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Abstract. Let Xn = {1, 2, . . . , n}. On a partial transfor-
mation α : Dom α ⊆ Xn → Im α ⊆ Xn of Xn the following pa-
rameters are defined: the breadth or width of α is | Dom α |, the
collapse of α is c(α) =| ∪

t∈Imα
{tα−1 :| tα−1 |≥ 2} |, fix of α is

f(α) =| {x ∈ Xn : xα = x} |, the height of α is | Im α |, and the
right [left] waist of α is max(Im α) [min(Im α)]. The cardinalities
of some equivalences defined by equalities of these parameters on
Tn, the semigroup of full transformations of Xn, and Pn the semi-
group of partial transformations of Xn and some of their notable
subsemigroups that have been computed are gathered together and
the open problems highlighted.1 2

1. Introduction and preliminaries

Let Xn = {1, 2, . . . , n}. A (partial) transformation α : Dom α ⊆
Xn → Im α ⊆ Xn is said to be full or total if Dom α = Xn; otherwise
it is called strictly partial. The breadth or width of α is denoted and
defined by b(α) =| Dom α | and the height of α is denoted and defined
by h(α) =| Im α |, the right [left] waist of α is denoted and defined by

1The ideas for this work were formed during a one month stay at Wilfrid Laurier
University in the Summer of 2007.

2This paper is based on the talk I gave at the 5th NBSAN Meeting, University of
St Andrews, May 2010.

2010 MSC: 20M17, 20M20, 05A10, 05A15.
Key words and phrases: full transformation, partial transformation, breadth,

collapse, fix, height and right (left) waist of a transformation. Idempotents and nilpo-
tents.



A. Umar 111

w+(α) = max(Im α) [w−(α) = min(Im α)]. The collapse and fix of α are
denoted and defined by

c(α) =|
⋃

{tα−1 : t ∈ Im α and | tα−1 |≥ 2} |,

and
f(α) =| F (α) |=| {x ∈ Dom α : xα = x} |,

respectively. Of course, other parameters have been defined and many more
could still be defined but we shall restrict ourselves to only these, in this
paper. It is also well-known that a partial transformation ǫ is idempotent
(ǫ2 = ǫ) if and only if Im ǫ = F (ǫ), and a partial transformation is nilpotent
if αk = Ø (the empty or zero map) for some positive integer k. It is worth
noting that to define the left (right) waist of a transformation the base
set Xn must be totally ordered. The main objects of study in this paper
are Tn, the semigroup of full transformations of Xn (also known as the
symmetric semigroup); Pn, the semigroup of partial transformations of Xn

(also known as the partial symmetric semigroup) and some of their notable
subsemigroups. The semigroup, In of partial one-to-one transformations
of Xn (more commonly known as the symmetric inverse semigroup) and
some of its notable subsemigroups have been discussed in [55] because
there may well be readers who would be interested in these semigroups,
but not the more general transformation semigroups considered in this
paper. Enumerative problems of an essentially combinatorial nature arise
naturally in the study of semigroups of transformations. Broadly speaking,
two types of combinatorial problems have been investigated in connection
with transformation semigroups: length/depth of products of idempotents,
nilpotents or elements from minimal generating sets [12–16,19,21–25,27,
29, 31,45, 46, 53] and, enumerating the size of various equivalence classes.
It is the latter that is the focus of this article. Many numbers and triangle
of numbers regarded as combinatorial gems like the the Fibonacci number
[21], Stirling numbers [21, 24, 52], the factorial [52], binomial numbers
[13,21], Catalan numbers [10,18], Eulerian numbers [35], Schröder numbers
[37], Narayana numbers [35], Lah numbers [32, 34], etc., have all featured
in these enumeration problems. These enumeration problems lead to many
numbers in Sloane’s encyclopaedia of integer sequences [47] but there are
also others that are not yet or have just been recorded in [47]. This paper
has three main objectives: first, to give a unified account and approach to
the various scattered results; second, to standardize the different notations
currently in use; and third, to highlight enumeration methods (used to
obtain some of the results) and open problems.
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Prior to Higgin’s inspirational paper [18], combinatorial results for
various classes of transformation semigroups were scattered and sporadic,
largely because those papers were not exclusively or mainly devoted to
combinatorial questions, Borwein, et. al [2] and Howie [28], are the only
exceptions. Motivated by Higgins [18], Laradji and Umar wrote a series
of papers [34–40], all except one dealing exclusively with combinatorial
questions.

