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Abstract. We characterize semigroups X whose semigroups
of filters ϕ(X), maximal linked systems λ(X), linked upfamilies
N2(X), and upfamilies υ(X) are commutative.

1. Introduction

In this paper we investigate the algebraic structure of various exten-
sions of a semigroup X and detect semigroups whose extensions ϕ(X),
λ(X), N2(X), υ(X) and their subsemigroups ϕ•(X), λ•(X), N•

2 (X), υ•(X)
are commutative.

The thorough study of various extensions of semigroups was started
in [9] and continued in [1]–[6]. The largest among these extensions is the
semigroup υ(X) of all upfamilies on X.

A family F of subsets of a set X is called an upfamily if ∅ /∈ F 6= ∅

and for each set F ∈ F any subset E ⊃ F of X belongs to F . Each family
F of non-empty subsets of X generates the upfamily

〈F : F ∈ F〉 = {E ⊂ X : ∃F ∈ F F ⊂ E}.

The space of all upfamilies on X is denoted by υ(X). It is a closed
subspace of the double power-set P(P(X)) endowed with the compact
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Hausdorff topology of the Tychonoff product {0, 1}P(X). Identifying each
point x ∈ X with the principal ultrafilter 〈x〉 = {A ⊂ X : x ∈ A}, we
can identify X with a subspace of υ(X). Because of that we call υ(X) an
extension of X. For an upfamily F ∈ υ(X) by

F⊥ = {E ⊂ X : ∀F ∈ F E ∩ F 6= ∅}

we denote the transversal of F . By [8], (F⊥)⊥ = F , so

⊥: υ(X) → υ(X), ⊥: F 7→ F⊥,

is an involution on υ(X). For a subset S ⊂ υ(X) we put S⊥ = {F⊥ : F ∈
S} ⊂ υ(X).

The compact Hausdorff space υ(X) contains many other important
extensions of X as closed subspaces. In particular, it contains the spaces
N2(X) of linked upfamilies, λ(X) of maximal linked upfamilies, ϕ(X)
of filters, and β(X) of ultrafilters on X; see [8]. Let us recall that an
upfamily F ∈ υ(X) is called

• linked if A ∩ B 6= ∅ for any sets A, B ∈ F ;
• maximal linked if F = F ′ for any linked upfamily F ′ ∈ υ(X) that

contains F ;
• a filter if A ∩ B ∈ F for any A, B ∈ F ;
• an ultrafilter if F is a filter and F = F ′ for any filter F ′ ∈ υ(X)

that contains F .

The family β(X) of all ultrafilters on X is called the Stone-Čech exten-
sion and the family λ(X) of all maximal linked upfamilies is called the
superextension of X, see [14] and [17]. It can be shown that λ(X) = {F ∈
υ(X) : F⊥ = F}, so λ(X)⊥ = λ(X) and β(X)⊥ = β(X). The arrows
in the following diagram denote the identity inclusions between various
extensions of a set X.

ϕ(X)⊥ // N2(X)⊥

$$
X //

<<

""

β(X) //

��

OO

λ(X) //

��

OO

υ(X)

ϕ(X) // N2(X)

::

We say that an upfamily U ∈ υ(X) is finitely supported if U =
〈F1, . . . , Fn〉 for some non-empty finite subsets F1, . . . , Fn ⊂ X. By
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υ•(X) we denote the subspace of υ(X) consisting of finitely supported
upfamilies on X. Let ϕ•(X) = ϕ(X) ∩ υ•(X), λ•(X)=λ(X) ∩ υ•(X),
N•

2 (X)=N2(X) ∩ υ•(X). Since each finitely supported ultrafilter is princi-
pal, the set β•(X) = β(X) ∩ υ•(X) coincides with X (identified with the
subspace of all principal ultrafilters in υ(X) ). The embedding relations
between these spaces of finitely supported upfamilies are indicated in the
following diagram:

ϕ•(X)⊥ // N•
2 (X)⊥

%%
X

;;

##

β•(X) //

��

OO

λ•(X) //

��

OO

υ•(X)

ϕ•(X) // N•
2 (X)

99

Any map f : X → Y induces a continuous map

υf : υ(X) → υ(Y ), υf : F 7→ {A ⊂ Y : f−1(A) ∈ F}.

By [8], υf(F⊥) =
(

υf(F)
)⊥

and υf
(

β(X)
)

⊂ β(Y ), υf
(

λ(X)
)

⊂ λ(Y ),
υf

(

ϕ(X)
)

⊂ ϕ(Y ), υf
(

N2(X)
)

⊂ N2(Y ), and υf
(

υ•(X)
)

⊂ υ•(X). If
the map f is injective, then υf is a topological embedding, which allows
us to identify the extensions β(X), λ(X), ϕ(X), N2(X) and υ(X) with
corresponding closed subspaces in β(Y ), λ(Y ), ϕ(Y ), N2(Y ) and υ(Y ),
respectively.

If ∗ : X × X → X, ∗ : (x, y) 7→ xy, is a binary operation on X, then
there is an obvious way of extending this operation onto the space υ(X).
Just put

A ⊛ B = 〈A ∗ B : A ∈ A, B ∈ B〉

where A ∗ B = {ab : a ∈ A, b ∈ B} is the pointwise product of sets
A, B ⊂ X. The upfamily A⊛B will be called the pointwise product of the
upfamilies A, B. It is clear that this extension ⊛ : υ(X) × υ(X) → υ(X)
of the operation ∗ : X × X → X is associative and commutative if
so is the operation ∗. So, for an associative binary operation ∗ on X,
its extension υ(X) endowed with the operation ⊛ of pointwise product
becomes a semigroup, containing the subspaces ϕ(X), ϕ•(X), N2(X), and
N•

2 (X) as subsemigroups. However, the subspaces β(X) and λ(X) are
not subsemigroups in (υ(X),⊛). To make β(X) a semigroup extension
of X, Ellis [7] suggested a less obvious extension of an (associative) binary
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operation ∗ : X × X → X to an (associative) binary operation on β(X)
letting

A ∗ B =
〈

⋃

a∈A

a ∗ Ba : A ∈ A, {Ba}a∈A ⊂ B
〉

(1)

for ultrafilters A, B ∈ β(X) (see [15, §4]). It is clear that A ⊛ B ⊂ A ∗ B
but in general A ⊛ B 6= A ∗ B.

In [9] it was observed that the formula (1) determines an extension of
the operation ∗ to an (associative) binary operation ∗ : υ(X) × υ(X) →
υ(X) on the extension υ(X) of X. So, for each semigroup (X, ∗), its
extension υ(X) endowed with the extended operation ∗ is a semigroup,
containing the subspaces β(X), ϕ(X), λ(X), N2(X) as closed subsemi-
groups. Moreover, since υ•(X) is a subsemigroup of υ(X), the subspaces
X = β•(X), ϕ•(X), λ•(X), N•

2 (X) also are subsemigroups of υ(X). Alge-
braic and topological properties of these semigroups have been studied in
[9], [1]–[6]. In particular, in [6] and [3] we studied properties of extensions
of groups, while [4] and [5] were devoted to extensions of semilattices
and inverse semigroups, respectively. In contrast to the operation ⊛, the
extended operation ∗ on the semigroup υ(X) and its subsemigroups rarely
is commutative. For example, by [6] a group X has commutative superex-
tension λ(X) if and only if X is a group of cardinality |X| 6 4. According
to [4], a semilattice X has commutative extension υ(X) if and only if X
is finite and linearly ordered.

Let X be a semigroup. A subsemigroup S ⊂ υ(X) is defined to be
supercommutative if A ∗ B = A ⊛ B = B ⊛ A = B ∗ A for any upfamilies
A, B ∈ S. It is clear that each supercommutative subsemigroup S ⊂ υ(X)
is commutative. The converse is not true as we shall see in Section 10.

In this paper we study the commutativity and supercommutativity of
the semigroups υ(X), N2(X), λ(X), ϕ(X), β(X), υ•(X), N•

2 (X), λ•(X),
ϕ•(X) and characterize semigroups X whose various extensions are com-
mutative or supercommutative. In the preliminary Sections 2, 3 we shall
analyze the structure of periodic commutative semigroups and projective
extensions of semigroup, Section 5 is devoted to square-linear semigroups
which will play a crucial role in Sections 7 and 8 devoted to the study of
commutativity and supercommutativity of the semigroups υ(X), υ•(X),
N2(X) and N•

2 (X). In Section 6 we characterize semigroups X with
(super)commutative extensions β(X), ϕ(X), ϕ•(X), and in Section 9 we
detect semigroups with commutative extensions λ(X) and λ•(X). In
Section 10 we study the structure of semigroups X whose superextension
λ(X) is supercommutative.
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2. The structure of periodic commutative semigroups

In this section we recall some known information on the structure
of periodic commutative semigroups. A semigroup S is called periodic if
each element x ∈ S generates a finite semigroup {xk}k∈N. A semigroup
S generated by a single element x is called monogenic. If a monogenic
semigroup is infinite, then it is isomorphic to the additive semigroup N

of positive integers. A finite monogenic semigroup S = {xk}k∈N also has
simple structure (cf. [13, §1.2]): there are positive integer numbers n < m
such that

• S = {x, . . . , xm−1}, m = |S| + 1 and xn = xm;

• Cx = {xn, . . . , xm−1} is a cyclic subgroup of S;

• the cyclic subgroup Cx coincides with the minimal ideal of S;

• the neutral element ex of the group Cx is a unique idempotent of S
and the cyclic group Cx is generated by the element xex.

Such monogenic semigroups will be denoted by 〈x | xn = xm〉.

For a semigroup S let

E(S) = {e ∈ S : ee = e}

be the idempotent part of S. For each idempotent e ∈ E(S) let

He = {x ∈ S : ∃y ∈ S xyx = x, yxy = y, xy = e = yx}

be the maximal subgroup of S containing the idempotent e. The union

C(S) =
⋃

e∈E(S)

He

of all (maximal) subgroups of S is called the Clifford part of S. The
Clifford part C(S) is contained in the regular part

R(S) = {x ∈ S : x ∈ xSx}

of S. If a semigroup S is commutative, then R(S) = C(S) and the subsets
E(S) and R(S) = C(S) are subsemigroups of S.

