups of IO∞(Zn
lex).

Proposition 2.3(iv) implies the following:

Proposition 3.7. For every positive integer n the semigroup O0
∞(Zn

lex)
(

resp., O
[0]

∞ (Zn
lex)

)

is isomorphic to the direct power
(

O0
∞(Z)

)n

(resp.,
(

O
[0]

∞ (Z)
)n

).

Also we observe that by Proposition 2.6 the groups of units of the
semigroups O0

∞(Zn
lex) and O

[0]
∞ (Zn

lex) are isomorphic to the direct power
(

Z(+)
)n

.
Propositions 2.3(iv) and 3.2 imply the following:

Proposition 3.8. The subsemigroups O0
∞(Zn

lex) and O
[0]

∞ (Zn
lex) (as a sub-

set) generate the inverse semigroup IO∞(Zn
lex), and moreover O

[0]
∞ (Zn

lex) ·
O0

∞(Zn
lex) = IO∞(Zn

lex).

For an arbitrary positive integer n and any integers k and j such
that j = 1, . . . , n, we define the maps εk[j] : Ln × Z → Ln × Z and
ςk[j] : Ln × Z → Ln × Z by the formulae

(m, i)εk[j] =







(m, i + 1), if m = j and i > k;
(m, i), if m = j and i 6 k;
(m, i), if m 6= j

and (m, i)ςk[j] =
{

(m, i + k), if m = j;
(m, i), if m 6= j.

Obviously that εk[j] ∈ O0
∞(Zn

lex), ε−1
k[j] ∈ O

[0]
∞ (Zn

lex) and ςk[j] is an element
of the group of units of IO∞(Zn

lex), for any k ∈ Z and j = 1, . . . , n.
Theorem 3.4, Propositions 3.7 and 3.8 imply the following theorem.

Theorem 3.9. For every positive integer n and any n-ordered collection
of integers (k1, . . . , kn) the set {εk1[1], . . . , εkn[n], ς1[1], . . . , ς1[n]} generates
the semigroup IO∞(Zn

lex) as an inverse semigroup and hence IO∞(Zn
lex)

is finitely generated.
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Remark 3.10. We observe that for every positive integer n and any
2n-ordered collection of integers (k1, . . . , kn, kn+1, . . . , k2n) the set

{

εk1[1], . . . , εkn[n], ε−1
kn+1[1], . . . , ε−1

k2n[n], ς1[1], . . . , ς1[n], ς−1[1], . . . , ς−1[n]

}

generates the semigroup IO∞(Zn
lex) as a semigroup in the general case.

Proposition 3.11. Let f : IO∞(Z) → IO∞(Z) be any automorphism

of the semigroup IO∞(Z). Then
(

O0
∞(Z)

)

f = O0
∞(Z) and

(

O
[0]

∞ (Z)
)

f =

O
[0]

∞ (Z), and moreover the restrictions f|O0
∞

(Z) : O0
∞(Z) → O0

∞(Z) and

f|
O

[0]
∞

(Z)
: O

[0]
∞ (Z) → O

[0]
∞ (Z) are automorphisms of the semigroups O0

∞(Z)

and O
[0]

∞ (Z), respectively.

Proof. Fix an arbitrary element α ∈ O0
∞(Z). Then we have that α−1 ∈

O
[0]

∞ (Z) and hence αα−1 = I is the unity element of the semigroup IO∞(Z).
Suppose to the contrary that there exists α ∈ O0

∞(Z) such that (α)f /∈
O0

∞(Z). Then we have that

I = (I)f = (αα−1)f = (α)f(α−1)f.

The last formula implies that dom I 6= Z because (α)f /∈ O0
∞(Z), a con-

tradiction. The obtained contradiction implies that (α)f ∈ O0
∞(Z) and

hence
(

O0
∞(Z)

)

f ⊆ O0
∞(Z). Suppose there exists β ∈ IO∞(Z) \ O0

∞(Z)
such that (β)f ∈ O0

∞(Z). Then the inverse map f−1 of f is an automor-
phism of the semigroup IO∞(Z), and by previous arguments we get
that O0

∞(Z) 6∋ β = (β)ff−1 ∈ O0
∞(Z), a contradiction. Thus, the equality

(

O0
∞(Z)

)

f = O0
∞(Z) holds.

The proof of the equality
(

O
[0]

∞ (Z)
)

f = O
[0]

∞ (Z) is similar. The last
assertion follows from the first part of the proof.

Since by Proposition 3.3 the elements ε0, ς1 ∈ O0
∞(Z) (resp., ε−1

0 , ς1 ∈

O
[0]

∞ (Z)) generate IO∞(Z) as an inverse semigroup, the following proposi-
tion holds.

Proposition 3.12. For an arbitrary automorphism f : O0
∞(Z) → O0

∞(Z)

(resp., f : O
[0]

∞ (Z) → O
[0]

∞ (Z)) of the semigroup O0
∞(Z) (resp., O

[0]
∞ (Z)) there

exists a unique automorphism f : IO∞(Z) → IO∞(Z) of the semigroup
IO∞(Z) such that f|O0

∞
(Z) = f (resp., f|

O
[0]

∞
(Z)

= f).