Let S be a set of partial transformations on Xn. Next, let

F (n; r, q, p, m, k)

=| {α ∈ S : ∧(b(α) = r, c(α) = q, h(α) = p, f(α) = m, w+(α) = k)} |

and, let P = {r, q, p, m, k} be the set of counters for the breadth, collapse,
height, fix and right waist of a transformation. Then any 5-parameter
combinatorial function can be expressed as F (n; a1, a2, a3, a4), where
{a1, a2, a3, a4} ⊂ P . For example,

F (n; r, q, p, k) =| {α ∈ S : ∧(b(α) = r, c(α) = q, h(α) = p, w+(α) = k)} | .

Similarly, any 4-parameter, 3-parameter and 2-parameter combinatorial
function can be expressed as F (n; a1, a2, a3), F (n; a1, a2) and F (n; a1),
respectively. It is not difficult to see that

|S| =
∑

a1

F (n; a1), F (n; a1) =
∑

a2

F (n; a1, a2),

and any 3-parameter function can be expressed as a sum of appropri-
ate 4-parameter functions and so on. Ideally, we would like to compute
F (n; r, q, p, m, k) for any finite semigroup of partial transformations but
at the moment this seems to be a difficult proposition and so we have
to start from the smaller-variable functions to higher-variable functions.
It appears that many important integer sequences can be realized as
sequences counting these functions in various partial transformation semi-
groups - akin to Cameron’s remark about oligomorphic permutation
groups [3]. In the three fundamental semigroups: Tn, In and Pn, and
their subsemigroups of order-preserving/order-reversing, order-decreasing
and orientation-preserving/orientation-reversing transformations we have
expressions for |S| and most of the two-variable functions and only a
few three-variable functions. We note also that certain special cases of
these combinatorial functions, when two or more parameters are equal or
when these parameters take extreme values are worth pointing out, see
for example, [36,37]. In Table 1.1 we list all the semigroups considered in
this article.



A. Umar 113

Types of transformations Full Partial

Partial transformations Tn Pn

Order-preserving On POn

Order-preserving or order-reversing ODn PODn

Order-decreasing Dn PDn

Order-preserving and order-decreasing Cn PCn

Orientation-preserving OPn POPn

Orientation-preserving or orientation-reversing ORn PORn

Table 1.1.

We shall present the known results by means of tables and exhibit/
explain some of the techniques that have been used to obtain these
results, as well as explore some of the open problems. In the next sec-
tion, (Section 2) we consider two of the three fundamental semigroups
of transformations Tn, and Pn. In Section 3 we consider their order-
preserving/order-reversing subsemigroups and in Section 4, we consider
their order-decreasing versions, while in Section 5 we consider their order-
preserving and order-decreasing versions. In Section 6 we consider their
orientation-preserving/ orientation-reversing subsemigroups. Concluding
remarks form the contents of Section 7. However, we conclude this section
with a remark about the On-line Encyclopedia of Integer Sequences [47]
and a list of results that have been used (some repeatedly) in the proofs
of many of the cited results in this survey article.

Remark 1.1. The On-Line Encyclopedia of Integer Sequences (OEIS)
[47] is a freely available on-line database of integer sequences, created
and maintained by N. J. A. Sloane (and a host of volunteers) and hosted
on a dedicated website. OEIS records information on integer sequences
of interest to both the professional mathematicians and amateurs alike,
and is widely cited. As of mid-August 2010 it contains just over 180,000
sequences making it the largest database of its kind. Each entry contains
the leading terms of the sequence, keywords, mathematical interpretations,
and more. Each sequence is given a unique identification number called the
A-number, for example A000027 is for the sequence of positive integers.