If a semigroup S is periodic, then for each element x ∈ S the monogenic
semigroup {xk}k∈N contains a unique idempotent ex. So, we can consider
the map

e∗ : S → E(S), e∗ : x 7→ ex,
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which projects the semigroup S onto its idempotent part E(S). The map

c∗ : S → C(S), c∗ : x 7→ ex · x,

projects the semigroup S onto its Clifford part. If a periodic semigroup S is
commutative, then the projections e∗ : S → E(S) and c∗ : S → C(S) are
semigroup homomorphisms. In this case, for every idempotent e ∈ E(S),
Se = {x ∈ S : ex = e} is a subsemigroup of S with a unique idempotent e.
So, the semigroup S decomposes into the disjoint union S =

⋃

e∈E(S) Se

of semigroups Se parametrized by idempotents e ∈ E(S).

3. Projection extensions of semigroups

A semigroup X is called a projection extension of a subsemigroup
Z ⊂ X if there is a function π : X → Z (called the projection of X onto
Z) such that

• π(z) = z for each z ∈ Z;

• x · y = π(x) · π(y) ∈ Z for all x, y ∈ X.

It follows from π(xy) = xy = π(x) · π(y) that the projection π : X → Z
necessarily is a homomorphism of X onto its subsemigroup Z.

If a map π : X → Z of semigroups X and Z is a homomorphism, then
by [9] the map υπ : υ(X) → υ(Z) is a homomorphism too. So, we have
the following statement.

Proposition 3.1. If a semigroup X is a projection extension of a subsemi-
group Z ⊂ X, then the projection π : X → Z induces a homomorphism
υπ : υ(X) → υ(Z) witnessing that the semigroup υ(X) is a projection
extension of the subsemigroup υ(Z).

Corollary 3.2. Assume that a semigroup X is a projection extension of
a subsemigroup Z ⊂ X, π : X → Z is a projection of X onto Z. Then
each subsemigroup S ⊂ υ(X) with υπ(S) ⊂ S is a projection extension of
the subsemigroup υπ(S) = S ∩ υ(Z). Consequently, the semigroup S is
(super)commutative if and only if so is its subsemigroup S ∩ υ(Z).

Corollary 3.3. Assume that a semigroup X is a projection extension of
a subsemigroup Z ⊂ X, and ε ∈ {υ, υ•, N2, N•

2 , ϕ, ϕ•, λ, λ•, β, β•}. The
extension ε(X) of X is (super)commutative if and only if the extension
ε(Z) of the semigroup Z is (super)commutative.
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4. Semicomplete digraphs

In this section we recall some information on digraphs. In the next
section this information will be used for describing the structure of square-
linear semigroups.

By an directed graph (briefly, a digraph) we shall understand a pair
(X, ∆) consisting of a set X and a subset ∆ ⊂ X × X. Elements x ∈ X
are called vertices and ordered pairs (x, y) ∈ ∆ called edges of the digraph
(X, ∆). An edge (x, y) ∈ ∆ is called pure if (y, x) /∈ ∆. A digraph (X, ∆)
is called complete if ∆ = X × X and semicomplete if ∆ ∪ ∆−1 = X × X,
where ∆−1 = {(y, x) : (x, y) ∈ ∆}.

A sequence x0, . . . , xn of vertices of a digraph (X, ∆) is called a (pure)
cycle of length n if x0 = xn and for every i < n the pair (xi, xi+1) is a
(pure) edge of the digraph (X, ∆). A cycle x0, x1, . . . , xn in a digraph
(X, D) is called bipartite if the number n is even and for each numbers i, j ∈
{1, . . . , n} with odd difference i − j we get (xi, xj) /∈ ∆ ∩ ∆−1. Bipartite
cycles can be equivalently defined as cycles x0, y1, x1, y2, . . . , yn, xn such
that (xi, yj) /∈ ∆ ∩ ∆−1 for any 1 6 i, j 6 n.

It is easy to see that a cycle of length 4 is bipartite if and only if it is
pure.

Lemma 4.1. A semicomplete digraph (X, ∆) contains a pure cycle of
length 4 if and only if it contains a bipartite cycle.

Proof. Let x0, x1, . . . , xn be a bipartite cycle in the digraph of the smallest
possible length n. The length n is even and cannot be equal to 2 as
otherwise (x1, x2) = (x1, x0) ∈ ∆ ∩ ∆−1. So, n > 4. We claim that n = 4.
Assume conversely that n > 4 and consider the pair (x0, x3). Since the
cycle is bipartite and the digraph (X, ∆) is semicomplete, either (x0, x3) or
(x3, x0) is a pure edge of the digraph. If (x3, x0) ∈ ∆, then x0, x1, x2, x3, x0

is a bipartite (and pure) cycle of length 4 in (X, ∆). If (x0, x3) ∈ ∆, then
x0, x3, x5, . . . , xn is a bipartite cycle of length n − 2 > 4 in (X, ∆), which
contradicts the minimality of n.

5. Square-linear semigroups

A semigroup S is called linear if xy ∈ {x, y} for any elements x, y ∈ S.
It follows that each element x of a linear semigroup is an idempotent. So,
linear semigroups are bands, i.e., semigroups of idempotents. Commutative
bands are called semilattices. So, each linear commutative semigroup is a
semilattice. Each semilattice E is endowed with a partial order 6 defined
by x 6 y iff xy = x.
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A semigroup S is called square-linear if xy ∈ {x2, y2} for all elements
x, y ∈ S.

Proposition 5.1. Let S be a square-linear commutative semigroup and
x, y, z ∈ S be any elements. Then

1) S is periodic and x3 = x4 = ex ∈ E(S);
2) the idempotent part E(S) of S is a linear semilattice;
3) the Clifford part C(S) of S coincides with E(S);
4) xy = exey if x2, y2 ∈ E(S);
5) xyz = exeyez;
6) if x2 /∈ E(S), then ex is the largest element of the semilattice E(S).

Proof. 1. It follows from x3 = x · x2 ∈ {x2, x4} that x3 = x4 = ex and
hence x3 = xn for all n > 3. So, the monogenic semigroup {xn}n∈N =
{x, x2, x3} is finite and hence S is periodic.

2. If x, y are idempotents, then xy ∈ {x2, y2} = {x, y} implies that
the semilattice E(S) is linear.

3. The identity x3 = x4 implies that each subgroup of S is trivial and
hence C(S) = E(S).

4. If x2, y2 ∈ E(S), then x4 = x2 and hence x2 = x4 = x3 = ex. Then
xy ∈ {x2, y2} = {ex, ey} implies that xy is an idempotent and hence
xy = exy = ex · ey as the projection e∗ : S → E(S) is a homomorphism.

5. First we show that xyz ∈ E(S). Since S is square-linear, we get
xy ∈ {x2, y2}. We lose no generality assuming that xy = x2. Now consider
the product xz ∈ {x2, z2}. If xz = x2, then xyz = x2z = x(xz) = x3 ∈
E(S). If xz = z2, then xyz = x2z = xxz = xz2 = xzz = z2z = z3 ∈ E(S).
Since the projection e∗ : S → E(S) is a homomorphism, we conclude that
xyz = exyz = exeyez.

6. Assume that x2 /∈ E(S) but the idempotent ex is not maximal in
the linear semilattice E(S). Then there is an idempotent e ∈ E(S) such
that eex = ex 6= e. It follows that xe ∈ {x2, e2}. We claim that xe 6= e.
Assuming that xe = e, we conclude that xee = ee = e. On the other
hand, the preceding item guarantees that xee = exeeee = exee = ex 6= e.
So, xe = x2 /∈ E(S), which contradicts xe = xee ∈ E(S).

Each square-linear semigroup S endowed with the set of directed edges

∆ = {(x, y) ∈ S × S : xy = x2}
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becomes a semicomplete digraph. In fact, the algebraic structure of
a square-linear semigroup S is completely determined by its digraph
structure ∆ and the duplication map S → S, x 7→ x2. The semigroup
operation S × S → S, (x, y) 7→ xy, can be recovered from ∆ and the
duplication map by the formula

xy =

{

x2 if (x, y) ∈ ∆,

y2 if (y, x) ∈ ∆.

6. Commutativity of the semigroups β(X), ϕ(X) and ϕ•(X)

The following characterization was proved in Theorem 4.27 of [12].

Theorem 6.1. For a commutative semigroup X the following conditions
are equivalent:

1) the semigroup β(X) is commutative;
2) {akbn : k, n ∈ ω, k < n} ∩ {bkan : k, n ∈ ω, k < n} 6= ∅ for any

sequences (an)n∈ω and (bn)n∈ω in X.

Corollary 6.2. If the semigroup β(X) is commutative, then

1) for each square-linear subsemigroup S ⊂ X the set {x2 : x ∈ S} is
finite;

2) each subsemigroup of X contains a finite ideal;
3) each monogenic subsemigroup of X is finite.

Proof. Assume that the semigroup β(X) is commutative.
1. Assume that X contains a square-linear subsemigroup S ⊂ X with

infinite subset {x2 : x ∈ S}. Then there is a sequence {xn}n∈ω in S such
that x2

n 6= x2
m for any n 6= m. Define a 2-coloring χ : [ω]2 → {0, 1} of the

set [ω]2 = {(n, m) ∈ ω2 : n < m} letting

χ(n, m) =

{

0 if xnxm = x2
n

1 if xnxm = x2
m.

By Ramsey’s Theorem [16] (see also [10, Theorem 5]), there is an infinite
subset Ω ⊂ ω and a color c ∈ {0, 1} such that χ(n, m) = c for any pair
(n, m) ∈ [ω]2 ∩ Ω2. Let Ω = {kn : n ∈ ω} be the increasing enumeration
of the set Ω. Then for the sequences an = xk2n

and bn = xk2n+1
, n ∈ ω,

we get
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{akbn}k<n ∩ {bkan}k<n ⊂ {a2
k}k∈ω ∩ {b2

k}k∈ω =

= {x2
k2n

}n∈ω ∩ {x2
k2n+1

}n∈ω=∅,

which implies that the semigroup β(X) is not commutative according to
Theorem 6.1.

2. Let S be an infinite subsemigroup of X. Then the semigroup
β(S) ⊂ β(X) is commutative and hence contains at most one minimal left
ideal. In this case Corollary 2.23 of [11] guarantees that the semigroup S
contains a finite ideal.

3. By the preceding item, for every x ∈ X the monogenic semigroup
{xk}k∈N contains a finite ideal and hence is finite.

Theorem 6.3. For a commutative semigroup X and the semigroup ϕ(X)
of filters on X the following conditions are equivalent:

1) ϕ(X) is commutative;

2) ϕ(X) is supercommutative;

3) {akbn}k6n ∩ {bnan+1}n∈ω 6= ∅ for any sequences
(an)n∈ω and (bn)n∈ω in X.

Proof. We shall prove the implications (2) ⇒ (1) ⇒ (3) ⇒ (2). The
implication (2) ⇒ (1) is trivial.