By Theorem 9 from [9] every automorphism of the semigroup O0
∞(Z)

is inner and moreover the group of automorphisms of O0
∞(Z) is isomorphic
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to the additive group of integers Z(+). Then Proposition 3.1 implies the
following corollary.

Corollary 3.13. Every automorphism of the semigroup O
[0]

∞ (Z) is inner

and moreover the group of automorphisms of O
[0]

∞ (Z) is isomorphic to the
additive group of integers Z(+).

Theorem 3.14. Every automorphism of the semigroup IO∞(Z) is inner
and moreover the group of automorphisms of IO∞(Z) is isomorphic to
the additive group of integers Z(+).

Proof. Let f : IO∞(Z) → IO∞(Z) be an arbitrary automorphism of the
semigroup IO∞(Z). Then Theorem 9 from [9] and Corollary 3.13 imply
there exist integers i and j such that (α)f = ςiας−1

i and (β)f = ςjβς−1
j for

all α ∈ O0
∞(Z) and β ∈ O

[0]
∞ (Z). Next we shall show that i = j. Suppose

the contrary that i 6= j. We fix an arbitrary α ∈ O0
∞(Z) such that α is

not an element of the group of units of O0
∞(Z). Then α−1 ∈ O

[0]
∞ (Z) and

αα−1 = I is unit of the semigroup IO∞(Z). Now, we have that

I = (I)f = (αα−1)f = (α)f(α−1)f = ςiας−1
i ςjα−1ς−1

j .

Since i 6= j we get that dom(ας−1
i ςjα−1) 6= Z and hence dom I =

dom(ςiας−1
i ςjα−1ς−1

j ) 6= Z, a contradiction. The obtained contradiction
implies that i = j. Now, Theorem 3.4, Theorem 9 of[9] and Corollary 3.13
complete the proof of the theorem.

The following example implies that for every integer n > 2 the semi-
group IO∞(Zn

lex) has a non-inner automorphism.

Example 3.15. We define the map h : IO∞(Z2
lex) → IO∞(Z2

lex) in the
following way. By Proposition 2.3(iv) we identify the semigroup IO∞(Z2

lex)
with (IO∞(Z))2 and put (α1, α2)h = (α2, α1). It is obvious that so de-
fined map h is an automorphism of the semigroup IO∞(Z2

lex). It is easy
to see that the restriction of an inner automorphism of an arbitrary
monoid onto its group of units is an inner automorphism. Therefore
it is complete to show that the restriction h|H(I) : H(I) → H(I) is not
an inner automorphism. Suppose to the contrary: the automorphism
h : IO∞(Z2

lex) → IO∞(Z2
lex) is inner. By Proposition 2.6 the group of units

of (IO∞(Z))2 is isomorphic to (Z(+))2, and since the group (IO∞(Z))2 is
commutative we get that the restriction h|H(I) : H(I) → H(I) is trivial, a
contradiction. The obtained contradiction implies that the automorphism
h : IO∞(Z2

lex) → IO∞(Z2
lex) is not inner.
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Also, the above implies that in the case when n > 2 we have that
the automorphism h : IO∞(Zn

lex) → IO∞(Zn
lex) defined by the formula

(α1, α2, α3, . . . , αn)h = (α2, α1, α3, . . . , αn) is not inner.

4. On topologizations of the semigroup Iր
∞(Zn

lex)

Theorem 4.1. Every Baire topology τ on IO∞(Zn
lex) such that

(IO∞(Zn
lex), τ) is a Hausdorff semitopological semigroup is discrete.

Proof. If no point in IO∞(Zn
lex) is isolated, then since (IO∞(Zn

lex), τ) is
Hausdorff, it follows that {α} is nowhere dense for all α ∈ IO∞(Zn

lex)). But,
if this is the case, then since IO∞(Zn

lex) is countable it cannot be a Baire
space. Hence IO∞(Zn

lex) contains an isolated point µ. If γ ∈ IO∞(Zn
lex) is

arbitrary, then by Proposition 2.4 (ix), there exist α, β ∈ IO∞(Zn
lex) such

that α · γ · β = µ. The map f : χ 7→ α · χ · β is continuous and so ({µ})f−1

is open. By Proposition 2.8, ({µ})f−1 is finite and since (IO∞(Zn
lex), τ)

is Hausdorff, {γ} is open, and hence isolated.

Since every Čech complete space (and hence every locally compact
space) is Baire, Theorem 4.1 implies Corollaries 4.2 and 4.3.

Corollary 4.2. Every Hausdorff Čech complete (locally compact) topology
τ on IO∞(Zn

lex) such that (IO∞(Zn
lex), τ) is a Hausdorff semitopological

semigroup is discrete.

Corollary 4.3. Every Hausdorff Baire topology (and hence Čech complete
or locally compact topology) τ on IO∞(Zn

lex) such that (IO∞(Zn
lex), τ) is

a Hausdorff topological semigroup is discrete.