Lemma 1.2 (Vandemonde’s Convolution Identity, [44, (3a), p.8]). For
all natural numbers m, n and p we have

n
∑

k=0

(

n

m − k

)(

p

k

)

=

(

n + p

m

)

.
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Lemma 1.3 (Laradji’s Lemma, [35, Lemma 3.3]). For any real number
a and all natural numbers b and c we have

c
∑

j=0

(a − j)

(

b + j

j

)

= (a − c − 1)

(

b + c + 1

c

)

+

(

b + c + 2

c

)

.

Lemma 1.4 ([36, Lemma 1.3]). For all natural numbers j and n we have

n
∑

i=0

(

j + i

i

)

=

(

n + j

j + 1

)

=

(

n + j

n − 1

)

.

Lemma 1.5 ([44, (3b), p.8]). For all natural numbers n, a and b we have

n
∑

i=b

(

i

b

)(

n + a − i

a

)

=

(

n + a + 1

a + b + 1

)

.

The Stirling numbers of the second kind triangle is denoted by S(n, r)
and defined by:
S(n, r) = S(n − 1, r − 1) + rS(n − 1, r), S(n, 1) = 1 = S(n, n) (A008277).

Lemma 1.6 ([6, Problem 21, p.90]). For all natural numbers n and a
we have

a
∑

i=0

(

n

i

)

S(a, i)i! = na.

Lemma 1.7 ([6, Theorem B, p.209]). For all natural numbers n and a
we have

n
∑

i=a

(

n

i

)

S(i, a) = S(n + 1, a + 1).

2. Partial transformations

For more detailed studies of the semigroups Tn and Pn we refer the
reader to the books [5,11,17,24,33] and the papers [12,13,20,23,24,26–29,
31,40,46,50]. First, note that k = w+(α) is undefined when p = 0. Due to
the presence of the empty map, it seems reasonable to define k = 0 if p = 0
or r = 0; and F (n; r) = F (n; p) = F (n; k) = F (n; r, k) = F (n; r, p) =
F (n; p, k) = 1 if any of r, p or k is 0. This, and other observations we
record in the following lemma, which will be used implicitly whenever
needed.

Lemma 2.1. Let Xn = {1, 2, . . . , n} and P = {r, q, p, m, k}, where for
a given α ∈ Pn, we set r = b(α), q = c(α), p = h(α), m = f(α) and
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k = w+(α). We also define F (n; r) = F (n; p) = F (n; k) = F (n; r, k) =
F (n; r, p) = F (n; p, k) = 1 if any of r, p or k is 0. Then we have the
following:

1) n ≥ r ≥ p ≥ m ≥ 0;

2) n ≥ k ≥ p ≥ m ≥ 0;

3) n ≥ r ≥ q ≥ r − p ≥ 0;

4) r = 1 =⇒ p = 1;

5) k = 1 =⇒ p = 1;

6) r = 0 ⇔ p = 0 ⇔ k = 0.

Before summarizing the known results let us state some results which
do not seem to have appeared in the literature but are easy to prove by
direct combinatorial arguments.

Proposition 2.2. Let S = Pn. Then

F (n; r, p) =

(

n

r

)(

n

p

)

S(r, p)p!, (n ≥ r ≥ p ≥ 0).

To get F (n; r) and F (n; p) from Proposition 2.2, some of the results listed
in the previous section will be needed. We urge the reader to provide the
proofs.

Corollary 2.3. Let S = Pn. Then

F (n; r) =

(

n

r

)

nr, (n ≥ r ≥ 0).

Corollary 2.4 ([12, Corollary 2]). Let S = Pn. Then

F (n; p) =

(

n

p

)

S(n + 1, p + 1), (n ≥ p ≥ 0).

Proposition 2.5. Let S = Pn. Then

F (n; r, m) =

(

n

m

)(

n − m

r − m

)

(n − 1)r−m, (n ≥ r ≥ m ≥ 0).

From the above proposition we can deduce the next two corollaries which
we also state without proofs.
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Corollary 2.6. Let S = Pn. Then

F (n; m) =

(

n

m

)

nn−m, (n ≥ r ≥ m ≥ 0).