(1) ⇒ (3) Assume that the semigroup ϕ(X) is commutative and take
any sequences (an)n∈ω and (bn)n∈ω in X. Consider the filter A = 〈A〉
generated by the set A = {an}n∈ω and the filter B =

{

B ⊂ X : ∃n ∀m >

n bm ∈ B
}

. It follows that the set C = {akbn}k6n belongs to the product
A ∗ B. Since the semigroup ϕ(X) is commutative, C ∈ A ∗ B = B ∗ A and
hence there is a set B ∈ B such that BA ⊂ C. By the definition of the filter
B, the set B contains some element bm. Then bmam+1 ∈ BA = AB ⊂ C
and hence the intersection {akbn}k6n ∩ {bnan+1}n∈ω ∋ bmam+1 is not
empty.

(3) ⇒ (2) Assume that A ∗ B 6= A ⊛ B for some filters A, B ∈ ϕ(X).
Then A ∗ B 6⊂ A⊛B and some set C ∈ A ∗ B does not belong to the filter
A⊛B. This means that A∗B 6⊂ C for any sets A ∈ A and B ∈ B. We lose
no generality assuming that the set C is of the basic form C =

⋃

a∈A a∗Ba

for some set A ∈ A and family (Ba)a∈A ∈ BA. Pick any point a0 ∈ A and
consider the set B0 = Ba0

∈ B. Since A∗B0 6⊂ C, there are points b0 ∈ B0

and a1 ∈ A such that a1b0 /∈ C. Now consider the set B1 = B0 ∩ Ba1
∈ B.

Since A∗B1 6⊂ C, there are points b1 ∈ B1 and a2 ∈ A such that a2b1 /∈ C.
Proceeding by induction, for every n ∈ ω we shall construct two sequences
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of points (an)n∈ω and (bn)n∈ω in X such that an ∈ A, bn ∈
⋂n

i=0 Bai
, and

an+1bn /∈ C for every n ∈ ω.
Observe that for each i 6 n we get aibn ∈ aiBai

⊂ C and hence
{akbn}k6n ∩ {an+1bn}n∈ω ⊂ C ∩ (X \ C) = ∅.

Proposition 6.4. For each commutative semigroup X the semigroup
ϕ•(X) is supercommutative. Moreover, A∗B = A⊛B for each A ∈ υ•(X),
B ∈ ϕ(X).

Proof. It is sufficient to prove that A ∗ B ⊂ A ⊛ B for each A ∈ υ•(X),
B ∈ ϕ(X). Let C ∈ A ∗ B. We lose no generality assuming that the
set C is of the basic form C =

⋃

a∈A a ∗ Ba for some finite set A ∈ A
and a family (Ba)a∈A ∈ BA. Since the set A is finite, by definition of
a filter, the intersection

⋂

a∈A Ba is nonempty and belongs to B. Hence
C ⊃

⋃

a∈A a ∗
(

⋂

a∈A Ba

)

= A ∗
(

⋂

a∈A Ba

)

∈ A ⊛ B.

Problem 6.5. Characterize semigroups X whose Stone-Čech extension
β(X) is supercommutative.

7. (Super)commutativity of semigroups υ(X) and υ•(X)

In this section we shall characterize semigroups X whose extensions
υ•(X) and υ(X) are commutative or supercommutative. The characteri-
zation will be given in terms of square-linear semigroups X endowed with
the digraph structure

∆ = {(x, y) ∈ X × X : xy = x2}.

Theorem 7.1. For a commutative semigroup X the following conditions
are equivalent:

1) the semigroup υ•(X) is commutative;
2) υ•(X) is supercommutative;
3) A ∗ B⊥ = B⊥ ∗ A for any filters A, B ∈ ϕ•(X) ⊂ υ•(X);
4) A ∗ B = A ⊛ B for any upfamilies A ∈ υ•(X) and B ∈ υ(X);
5) {xu, yv} ∩ {xv, yu} 6= ∅ for any points x, y, u, v ∈ X;
6) X is a square-linear semigroup whose digraph (X, ∆) contains no

bipartite cycles.

Proof. We shall prove the implications (4) ⇒ (2) ⇒ (1) ⇒ (3) ⇒ (5) ⇒
(6) ⇒ (4) among which the implications (4) ⇒ (2) ⇒ (1) ⇒ (3) are trivial.
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(3) ⇒ (5) Assume that {xu, yv} ∩ {xv, yu} = ∅ for some points
x, y, u, v ∈ X, and consider the filters A = 〈{x, y}〉 and B = 〈{u, v}〉, which
belong to the semigroup ϕ•(X). It is easy to see that B⊥ = 〈{u}, {v}〉.
Observe that B⊥ ∗ A = 〈{ux, uy}, {vx, vy}〉 and {xu, yv} ∈ A ∗ B⊥. Since
{xu, yv} /∈ 〈{ux, uy}, {vx, vy}〉, we conclude that A ∗ B⊥ 6= B⊥ ∗ A.

(5) ⇒ (6) To show that the semigroup X is square-linear, take any
two points a, b ∈ X and put x = v = a and y = u = b. Then {ab} =
{xu, yv} ⊂ {xv, yu} = {a2, b2}, which means that the semigroup X is
square-linear. Next, we show that its digraph (X, ∆) contains no bipartite
cycle. Assuming the converse and applying Lemma 4.1, we conclude
that X contains a pure cycle x0, x1, x2, x3, x4 of length 4. For every
0 6 i 6 3 the inclusion (xi, xi+1) ∈ ∆ \ ∆−1 implies xixi+1 = x2

i 6= x2
i+1.

Since x4 = x0, we get x4x1 = x0x1 = x2
4 6= x2

1. Then for the points
x = x1, y = x3, u = x2, v = x4, we get

{xu, yv} ∩ {uy, vx} = {x1x2, x3x4} ∩ {x2x3, x4x1} =

= {x2
1, x2

3} ∩ {x2
2, x2

4} = ∅.

So, the condition (4) does not hold.

(6) ⇒ (4) Assume that the subgroup X is square-linear, but A ∗ B 6=
A⊛B for some upfamilies A ∈ υ•(X) and B ∈ υ(X). Then A∗B 6⊂ A⊛B
and hence C /∈ A ⊛ B for some set C ∈ A ∗ B. We lose no generality
assuming that C is of the basic form C =

⋃

a∈A a ∗ Ba for some set A ∈ A
and sets Ba ∈ B, a ∈ A. Since A ∈ υ•(X), we can assume that the set A
is finite.

Taking into account that C /∈ A⊛B, we conclude that A ∗ Ba 6⊂ C for
each a ∈ A. Choose any element a0 ∈ A. By induction, for every k ∈ ω
we shall choose points bk ∈ Bak

and ak+1 ∈ A with ak+1 ∗ bk /∈ C as
follows. Assume that for some k ∈ ω a point ak ∈ A has been constructed.
Consider the set Bak

∗ A = A ∗ Bak
6⊂ C and find two points ak+1 ∈ A

and bk ∈ Bak
such that bkak+1 /∈ C.

Since the set A ⊃ {ak}k∈ω is finite, for some point a ∈ A the set
Ω = {k ∈ ω : ak = a} is infinite. Fix any three numbers p, q, r ∈ Ω such
that 1 < p < p + 1 < q < q + 1 < r. Since X is a square-linear semigroup,
aqbq ∈ {a2

q , b2
q}.

Now consider two cases.

(i) aqbq = b2
q . In this case we shall show that

(bq+i, aq+i) ∈ ∆ and (aq+i+1, bq+i) ∈ ∆
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for every i ∈ ω. This will be proved by induction on i ∈ ω. If i = 0, then
the inclusion (bq, aq) ∈ ∆ follows from the equality aqbq = b2

q . Assume that
for some i ∈ ω we have proved that (bq+i, aq+i) ∈ ∆, which is equivalent
to aq+ibq+i = b2

q+i. It follows from b2
q+i = aq+ibq+i 6= bq+iaq+i+1 ∈

{b2
q+i, a2

q+i+1} that bq+iaq+i+1 = a2
q+i+1 and hence (aq+i+1, bq+i) ∈ ∆.

Taking into account that

a2
q+i+1 = bq+iaq+i+1 6= aq+i+1bq+i+1 ∈ {a2

q+i+1, b2
q+i+1},

we see that aq+i+1bq+i+1 = b2
q+i+1 and (bq+i+1, aq+i+1) ∈ ∆, which com-

pletes the inductive step.

Taking into account that {b2
q+i}i∈ω = {aq+ibq+i}i∈ω ⊂ {akbk}k∈ω ⊂ C

and {a2
q+i+1}i∈ω = {bq+iaq+i+1}i∈ω ⊂ {bkak+1}k∈ω ⊂ X \ C, we conclude

that {b2
q+i}i∈ω ∩ {a2

q+i+1}i∈ω = ∅, which implies that (bq+i, aq+j+1) /∈

∆ ∩ ∆−1 for every i, j ∈ ω.

Now we see that ar, br−1, ar−1, . . . , bq, aq is a bipartite cycle in the
digraph (X, ∆).

(ii) aqbq = a2
q . In this case we shall show that

(aq−i, bq−i) ∈ ∆ and (bq−i−1, aq−i) ∈ ∆

for every 0 6 i < q. This will be proved by induction on i < q. If
i = 0, then the inclusion (aq, bq) ∈ ∆ follows from the equality aqbq = a2

q .
Assume that for some non-negative number i < q − 1 we have proved
that (aq−i, bq−i) ∈ ∆, which is equivalent to aq−ibq−i = a2

q−i. It follows

from a2
q−i = aq−ibq−i 6= bq−i−1aq−i ∈ {b2

q−i−1, a2
q−i} that bq−i−1aq−i =

b2
q−i−1 and hence (bq−i−1, aq−i) ∈ ∆. Taking into account that b2

q−i−1 =

bq−i−1aq−i 6= aq−i−1bq−i−1 ∈ {a2
q−i−1, b2

q−i−1}, we see that aq−i−1bq−i−1 =

a2
q−i−1 and (aq−i−1, bq−i−1) ∈ ∆, which completes the inductive step.

Taking into account that

{a2
q−i}

q−1
i=0 = {aq−ibq−i}

q−1
i=0 ⊂ {akbk}k∈ω ⊂ C and

{b2
q−i−1}q−1

i=0 = {bq−i−1aq−i}
q−1
i=0 ⊂ {bkak+1}k∈ω ⊂ X \ C,

we conclude that {b2
q−i−1}q−1

i=0 ∩ {a2
q−i}

q−1
i=0 = ∅, which implies that

(bq−i−1, aq−j) /∈ ∆ ∩ ∆−1 for every 0 6 i, j < q.