Remark 4.4. Example 4.4 and Proposition 4.5 from [18] show that
there exists a non-discrete Tychonoff topology τW on the semigroup
Iր

∞(Z) such that (Iր
∞(Z), τW ) is a topological inverse semigroup. Then

by Proposition 2.3 we get that for every positive integer n there exists
a non-discrete Tychonoff topology τn

W on the semigroup IO∞(Zn
lex) such

that (IO∞(Zn
lex), τn

W ) is a topological inverse semigroup.

Theorem 4.5. Let n be a positive integer and S be a topological semigroup
which contains IO∞(Zn

lex) as a dense discrete subsemigroup. If I = S \
IO∞(Zn

lex) 6= ∅ then I is an ideal of S.

Proof. Suppose that I is not an ideal of S. Then at least one of the
following conditions holds:

1) I · IO∞(Zn
lex) * I, 2) IO∞(Zn

lex) · I * I, or 3) I · I * I.
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Since IO∞(Zn
lex) is a dense discrete subspace of S, Theorem 3.5.8 from [11]

implies that IO∞(Zn
lex) is an open subspace of S. Suppose there exist α ∈

IO∞(Zn
lex) and β ∈ I such that β · α = γ /∈ I. Since IO∞(Zn

lex) is a dense
open discrete subspace of S, the continuity of the semigroup operation in S
implies that there exists an open neighbourhood U(β) of β in S such that
U(β) ·{α} = {γ}. Hence we have that

(

U(β)∩IO∞(Zn
lex)

)

·{α} = {γ} and
the set U(β) ∩ IO∞(Zn

lex) is infinite. But by Proposition 2.8, the equation
χ · α = γ has finitely many solutions in IO∞(Zn

lex). This contradicts the
assumption that β ∈ S \ IO∞(Zn

lex). Therefore β · α = γ ∈ I and hence
I · IO∞(Zn

lex) ⊆ I. The proof of the inclusion IO∞(Zn
lex) · I ⊆ I is similar.

Suppose there exist α, β ∈ I such that α · β = γ /∈ I. Since IO∞(Zn
lex)

is a dense open discrete subspace of S, the continuity of the semigroup
operation in S implies that there exist open neighbourhoods U(α) and
U(β) of α and β in S, respectively, such that U(α) · U(β) = {γ}. Hence
we have that

(

U(β) ∩ IO∞(Zn
lex)

)

·
(

U(α) ∩ IO∞(Zn
lex)

)

= {γ} and the
sets U(β) ∩ IO∞(Zn

lex) and U(α) ∩ IO∞(Zn
lex) are infinite. But by Proposi-

tion 2.8, the equations χ ·β = γ and α ·κ = γ have finitely many solutions
in IO∞(Zn

lex). This contradicts the assumption that α, β ∈ S \ IO∞(Zn
lex).

Therefore α · β = γ ∈ I and hence I · I ⊆ I.

Proposition 4.6. Let n be a positive integer and S be a Hausdorff topolog-
ical semigroup which contains IO∞(Zn

lex) as a dense discrete subsemigroup.
Then for every γ ∈ IO∞(Zn

lex) the set

Dγ = {(χ, ς) ∈ IO∞(Zn
lex) × IO∞(Zn

lex) | χ · ς = γ}

is a closed-and-open subset of S × S.

Proof. Since IO∞(Zn
lex) is a discrete subspace of S we have that Dγ is an

open subset of S × S.
Suppose that there exists γ ∈ IO∞(Zn

lex) such that Dγ is a non-closed
subset of S × S. Then there exists an accumulation point (α, β) ∈ S × S
of the set Dγ . The continuity of the semigroup operation in S implies
that α · β = γ. But IO∞(Zn

lex) × IO∞(Zn
lex) is a discrete subspace of

S × S and hence by Theorem 4.5, the points α and β belong to the ideal
I = S \ IO∞(Zn

lex) and hence α · β ∈ S \ IO∞(Zn
lex) cannot be equal

to γ.

Theorem 4.7. If a Hausdorff topological semigroup S contains IO∞(Zn
lex)

as a dense discrete subsemigroup for some positive integer n then the
square S × S cannot be pseudocompact.

The proof of Theorem 4.7 is similar to that of Theorem 5.1(3) of [3].
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Recall that, a topological semigroup S is called Γ-compact if for every
x ∈ S the closure of the set {x, x2, x3, . . .} is a compactum in S (see [20]).
We recall that the Stone-Čech compactification of a Tychonoff space X
is a compact Hausdorff space βX containing X as a dense subspace so
that each continuous map f : X → Y to a compact Hausdorff space Y
extends to a continuous map f : βX → Y [11].

The proof of Corollary 4.8 is similar to that of Corollary 4.9 of [18].

Corollary 4.8. Let n be a positive integer. If a topological semigroup
S satisfies one of the following conditions: (i) S is compact; (ii) S is
Γ-compact; (iii) the square S × S is countably compact; (iv) S is a
countably compact topological inverse semigroup; or (v) the square S × S
is a Tychonoff pseudocompact space, then S does not contain the semigroup
IO∞(Zn

lex).
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