Now we see that ap, bp, ap+1, bp+1, . . . , aq−1, bq−1, aq is a bipartite cycle
in the digraph (X, ∆).

Theorem 7.2. For a commutative semigroup X the following conditions
are equivalent:
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1) the semigroup υ(X) is commutative;
2) υ(X) is supercommutative;
3) the semigroups υ•(X) and β(X) are commutative;
4) A ∗ B⊥ = B⊥ ∗ A for any filters A, B ∈ ϕ(X);
5) {anbn}n∈ω ∩ {bnan+1}n∈ω 6= ∅ for any sequences

(an)n∈ω and (bn)n∈ω in X.

Proof. We shall prove the implications (2) ⇒ (1) ⇒ (4) ⇒ (5) ⇒ (2) and
(1) ⇒ (3) ⇒ (5).

The implications (2) ⇒ (1) ⇒ (4) are trivial.

(4) ⇒ (5) Assume that there are sequences A = {an}n∈ω and B =
{bn}n∈ω in X such that {anbn}n∈ω∩{bnan+1}n∈ω = ∅. Consider the filters
A = 〈A〉 and B = 〈B〉. It follows that {bn} ∈ B⊥ = {C ⊂ X : C ∩B 6= ∅}
for every n ∈ ω. Assume that A ∗ B⊥ = B⊥ ∗ A.

Since {anbn}n∈ω ∈ A ∗ B⊥ = B⊥ ∗ A, there is k ∈ ω such that
bk ∗ A ⊂ {anbn}n∈ω, which is not possible as bkak+1 /∈ {anbn}n∈ω. So,
A ∗ B⊥ 6= B⊥ ∗ A.

(5) ⇒ (2) Assume that A∗B 6= A⊛B for some upfamilies A, B ∈ υ(X).
Then A ∗ B 6⊂ A ⊛ B and hence C /∈ A ⊛ B for some set C ∈ A ∗ B. We
lose no generality assuming that C is of basic form C =

⋃

a∈A aBa for
some set A ∈ A and sets Ba ∈ B, a ∈ A.

Taking into account that C /∈ A ⊛ B, we conclude that Ba ∗ A =
A ∗ Ba 6⊂ C for each a ∈ A. Choose any elements a0 ∈ A. By induction,
for every k ∈ ω we can choose points bk ∈ Bak

and ak+1 ∈ A such that
bkak+1 /∈ C. Then the sequences (an)n∈ω and (bn)n∈ω have the required
property {anbn}n∈ω ∩ {bnan+1}n∈ω ⊂ C ∩ (X \ C) = ∅, which shows that
(5) does not hold.

The implication (1) ⇒ (3) is trivial.

(3) ⇒ (5). Assume that the semigroups β(X) and υ•(X) are com-
mutative but {anbn}n∈ω ∩ {bnan+1}n∈ω = ∅ for some sequences (an)n∈ω

and (bn)n∈ω. By Theorem 7.1, the semigroup X is square-linear and its
digraph (X, ∆) contains no bipartite cycles.

Two cases are possible.

(i) anbn 6= b2
n for all n ∈ ω, and then anbn = a2

n for all n ∈ ω. Then for
each n ∈ ω we get {b2

n, a2
n+1} ∋ bnan+1 /∈ {akbk}k∈ω = {a2

k}k∈ω and hence
bnan+1 = b2

n. Then {a2
n}n∈ω∩{b2

n}n∈ω = {anbn}n∈ω∩{bnan+1}n∈ω = ∅. If
for every i < j we get aibj = a2

i and biaj = b2
i , then {aibj}i<j ∩{biaj}i<j =

∅ and the semigroup β(X) is not commutative by Theorem 6.1. So, there
are numbers i < j such that aibj 6= a2

i or biaj 6= b2
i .
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If aibj 6= a2
i , then aibj = b2

j , and ai, bi, ai+1, bi+1, . . . , aj , bj , ai if a
bipartite cycle in the digraph (X, ∆), which is not possible.

If biaj 6= b2
i , then biaj = a2

j , and then bi, ai+1, bi+1, . . . , bj−1, aj , bi is a
bipartite cycle in the digraph (X, ∆), which is not possible.

(ii) ambm = b2
m for some m ∈ ω. Repeating the argument of the

proof of the implication (5) ⇒ (3) of Theorem 7.1, we can check that
for every i ∈ ω am+ibm+i = b2

m+i 6= a2
m+i+1 = bm+iam+i+1 and hence

{b2
m+i}i∈ω∩{a2

m+i+1}i∈ω ⊂ {akbk}k∈ω∩{bkak+1}k∈ω = ∅. If for every i<j
we get am+ibm+j = b2

m+j and bm+iam+j = a2
m+j , then {am+ibm+j}i<j ∩

{bm+iam+j}i<j = ∅ and the semigroup β(X) is not commutative by
Theorem 6.1. So, there are numbers i < j such that am+ibm+j 6= b2

m+j or

bm+iam+j 6= a2
m+j .

If am+ibm+j 6= b2
m+j , then am+ibm+j = a2

m+i, and

am+i, bm+j , am+j , . . . , bm+i, am+i

is a bipartite cycle in the digraph (X, ∆), which is not possible.

If bm+iam+j 6= a2
m+j , then bm+iam+j = b2

m+i, and

bm+i, am+j , . . . , bm+i+1, am+i+1, bm+i

is a bipartite cycle in the digraph (X, ∆), which is a contradiction.

8. (Super)commutativity of semigroups N•
2 (X) and N2(X)

In this section we detect semigroups with (super) commutative exten-
sions N2(X) or N•

2 (X).

Theorem 8.1. For a commutative semigroup X the following conditions
are equivalent:

1) the semigroup N•
2 (X) is commutative;

2) N•
2 (X) is supercommutative;

3) {xu, yv} ∩ {xv, yu, xw, yw} 6= ∅ for any points x, y, u, v, w ∈ X;
4) A ∗ B = A ⊛ B for any upfamilies A ∈ N•

2 (X) and B ∈ N2(X);
5) A ∗ B = B ∗ A for any A ∈ ϕ•(X) and B ∈ N•

2 (X);
6) Either X is a square-linear semigroup whose digraph (X, ∆) contains

no bipartite cycles or else X contains a 2-element subgroup H such
that x3 ∈ H and xy = x3y3 for each points x, y ∈ X.

Proof. We shall prove the implications (4) ⇒ (2) ⇒ (1) ⇒ (5) ⇒ (3) ⇒
(6) ⇒ (4) among which (4) ⇒ (2) ⇒ (1) ⇒ (5) are trivial.

To prove that (5) ⇒ (3), assume that {xu, yv}∩{xv, yu, xw, yw} = ∅

for some points x, y, u, v, w ∈ X. Consider the filter A = 〈{x, y}〉 and the
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linked upfamily B = 〈{u, w}, {v, w}〉. By (5), A ∗ B = B ∗ A. Observe
that the set {xv, xw, yu, yw} = x · {v, w} ∪ y · {u, w} belongs to the
upfamily A ∗ B = B ∗ A. Then either {u, w} · {x, y} ⊂ {xv, xw, yu, yw}
or {v, w} · {x, y} ⊂ {xv, xw, yu, yw}. None of the inclusions is possible as
xu, yv /∈ {xv, yu, xw, yw}.

(3) ⇒ (6) If the semigroup υ•(X) is commutative, then by Theorem 7.1,
X is a square-linear semigroup whose digraph (X, ∆) contains no bipartite
cycles. So, we assume that the semigroup υ•(X) is not commutative. Given
any element a ∈ X, put x = v = a, y = u = a2, and w = a3. Then the
condition (3) implies xu = yv = a3 ∈ {xv, yu, xw, yw} = {a2, a4, a5},
which yields a3 = a5 for each a ∈ X. So, the semigroup X is periodic and
its set of idempotents E = {e ∈ X : e2 = e} is not empty. We claim that
the semilattice E is linear. Assuming the converse, find two idempotents
x, y ∈ E with xy /∈ {x, y} = {x2, y2} and put u = x, v = y, w = xy. Then
{xu, yv} ∩ {xv, yu, xw, yw} = {x2, y2} ∩ {xy} = ∅, which contradicts the
condition (3).

Next, we show that the semilattice E has the smallest element. Assume
the opposite. Since the semigroup υ•(X) is not commutative, Theorem 7.1
yields four points x, y, u, v ∈ X such that {xu, yv} ∩ {xv, yu} = ∅. Con-
sider the projection e∗ : X → E, e∗ : x 7→ ex, of X onto its idempotent
band. Since the linear semilattice E does not have the smallest idem-
potent, there is an idempotent w ∈ E such that wexu = w 6= exu and
weyv = w 6= eyv. It follows that exw = ex · ew = w 6= exu and hence
xw 6= xu. By analogy we can prove that {xu, yv} ∩ {xw, yw} = ∅, which
implies {xu, yv} ∩ {xv, yu, xw, yw} = ∅ and contradicts (3).

Therefore, the semilattice E has the smallest element, which will
be denoted by e. We claim that the maximal group He containing this
idempotent is not trivial. It follows from {xu, yv} ∩ {xv, yu} = ∅ and
{xu, yv} ∩ {xv, yu, xe, ye} 6= ∅ 6= {xv, yu} ∩ {xu, yv, xe, ye} that the set
{xe, ye} contains two elements and lies in the maximal subgroup He of
the idempotent e. So, the group He is not trivial. The equality a3 = a5

holding for each element a ∈ X implies that a2 = e for each element a of
the group He. We claim that |He| = 2. In the other case, we could find
three pairwise distinct points a, b, ab ∈ He \{e}. Put x = u = a, y = v = b,
and w = e. Then {xu, yv}∩{xv, yu, xw, yw} = {e}∩{ab, a, b} = ∅, which
contradicts (3).

So, He = {e, h} for some element h ∈ He. Next, we show that e
is the unique element of the semilattice E. Assume that E contains
some idempotent f 6= e and consider the points x = f , y = h, u = e,
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v = h, w = f . Observe that {xu, yv} ∩ {xv, yu, xw, yw} = {fe, h2} ∩
{fh, he, ff, hf} = {e, e} ∩ {h, f} = ∅, which contradicts (3).

Next, we check that a2 ∈ He for each a ∈ X. Assume conversely
that a2 /∈ He. It follows from a3 = a5 that a4 is an idempotent which
coincides with e and hence a3 ∈ He. If a3 = e, then we can consider
the points x = a, y = h, u = a2, v = h and w = a. Then {xu, yv} ∩
{xv, yu, xw, yw} = {a3, h2}∩{ah, ha2, a2, ha} = {e}∩{h, a2} = ∅, which
contradicts (2). So, a3 = h and then a2i+1 = h and a2i+2 = e for all
i ∈ N. Consider the points x = a, y = a2, u = a3, v = a2, and w = a.
Then {xu, yv} ∩ {xv, yu, xw, yw} = {a4} ∩ {a3, a5, a2, a3} = ∅, which
contradicts (3).

Finally, we show that ab ∈ He for any points a, b ∈ X. Assuming
that ab /∈ He for some a, b ∈ X, consider the points x = a, y = b,
u = b, v = a, and w = e. Then {xu, yv} ∩ {xv, yu, xw, yw} = {ab} ∩
{a2, b2, ae, be} ⊂ {ab} ∩ He = ∅, which contradicts (2). So, ab ∈ He, and
then ab = (ab)3 = a3b3.

(6) ⇒ (4) If X is a square-linear semigroup whose digraph (X, ∆)
contains no bipartite cycle, then by Theorem 7.1, A ∗ B = A ⊛ B for
any upfamilies A ∈ υ•(X) and B ∈ υ(X). Now assume that X contains
a two-element subgroup H ⊂ X such that x3 ∈ H and xy = x3y3 for
any points x, y ∈ X. This means that for the projection π : X → H,
π : x 7→ x3, the semigroup X is a projection extension of the subgroup H.
Then the semigroup N2(X) is a projection extension of the subsemigroup
N2(H). Since |H| = 2, by Proposition 6.4, the semigroup N2(H) = ϕ•(H)
is supercommutative and hence for any linked upfamilies A, B ∈ N2(X)
we get

A ∗ B = υπ(A) ∗ υπ(B) = υπ(A) ⊛ υπ(B) = A ⊛ B.

Theorem 8.2. For a semigroup X the following conditions are equivalent:

1) the semigroup N2(X) is commutative;
2) N2(X) is supercommutative;
3) the semigroups N•

2 (X) and β(X) are commutative;
4) A ∗ B = A ⊛ B for any upfamilies A ∈ ϕ(X) and B ∈ N2(X);
5) for every sequence (ai)i∈ω ∈ Xω and symmetric matrix (bij)i,j∈ω ⊂

Xω×ω we get
{ai · bij}i,j∈ω ∩ {bii · ai+1}i∈ω 6= ∅.

6) either the semigroup υ(X) is commutative or else X contains a
2-element subgroup H such that x3 ∈ H and xy = x3y3 for each
points x, y ∈ X.
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Proof. It suffices to prove the implications (2) ⇒ (1) ⇒ (3) ⇒ (6) ⇒ (2)
and (2) ⇒ (4) ⇒ (5) ⇒ (2). In fact, the implications (2) ⇒ (1) ⇒ (3) and
(2) ⇒ (4) are trivial.

(3) ⇒ (6) Assume that the semigroups N•
2 (X) and β(X) are commu-

tative but the semigroup υ(X) is not commutative. By Theorem 7.2, the
semigroup υ•(X) is not commutative. Combining Theorems 7.1 and 8.1,
we conclude that X contains a 2-element subgroup H such that x3 ∈ H
and xy = x3y3 for each points x, y ∈ X.

(6) ⇒ (2) If υ(X) is commutative, then by Theorem 7.2, it is super-
commutative and so is its subsemigroup N2(X). If X contains a 2-element
subgroup H such that x3 ∈ H and xy = x3y3 for each points x, y ∈ X,
then for the projection π : X → H, π : x 7→ x3, the semigroup X is a
projection extension of the subgroup H. By Proposition 3.1, the semi-
group N2(X) is a projection extension of the subsemigroup N2(H). Since
|H| = 2, the semigroup N2(H) = ϕ•(H) is supercommutative by Proposi-
tion 6.4. Being a projection extension of the supercommutative semigroup
N2(H), the semigroup N2(X) is supercommutative by Corollary 3.3.

(4) ⇒ (5) Assume that for some sequence (ai)i∈ω ∈ Xω and some
symmetric matrix (bij)i,j∈ω ⊂ Xω×ω we get {aibij}i,j∈ω∩{biiai+1}i∈ω = ∅.
Consider the filter A = 〈A〉 ∈ ϕ(X) ⊂ N2(X) generated by the set
A = {ai}i∈ω and the linked system B generated by the family {Bi}i∈ω of
sets Bi = {bij}j∈ω, i ∈ ω. Observe that the set C = {aibij}i,j∈ω belongs
to A ∗ B. Assuming that A ∗ B = A ⊛ B, we would find a number i ∈ ω
such that A ∗ Bi ⊂ C, which is not possible as ai+1bii /∈ C.

(5) ⇒ (2) Assuming that A∗B is not supercommutative, we could find
two linked upfamilies A, B ∈ N2(X) such that A ∗ B 6⊂ A ⊛ B. Then for
some set A ∈ A and a family (Ba)a∈A ∈ BA, we get

⋃

a∈A aBa /∈ A ⊛ B.
It follows that for every a ∈ A the product A ∗ Ba is not contained in
the set C =

⋃

a∈A a ∗ Ba, which allows us to construct inductively two
sequences of points (ai)i∈ω ⊂ Aω and (bi)i∈ω ∈ Xω such that bi ∈ Bai

and ai+1bi /∈ C for every i ∈ ω. For every numbers i < j put bii = bi

and let bij = bji be some point of the intersection Bai
∩ Baj

(which
is not empty by the linkedness of the upfamily B). Then the sequence
(ai)i∈ω and the symmetric matrix (bij)i,j∈ω have the required property
{aibij}i,j∈ω ∩ {biiai+1} ⊂ C ∩ (X \ C) = ∅.
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9. Commutativity of superextensions λ(X)

In this section we characterize semigroups having commutative exten-
sions λ(X) and λ•(X).

Theorem 9.1. For a commutative semigroup X the following conditions
are equivalent:

1) the semigroup λ(X) is commutative;
2) for any symmetric matrices (aij)i,j∈ω, (bij)i,j∈ω ∈ Xω×ω we get

{aii · bij}i,j∈ω ∩ {bii · ai+1,j}i,j∈ω 6= ∅.

Proof. (1) ⇒ (2) Assuming that the semigroup λ(X) is not commutative,
find two maximal linked systems A, B ∈ λ(X) such that A ∗ B 6= B ∗ A.
The maximal linked upfamilies A ∗ B and B ∗ A are distinct and hence
contain two disjoint sets C ∈ A ∗ B and C ′ ∈ B ∗ A. For these sets there
are sets A ∈ A, B ∈ B and families of sets (Ba)a∈A ∈ BA, (Ab)b∈B ∈ AB

such that
⋃

a∈A aBa ⊂ C and
⋃

b∈B bAa ⊂ C ′.
By induction we can construct two sequences {aii}i∈ω ⊂ A and {bii}i∈ω

such that bii ∈ B ∩ Baii
and ai+1,i+1 ∈ A ∩ Abii

for every i ∈ ω. Since the
upfamilies B and A are linked, for every numbers i < j we can choose
points bij ∈ Baii

∩ Bajj
and ai+1,j+1 ∈ Abii

∩ Abjj
, and put bji = bij and

aj+1,i+1 = ai+1,j+1. Also put a0i = ai0 = a00 for all i ∈ ω. In such way
we have defined two symmetric matrices (aij)i,j∈ω and (bij)i,j∈ω with
coefficients in the semigroup X. Observe that for each i, j ∈ ω we get
aii ∗ bij ∈ aii ∗ Baii

⊂ C and bii ∗ ai+1,j ∈ bii ∗ Abii
⊂ C ′, which implies

that the sets {aii · bij}i,j∈ω and {bii · ai+1,j}i,j∈ω are disjoint.

(2) ⇒ (1) Assume that there are two symmetric matrices (aij)i,j∈ω,
(bij)i,j∈ω ∈ Xω×ω such that the sets {aii · bij}i,j∈ω and {bii · ai+1,j}i,j∈ω

are disjoint. Consider the sets A = {aii}i∈ω and Ai = {aij}j∈ω which form
a linked system {A, Ai}i∈ω which can be enlarged to a maximal linked
system A. On the other hand, the sets B = {bii}i∈ω and Bi = {bij}j∈ω

form a linked upfamily, which can be enlarged to a maximal linked upfamily
B. We claim that A ∗ B 6= B ∗ A. This follows from the fact that the
maximal linked upfamilies A ∗ B and B ∗ A contains the disjoint sets

{aiibij}i,j∈ω =
⋃

aii∈A

aiiBi ∈ A ∗ B

and
{biiai+1,j}i,j∈ω =

⋃

bii∈B

biiAi+1 ∈ B ∗ A.

Therefore the semigroup A is not commutative.
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For a set X consider the subset

λ•
3(X) = {A ∈ λ(X) : ∃Y ⊂X such that |Y | 6 3 and A ∈ λ(Y ) ⊂ λ(X)}

in λ•(X).

Theorem 9.2. For a commutative semigroup X the following conditions
are equivalent:

1) the semigroup λ•(X) is commutative;
2) any two maximal linked systems A, B ∈ λ•

3(X) commute;
3) any two maximal linked systems A ∈ λ•(X) and B ∈ λ(X)

commute;
4) for any elements a, b, c, x, y, z ∈ X the sets {ax, ay, cy, cz} and

{xc, xb, za, zb} are not disjoint;
5) for any elements x0, x1, x2, x3, x4, x5 ∈ X the sets

{x1x2, x2x3, x3x4, x4x5} and {x1x4, x2x5, x0x1, x0x5} are not dis-
joint.

Proof. It suffices to prove the implications (3) ⇒ (1) ⇒ (2) ⇒ (4) ⇔
(5) ⇒ (1). In fact, the implications (3) ⇒ (1) ⇒ (2) are trivial while the
equivalence (4) ⇔ (5) follows from the observation that for any points
b = x0, x = x1, a = x2, y = x3, c = x4, z = x5 in X we get

{ax, ay, cy, cz} ∩ {xc, xb, za, zb} =

= {x1x2, x2x3, x3x4, x4x5} ∩ {x1x4, x1x0, x5x2, x5x0}.

(2) ⇒ (4) Assume that for some elements a, b, c, x, y, z ∈ X the sets
{ax, ay, cy, cz} and {xc, xb, za, zb} are disjoint. Consider the maximal
linked systems A = {A ⊂ X : |A ∩ {a, b, c}| > 2} and X = {A ⊂ X :
|A ∩ {x, y, z}| > 2} and observe that A, X ∈ λ•

3(X) and the products
A ∗ X and X ∗ A are distinct since they contain disjoint sets

a{x, y} ∪ c{y, z} ∈ A ∗ X and x{c, b} ∪ z{a, b} ∈ X ∗ A.

(4) ⇒ (3) The proof of this implication is the most difficult part of the
proof. Assume that (4) holds but there are two non-commuting maximal
linked systems A ∈ λ•(X) and B ∈ λ(X). Then the maximal linked
systems A ∗ B and B ∗ A contain disjoint sets. Consequently, we can find
sets A ∈ A and B ∈ B and families (Ba)a∈A ∈ BA and (Ab)b∈B ∈ AB such
that the sets UAB =

⋃

a∈A a ∗ Ba ∈ A ∗ B and UBA =
⋃

b∈B b ∗ Ab ∈ B ∗ A
are disjoint. Since A ∈ λ•(X), we can additionally assume that the set A
is finite.



T. Banakh, V. Gavrylkiv 181

By analogy with the proof of Theorem 9.1, construct inductively two
sequences (ai)i∈ω ∈ Aω and (bi)i∈ω ∈ Bω such that bi ∈ B ∩ Bai

and
ai+1 ∈ A ∩ Abi

. Since the set A is finite, there are two numbers k, m such
that 0 < k < m − 1 and ak = am.

Let n = m − k > 2 and consider the group Zn = {0, 1, . . . , n − 1}
endowed with the group operation of addition modulo n, which will be
denoted by the symbol ⊕. So, 1 ⊕ (n − 1) = 0. For each i ∈ Zn let
aii = ak+i and bii = bk+i. For every numbers i < j in Zn choose points
bij = bji ∈ Baii

∩ Bajj
and aij = aji ∈ Abi′,i′

∩ Abj′,j′
where i′, j′ ∈ Zn

are unique numbers such that i = i′ ⊕ 1 and j′ = j ⊕ 1. It follows that
aiibij ∈ aiiBaii

⊂ UAB and biiai⊕1,j ∈ biiAbii
∈ UBA. So,

{aii ∗ bij}i,j∈Zn
∩ {bii ∗ ai⊕1,j}i,j∈Zn

⊂ UAB ∩ UBA = ∅.

By induction on i ∈ Zn we shall prove that a00 ∗ bii ∈ UAB. This is
trivial for i = 0. Assume that for some positive number i < n − 1 we have
proved that a00 ∗ bii ∈ UAB. Let

x0 = ai+1,i⊕2, x1 = bi,i, x2 = a00,
x3 = b0,i+1, x4 = ai+1,i+1, x5 = bi+1,i+1.

It follows that

{x1x2, x2x3, x3x4, x4x5} =

= {bi,i ∗ a00, a00 ∗ b0,i+1, b0,i+1 ∗ ai+1,i+1, ai+1,i+1 ∗ bi+1,i+1} ⊂

⊂ UAB ∪ a00 ∗ Ba00
∪ ai+1,i+1 ∗ Bai+1,i+1

∪ ai+1,i+1 ∗ Bai+1,i+1
⊂ UAB.

On the other hand,

{x0x1, x0x5, x1x4} = {ai+1,i⊕2 ∗ bi,i, ai+1,i⊕2 ∗ bi+1,i+1, bi,i ∗ ai+1,i+1} ⊂

⊂ bi,i ∗ Abi,i
∪ bi+1,i+1 ∗ Abi+1,i+1

∪ bi,i ∗ Abi,i
⊂ UBA.

Then {x1x2, x2x3, x3x4, x4x5} ∩ {x0x1, x0x5, x1x4} ⊂ UAB ∩ UBA = ∅.
By the condition (4), the intersection

{x1x2, x2x3, x3x4, x4x5} ∩ {x0x1, x0x5, x1x4, x2x5}

is not empty, which implies that

a00 ∗ bi+1,i+1 = x2x5 ∈ {x1x2, x2x3, x3x4, x4x5} ⊂ UAB.
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After completing the inductive construction, we conclude that a00 ∗
bn−1,n−1 ∈ UAB which is impossible as

a00 ∗ bn−1,n−1 = ak ∗ bk+n−1 = am ∗ bm−1 = bm−1 ∗ am ∈ UBA.

We shall apply Theorem 9.2 to detecting monogenic semigroups that
have commutative superextensions.

Theorem 9.3. For a monogenic semigroup X = {xk}k∈N the following
conditions are equivalent

1) λ(X) is commutative;

2) λ•(X) is commutative;

3) xn = xm for some pair (n, m) in the set
{(1, 2), (1, 3), (2, 3), (1, 4), (2, 4), (3, 4), (1, 5), (2, 5), (3, 5), (4, 5), (2, 6)}.

Proof. We shall prove the implications (3) ⇒ (1) ⇒ (2) ⇒ (3), among
which the implication (1) ⇒ (2) is trivial.

(3) ⇒ (1) Assume that xn = xm for some pair (n, m) in the set

{(1, 2), (1, 3), (2, 3), (1, 4), (2, 4), (3, 4), (1, 5), (2, 5), (3, 5), (4, 5), (2, 6)}.

If (n, m) ∈ {(1, 2), (1, 3), (1, 4), (1, 5)} then X is isomorphic to a cyclic
group of order ≤ 4 and λ(X) is commutative by Theorem 5.1 of [6].

If (n, m) = (2, 3), then the semigroup λ(X) = X is commutative.

If (n, m) ∈ {(2, 4), (3, 4)}, then |X| = 3 and λ(X) = X ∪ {△} where
△ = {A ⊂ X : |A| > 2}. Taking into account that xy = yx and
△ · x = x · △ for all x, y ∈ X, we see that the semigroup λ(X) is
commutative.

If (n, m) = (2, 5), then xa = x4a for every a ∈ X and hence X =
{x, x2, x3, x2} is a projective extension of the cyclic subgroup {x2, x3, x4}.
In this case the commutativity of λ(X) follows from the commutativity
of λ(C3) according to Proposition 3.3.

By analogy, for (n, m) = (2, 6) the commutativity of the semigroup
λ(X) follows from the commutativity of the semigroup λ(C4).

Now consider the case (n, m) = (3, 5). In this case X = {x, x2, x3, x4}
and the semigroup λ(X) contains 12 elements:

k = 〈{xk}〉,

△k = 〈{A ⊂ X : |A| = 2, xk /∈ A}〉 and

�k = 〈{X \ {xk}, A : A ⊂ X, |A| = 2, xk ∈ A}〉,



T. Banakh, V. Gavrylkiv 183

where k ∈ {1, 2, 3, 4}. The following Cayley table of multiplication in the
semigroup λ(X) implies the commutativity of λ(X):

∗ △1 △2 △3 △4 �1 �2 �3 �4

△1 4 3 4 3 3 4 3 4
△2 3 △1 3 △1 △1 3 △1 3
△3 4 3 4 3 3 4 3 4
△4 3 △1 3 △1 △1 3 △1 3
�1 3 △1 3 △1 △1 3 △1 3
�2 4 3 4 3 3 4 3 4
�3 3 △1 3 △1 △1 3 △1 3
�4 4 3 4 3 3 4 3 4

In the final case (n, m) = (4, 5), the product of any two nonprincipal
maximal linked upfamilies is equal to the principal ultrafilter 〈{x4}〉,
which implies that the semigroup λ(X) is commutative.

(2) ⇒ (3) Let X = {xk}k∈N be a monogenic semigroup with com-
mutative extension λ•(X). If |X| 6 4, then xn = xm for some (n, m) ∈
{(1, 2), (1, 3), (2, 3), (1, 4), (2, 4), (3, 4), (1, 5), (2, 5), (3, 5), (4, 5)}. If x6 =
x2, then we are done. So, we assume that x6 6= x2 and |X| > 5. In this
case the elements x, x2, x3, x4, x5 are pairwise distinct.

We claim that x7 ∈ {x3, x4}. In the opposite case we can put x0 = x4,
x1 = x3, x2 = x, x3 = x2, x4 = x2, x5 = x and observe that

{x1x2, x2x3, x3x4, x4x5} ∩ {x1x4, x2x5, x0x1, x0x5} =

{x3, x4} ∩ {x2, x5, x7} = ∅,

which implies that the semigroup λ•(X) is not commutative according to
Theorem 9.2. This contradiction shows that x7 ∈ {x3, x4} and hence the
monogenic semigroup X is finite.

If x7 = x3, then we can put x0 = x5, x1 = x2 = x, x3 = x3, x4 = x5 =
x2 and observe that

{x1x2, x2x3, x3x4, x4x5} ∩ {x1x4, x2x5, x0x1, x0x5} =

= {x2, x4, x5} ∩ {x3, x6, x7} = ∅

since x6 6= x2. By Theorem 9.2, the semigroup λ•(X) is not commutative.

If x7 = x4, then we can put x0 = x1 = x, x2 = x4, x3 = x3, x4 = x5 =
x2 and observe that
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{x1x2, x2x3, x3x4, x4x5} ∩ {x1x4, x2x5, x0x1, x0x5} =

= {x5, x7, x4} ∩ {x3, x6, x2, x3} = ∅,

which implies that the semigroup λ•(X) is not commutative according to
Theorem 9.2.

Now we establish some structural properties of semigroups X having
commutative superextensions λ(X). A semigroup X is called a 0-bouquet
of its subsemigroups Xα, α ∈ I, if

• X =
⋃

α∈A Xα;

• X has two-sided zero 0;

• Xα ∩ Xβ = Xα ∗ Xβ = {0} for any distinct indices α, β ∈ I.

In this case we write X =
∨

α∈I Xα.

Proposition 9.4. Assume that a semigroup X =
∨

α∈I Xα is a 0-bouquet
of its subsemigroups Xα, α ∈ I. The superextension λ(X) is commutative
if and only if for each α ∈ I the semigroup λ(Xα) is commutative.

Proof. The “only if” part is trivial. To prove the “if” part, assume that
the semigroup λ(X) is not commutative. By Theorem 9.1, there are two
symmetric matrices (aij)i,j∈ω and (bij)i,j∈ω with the coefficients in X such
that the sets A = {aii ∗ bij}i,j∈ω and B = {bii ∗ ai+1,j}i,j∈ω are disjoint.
Then 0 /∈ A or 0 /∈ B.

First assume that 0 /∈ A. Find an index α ∈ I such that a00 ∈ Xα. It
follows from 0 /∈ {a00b0j}j∈ω that b0j ∈ Xα for all j ∈ ω. Observe that
for every i ∈ ω we get aiibi0 = aiib0i 6= 0 and hence aii ∈ Xα. Finally,
for each i, j ∈ ω, the inequality aiibij 6= 0 implies that bij ∈ Xα. So,
{aii}i∈ω ∪ {bij}i,j∈A ⊂ Xα. Now for every i, j ∈ ω put

a′
ij =

{

aij if aij ∈ Xα,

0 otherwise

and observe that (aij)i,j∈ω is a symmetric matrix with coefficients in
Xα. It follows that {a′

iibij}i,j∈ω = {aiibij}i,j∈ω = A and {biiai+1,j}i,j∈ω ⊂
(B ∩ Xα) ∪ {0}. Since A ∩ (B ∪ {0}) = ∅, Theorem 9.1 implies that the
semigroup λ(Xα) is not commutative.

By analogy, we can treat the case 0 /∈ B = {bii ∗ ai+1,j}i,j∈ω. In this
case there is α ∈ I such that {bii}i∈ω ∪{ai+1,j}i,j∈ω ⊂ Xα \{0}. Changing
the element a00 by 0, if necessary, we get {aij}i,j∈ω ⊂ Xα. Now for every



T. Banakh, V. Gavrylkiv 185

i, j ∈ ω put

b′
ij =

{

bij if bij ∈ Xα,

0 otherwise.

Observe that (aij)i,j∈ω and (b′
ij)i,j∈ω are symmetric matrices with coef-

ficients in Xα such that {aiib
′
ij}i,j∈ω ⊂ A ∪ {0} and {b′

iiai+1,j}i,j∈ω =
(biiai+1,j}i,j∈ω = B. Since (A ∪ {0}) ∩ B = ∅, Theorem 9.1 implies that
the semigroup λ(Xα) is not commutative.

Now we detect regular semigroups X whose superextensions λ(X) are
commutative.

In the following theorem for a natural number n ∈ N by

Cn = {z ∈ C : zn = 1}

we denote the cyclic group of order n and by

Ln = {0, . . . , n − 1}

the linear semilattice endowed with the operation of minimum.
For two semigroups (X, ∗) and (Y, ⋆) by X⊔Y we denote the semigroup

X × {0} ∪ Y × {1} endowed with the semigroup operation

(a, i) ◦ (b, j) =























(a ∗ b, 0) if i = 0 and j = 0,

(a, 0) if i = 0 and j = 1,

(b, 0) if i = 1 and j = 0,

(a ⋆ b, 1) if i = 1 and j = 1.

The semigroup X ⊔ Y is called the ordered union of the semigroups X
and Y . For example, the ordered union L1 ⊔ C2 is isomorphic to the
multiplicative semigroup {−1, 0, 1}.

Theorem 9.5. The superextension λ(X) of a regular semigroup X is
commutative if and only if one of the following conditions holds:

• X is isomorphic to one of the semigroups: C2, C3, C4, C2 × C2,
C2 × L2, L1 ⊔ C2, C2

⊔

Ln for some n ∈ N;
• X =

∨

α∈A Xα for some subsemigroups Xα, α ∈ A, isomorphic to
L1 ⊔ C2 or Ln for n ∈ N.

Proof. To prove the “if” part, assume that a semigroup X satisfies con-
ditions (1) or (2). If X is isomorphic to one of the groups C2, C3, C4,
or C2 × C2, then its superextension λ(X) is commutative according to
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Theorem 5.1 of [6]. If X is isomorphic to C2 × L2 or C2
⊔

Ln for some
n ∈ N, then λ(X) is commutative by Theorem 1.1 of [5].

Next, assume that X =
∨

α∈A Xα is a 0-bouquet of its subsemigroups
Xα, α ∈ A, isomorphic to L1 ⊔C2 or Ln, n ∈ N. By Theorem 1.1 of [5], the
superextension of the semigroups L1 ⊔C2 and Ln, n ∈ N, are commutative.
Consequently, for every α ∈ Xα the superextension λ(Xα) is commutative
and by Proposition 9.4, the superextension λ(X) is commutative too.
This completes the proof of the “if” part.

The prove the “only if” part we shall use the following:

Lemma 9.6. The superextension λ(X) of a semigroup X is not commu-
tative if X is isomorphic to one of the semigroups:

1) L1 ⊔ Cn for n > 3;
2) Cn ⊔ L1 for n > 3;
3) L1 ⊔ C2 ⊔ L1;
4) L2 ⊔ C2;
5) (C2 × C2) ⊔ L1;
6) L1 ⊔ (C2 × C2);
7) C2 ⊔ C2.

Proof. 1. If X = L1 ⊔ Cn = {e1} ⊔ {ai}n−1
i=0 for some n > 3, then the

maximal linked upfamilies � =
〈

{e1, a0}, {e1, a}, {e1, a−1}, {a0, a, a−1}
〉

and △ =
〈

{a0, a}, {a0, a−1}, {a, a−1}
〉

do not commute, since {e1, a0} =
a0{e1, a0} ∪ a{e1, a−1} ∈ △ ∗ � while {e1, a0} /∈ � ∗ △.

2. If X = Cn ⊔ L1 = {ai}n−1
i=0 ⊔ {e2} for some n > 3, then the

maximal linked upfamilies � =
〈

{a2, a}, {a2, a0}, {a2, e2}, {a0, a, e2}
〉

and
△ =

〈

{a0, e2}, {a0, a2}, {e2, a2}
〉

do not commute, since {a2, e2} =
a2{a0, e2} ∪ e2{a2, e2} ∈ � ∗ △ while {e2, a2} /∈ △ ∗ �.

3. If X = L1 ⊔C2 ⊔L1 = {e1}⊔{e2, a}⊔{e3} where a 6= a2 = e2, then
the maximal linked upfamilies �3 = 〈{e1, e3}, {e2, e3}, {a, e3}, {e1, e2, a}〉
and �a = 〈{a, e1}, {a, e2}, {a, e3}, {e1, e2, e3}〉 do not commute, since
{e1, e2} = e1{e1, e2, e3}∪e2{e1, e2, e3}∪a{a, e1} ∈ �3∗�a while {e1, e2} /∈
�a ∗ �3.

4. If X = L2 ⊔ C2 = {e1, e2} ⊔ {e3, a} where a 6= a2 = e3, then
the maximal linked upfamilies � = 〈{e1, e2}, {e1, e3}, {e1, a}, {e2, e3, a}〉
and △ = 〈{e2, a}, {e2, e3}, {a, e3}〉 do not commute, since {e2, e3} =
e2{e2, e3} ∪ e3{e2, e3} ∪ a{e2, a} ∈ � ∗ △ while {e2, e3} /∈ △ ∗ �.

5. If X = (C2 × C2) ⊔ {e2} where C2 × C2 = {e1, a, b, ab} and a2 =
b2 = (ab)2 = e1, then the maximal linked upfamilies
� = 〈{a, b}, {a, e1}, {a, e2}, {e1, e2, b}〉 and △ = 〈{e1, e2}, {e1, a}, {e2, a}〉
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do not commute, since {a, e2} = a{e1, e2}∪e2{e2, a} ∈ �∗△ and {a, e2} /∈
△ ∗ �.

6. If X = {e1} ⊔ (C2 × C2) where C2 × C2 = {e2, a, b, ab} and a2 =
b2 = (ab)2 = e2, then the maximal linked upfamilies
� = 〈{e1, e2}, {e1, a}, {e1, b}, {e2, a, b}〉 and △ = 〈{e2, a}, {e2, b}, {a, b}〉
do not commute, since {e1, e2} = e2{e1, e2} ∪ a{e1, a} ∈ △ ∗ � and
{e1, e2} /∈ � ∗ △.

7. Finally assume that X = C2⊔C2 = {e1, a1}∪{e2, a2} where e1 < e2

are idempotents of X, a2
1 = e1, a2

2 = e2, and e1 ∗ a2 = e1. In this case the
maximal linked upfamilies

�e =
〈

{e1, a1}, {e1, a2}, {e1, e2}, {a1, a2, e2}
〉

and

�a =
〈

{a1, e1}, {a1, e2}, {a1, a2}, {e1, e2, a2}
〉

do not commute as {e1, e2} = e1{e1, e2}∪e2{e1, e2}∪a2{e1, a2} ∈ �a ∗�e

while {e1, e2} /∈ �e ∗ �a.

Now we are ready to prove the “only if” part of Theorem 9.5. Assume
that the superextension λ(X) is commutative. In this case the regular
semigroup X is commutative and consequently X is a Clifford inverse
semigroup. By Theorem 5.1 of [6], the commutativity of λ(X) implies
that each subgroup of X has cardinality 6 4. By Theorem 2.7 [5], the
idempotent band E(X) = {x ∈ X : xx = x} of X is a 0-bouquet of finite
linear semilattices.

First we assume that E(X) is a finite linear semilattice, which can
be written as E(X) = {e1, . . . , en} for some idempotents e1 < · · · < en.
For every i ∈ {1, . . . , n} by Hei

we denote the maximal subgroup of
X containing the idempotent ei. As we have shown the group Hei

has
cardinality |Hei

| 6 4.
If n = 1, then the Clifford inverse semigroup X coincides with the

group He1
and hence is isomorphic to C1 = L1, C2, C3, C4 or C2 × C2.

So, we assume that n > 2. Lemma 9.6(2,5) implies that for every i < n
the maximal subgroup Hei

has cardinality |Hei
| 6 2. For the maximal

idempotent en of E(X) the complement I = X \ Hen is an ideal in X.
So, we can consider the quotient semigroup X/I, which is isomorphic to
L1 ⊔ Hen . The commutativity of λ(X) implies the commutativity of the
semigroup λ(X/I). Now Lemma 9.6(1,6) implies that |Hen | 6 2.

If |E(X)| > 3, then for any 1 < i < n, the maximal subgroup Hei
is

trivial according to Lemma 9.6(3) and then for the maximal idempotent
en, the subgroup Hen is trivial according to Lemma 9.6(4). Therefore, all
maximal groups Hei

, 1 < i 6 n, are trivial. If the group He1
is trivial,
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then X = E(X) is isomorphic to the linear semilattice Ln. If He1
is not

trivial, then He1
is isomorphic to C2 and X is isomorphic to C2 ⊔ Ln−1.

It remains to consider the case |E(X)| = 2. In this case the groups
He1

, He2
have cardinality 6 2 and then X is isomorphic to L2, C2 ⊔ L1,

L1 ⊔C2, C2 ×L2 or C2 ⊔C2. However the case X ∼= C2 ⊔C2 is excluded by
Lemma 9.6(7). This completes the proof of the case of linear semilattice
E(X).

Now we consider the case of non-linear semilattice E(X). Write E(X)
as a 0-bouquet E(X) =

∨

α∈I Eα of finite linear semilattices Eα. Let e0 be
the minimal idempotent of the semilattice E(X). Since E(X) is not linear,
there are two idempotents e1, e2 ∈ E(X) \ {e0} such that e1e2 = e0. We
claim that the maximal subgroup He0

containing the idempotent e0 is triv-
ial. It follows from the “linear” case, that |He0

| 6 2. Assuming that He0
is

not trivial, write He0
= {a, e0} and consider the maximal linked upfami-

lies △0 = 〈{a, e1}, {e1, e2}, {a, e2}〉 and △a = 〈{e0, e1}, {e1, e2}, {e0, e2}〉
which do not commute since △0 ∗ △a = 〈{e0}〉 6= 〈{a}〉 = △a ∗ △0.
Consequently, the maximal subgroup He0

is trivial and hence for every
α ∈ A the subsemigroup Xα =

⋃

e∈Eα
He is isomorphic to L1 ⊔ C2 or Ln,

n ∈ N, by the preceding “linear” case.

Theorems 9.3 and 9.5 imply:

Corollary 9.7. If a semigroup X has commutative superextension λ(X),
then

1) for each x ∈ X there is a pair (n, m) ∈ {(2, 5), (2, 6), (3, 5), (4, 5)}
such that xn = xm;

2) the idempotent semilattice E(X) = {x ∈ X : xx = x} of X is a
0-bouquet of finite linear semilattices;

3) the regular part R(X) = {x ∈ X : x ∈ xXx} of X is isomorphic to
one of the following semigroups:

• L1, C2, C3, C4, C2 × C2, C2 × L2, C2
⊔

Ln for some n ∈ N;
• a 0-bouquet

∨

α∈A Xα of subsemigroups Xα, α ∈ I, isomorphic
to L1 ⊔ C2 or Ln for n > 2.

10. Supercommutativity of superextensions λ(X)

By Theorems 6.3, 7.1, 7.2, 8.1, 8.2, for any semigroup X, the semigroups
υ(X), υ•(X), ϕ(X), ϕ•(X), N2(X), N•

2 (X) are supercommutative if and
only if they are commutative. In contrast, the supercommutativity of the
superextension λ(X) is not equivalent to its commutativity.
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Theorem 10.1. For a monogenic semigroup X = {xk}k∈N the following
conditions are equivalent:

1) the semigroup λ(X) is supercommutative;

2) the semigroup λ•(X) is supercommutative;

3) xn = xm for some (n, m) ∈ {(1, 2), (1, 3), (2, 3), (2, 4), (3, 4), (4, 5)}.

Proof. We shall prove the implications (3) ⇒ (1) ⇒ (2) ⇒ (3) among
which the implication (1) ⇒ (2) is trivial.

(3) ⇒ (1). Assume that xn = xm for some pair (n, m) from the set
{(1, 2), (1, 3), (2, 3), (2, 4), (3, 4), (4, 5)}. For (n, m) ∈ {(1, 2), (1, 3), (2, 3)}
the monogenic semigroup X has cardinality |X| 6 2 and then the semi-
group λ(X) = X is supercommutative.

If (n, m) = (2, 4), then the monogenic semigroup X has cardinality
|X| = 3 and for the unique non-principal maximal linked system △ =
{A ⊂ X : |A| > 2} in λ(X) the product △ ⊛ △ is equal to the principal
ultrafilter 〈x2〉 = △ ∗ △, which implies that the semigroup λ(X) is
supercommutative.

If (n, m) ∈ {(3, 4), (4, 5)}, then any two nonprincipal maximal linked
systems A, B contain sets A ∈ A, B ∈ B such that x /∈ A, x /∈ B. Then
AB is a singleton, which implies A ⊛ B = A ∗ B. Consequently, the
semigroup λ(X) is supercommutative.

(2) ⇒ (3) Assume that for a monogenic semigroup X = {xk}k∈N the
superextension λ•(X) is supercommutative. Then it is commutative and
by Theorem 9.3, xn = xm for some pair (n, m) from the set

{(1, 2), (1, 3), (2, 3), (1, 4), (2, 4), (3, 4), (1, 5), (2, 5), (3, 5), (4, 5), (2, 6)}.

We claim that |m − n| 6 2. In the opposite case X contains a cyclic
subgroup C of cardinality |C| > 3. The subgroup C contains an element
x ∈ C such that the points x−1, x0, x1 are pairwise distinct. Then for the
maximal linked system △ = 〈{x−1, x0}, {x0, x1}, {x−1, x1}〉 ∈ λ•(C) ⊂
λ•(X) the product

△ ⊛ △ =
〈

{x−2, x−1, x0}, {x−1, x0, x1}, {x0, x1, x2}
〉

does not belong to λ(C), which implies that △ ⊛ △ 6= △ ∗ △ and con-
tradicts the supercommutativity of λ(X). So, |m − n| 6 2, which implies
that (n, m) ∈ {(1, 2), (1, 3), (2, 3), (2, 4), (3, 4), (3, 5), (4, 5)}. It remains to
exclude the case (n, m) = (3, 5). In this case X = {x, x2, x3, x4} and for
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the maximal linked upfamilies � =
〈

{x2, x3, x4}, {x, x2}, {x, x3}, {x, x4}
〉

and △ =
〈

{x, x2}, {x, x3}, {x2, x3}
〉

we get

�⊛ △ =
〈

{x2, x4}, {x3, x4}
〉

6= � ∗ △,

which contradicts the supercommutativity of the semigroup λ(X).

In the following theorem by V3 we denote the semilattice {0, 1}2 \
{(1, 1)} endowed with the operation of coordinatewise minimum. Observe
that a semilattice X is isomorphic to V3 if and only if |X| = 3 and X is
not linear.

Theorem 10.2. The superextension λ(X) of a regular semigroup X is
supercommutative if and only if X is isomorphic to one of the semigroups:
C2, L1 ⊔ C2, V3 or Ln for n ∈ N.

Proof. First we prove the “if” part of the theorem. If X = C2, then its
superextension λ(X) = X is supercommutative as all maximal linked
upfamilies on X are principal ultrafilters.

If X = L1 ⊔ C2, then λ(X) is supercommutative since for the unique
non-principal maximal linked system △ = {A ⊂ X : |A| > 2} we get
△ ⊛ △ = △ = △ ∗ △.

If X = V3, then λ(X) is supercommutative since for the unique non-
principal maximal linked system △ = {A ⊂ X : |A| > 2} the products
△⊛△ = 〈min V3〉 = △∗△ coincide with the principal ultrafilter generated
by the minimal element (0, 0) = min V3 of the semilattice V3.

If X = Ln for some n ∈ N, then the supercommutativity of the
semigroup λ(X) follows from Theorem 2.5 of [4].

To prove the “only if” part, assume that X is a regular semigroup
with supercommutative superextension λ(X). First observe that every
subgroup G of X has cardinality |G| 6 2. In the opposite case the
group G contains an element x ∈ X such that |{x1, x0, x−1}| = 3
where x0 is the idempotent of the group G. Then for the maximal
linked system △ =

〈

{x−1, x0}, {x0, x1}, {x−1, x1}
〉

the product △ ⊛ △ =
〈

{x−2, x−1, x0}, {x−1, x0, x1}, {x0, x1, x2}
〉

does not belong to λ(X) and
hence is not equal to △ ∗ △. This contradiction shows that all subgroups
of X has cardinality 6 2. This fact combined with Theorem 9.5 yields
that X is isomorphic to one of the semigroups:

• L1, C2, C2
⊔

Ln for some n ∈ N;

• a 0-bouquet
∨

α∈I Xα of subsemigroups Xα, α ∈ I, isomorphic to
L1 ⊔ C2 or Ln for n > 2.
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It remains to exclude the semigroups from this list, whose superextensions
are not supercommutative.

If X = C2
⊔

Ln, then X contains the semigroup C2⊔L1 = {e1, a}∪{e2}
where a2 = e1 6= a and e1 < e2 are idempotents. In this case for the
maximal linked system △ =

〈

{a, e1}, {e1, e2}, {a, e2}
〉

we get △ ⊛ △ =
〈

{a, e1}, {e1, e2}
〉

/∈ λ(X) and hence △ ⊛ △ 6= △ ∗ △, which means that
λ(X) is not supercommutative.

If X = L1 ⊔ C2 = {e1} ∪ {e2, a} where a2 = e2 > e1, then for the
maximal linked system △ =

〈

{a, e1}, {e1, e2}, {a, e2}〉 we get △ ⊛ △ =
〈{e1, e2}, {e2, a}〉 /∈ λ(X) and hence △ ⊛ △ 6= △ ∗ △, which means that
λ(X) is not supercommutative.

It remains to consider the case when X =
⋃

α∈I Xα is a 0-bouquet of
subsemigroups Xα, α ∈ I, isomorphic to Ln for n > 2. If |I| = 1, then
X is isomorphic to Ln for some n > 2 and λ(X) is supercommutative
according to the “if”part.

If |I| = 2, then X = Xi ∨Xj for some non-trivial linear subsemilattices
Xi, Xj ⊂ X such that Xj ∗ Xj = Xi ∩ Xj = {min X}. If |Xi| = |Xj | =
2, then the semilattice X is isomorphic to the semilattice V3 and its
superextension λ(X) is supercommutative as proved in the “if” part. So,
we assume that |Xi| > 3 or |Xj | > 3. We loss no generality assuming
that |Xi| > 3. Then we can find idempotents e0 < e1 < e2 in Xi and
e3 ∈ Xj \ Xi such that e1e3 = e2e3 = e0 = min X. In this case for
the maximal linked system △ = 〈{e1, e2}, {e1, e3}, {e2, e3}〉 the product
△ ⊛ △ = 〈{e0, e1}, {e1, e2}〉 /∈ λ(X) and hence △ ⊛ △ 6= △ ∗ △, which
means that λ(X) is not supercommutative.

If |I| > 3, then the semigroup X contains a 4-element semilattice
V4 = {e0, e1, e2, e3} where eiej = e0 = min X for any distinct number
i, j ∈ {1, 2, 3}. In this we can consider the maximal linked system △ =
〈{e1, e2}, {e1, e3}, {e2, e3}〉 ∈ λ(V4) ⊂ λ(X) and observe that △ ⊛ △ =
〈{e0, e1}, {e0, e2}, {e0, e3}〉 /∈ λ(X). Consequently, △ ⊛ △ 6= △ ∗ △ and
the semigroup λ(X) is not supercommutative.

Theorems 10.1 and 10.2 imply:

Corollary 10.3. If a semigroup X has supercommutative superextension
λ(X), then

1) for each x ∈ X we get x4 ∈ {x2, x5};

2) the regular part R(X) = {x ∈ X : x ∈ xXx} of X is isomorphic to
C2, L1 ⊔ C2, V3 or Ln for some n ∈ N.
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