Corollary 2.7. Let S = Tn. Then

F (n; m) =

(

n

m

)

(n − 1)n−m, (n ≥ m ≥ 0).

Some further results are given below

Proposition 2.8. Let S = Pn. Then

F (n; r, k) =

(

n

r

)

[kr − (k − 1)r], (n ≥ r, k ≥ 0).

Proof. First, note that we can choose the r elements of Dom α from Xn in
(n

r

)

ways. Next, suppose there are j (1 ≤ j ≤ r) images. These images can

be chosen from {1, 2, . . . , k} in
(k−1

j−1

)

, since k as the maximum element
in Im α must be amongst them. Now Dom α can be partitioned into j
nonempty subsets in S(r, j) ways, and since these j nonempty subsets
can be tied to the j images (in a one-to-one fashion) in j! ways; it follows
that

F (n; r, k) =

(

n

r

)

r
∑

j=1

(

k − 1

j − 1

)

S(r, j)j!

=

(

n

r

)

r
∑

j=1

[

(

k

j

)

−

(

k − 1

j

)

]S(r, j)j!

=

(

n

r

)

[kr − (k − 1)r], (by Lemma1.6)

as required.

Corollary 2.9. Let S = Pn. Then F (n; k) = (k + 1)n − kn, (n ≥ k ≥ 1).

Proposition 2.10. Let S = Pn. Then

F (n; p, k) =

(

k − 1

p − 1

)

S(n + 1, p + 1)p!, (n ≥ p ≥ k ≥ 0).
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Proof. First, note that we can choose the p images from {1, 2, . . . , k}

in
(k−1

j−1

)

. Next, suppose there are j (p ≤ j ≤ r) preimages, which can

be chosen in
(n

j

)

ways and then partitioned into p nonempty subsets in

S(j, p) ways. Finally, since these p nonempty subsets can be tied to the p
images (in a one-to-one fashion) in p! ways; it follows that

F (n; p, k) =

(

k − 1

p − 1

)

p!
n
∑

j=p

(

n

j

)

S(j, p)

=

(

k − 1

p − 1

)

S(n + 1, p + 1)p!, (by Lemma1.7)

as required.
By a direct combinatorial argument as in the above we can prove the
next proposition.

Proposition 2.11. Let S = Tn. Then

F (n; p, k) =

(

k − 1

p − 1

)

S(n, p)p!, (n ≥ k ≥ p ≥ 1).

Corollary 2.12. Let S = Tn. Then F (n; k) = kn − (k − 1)n, (n ≥ k ≥ 1).

Corollary 2.13 ([27]). Let S = Tn. Then F (n; p) =
(n

p

)

S(n, p)p!, (n ≥

p ≥ 1).

Theorem 2.14 ([40, Proposition 2.6]). Let S = Tn. Then for n ≥ p ≥
m ≥ 0, we have

F (n; p, m) =

(

n

p

)(

p

m

)

p
∑

j=m

(−1)p+j

(

p − m

p − j

)

jn−j(j − 1)j−m.

S |S| |E(S)| |N(S)|
Tn nn

∑n
r=1

(n
r

)

rn−r 0
[5, 50]

Pn (n + 1)n
∑n

r=0

(n
r

)

(r + 1)n−r
∑n

r=0

(n
r

)

S(n, r + 1)r!
[12] [12] = (n + 1)n−1

[34]

Table 2.1.
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The main results proved above are by direct combinatorial arguments;
however, this approach does not always work. Finding recurrences and
guessing a closed formula which can then be proved by induction is
another approach effectively used in [35–39]. We (in [40,41]) are currently
using generating functions to investigate some of the unknown cases and
it looks very promising.

Tn Pn

F (n; r) nn (if r = n) and
(n

r

)

nr

0 (if r 6= n) (Corollary 2.3)
F (n; q) ? ?
F (n; p)

(n
p

)

S(n, p)p!
(n

p

)

S(n + 1, p + 1)p!

[27] [12]
F (n; m)

(n
m

)

(n − 1)n−m
(n

m

)

nn−m

(Corollary 2.7) (Corollary 2.6)
F (n; k) kn − (k − 1)n (k + 1)n − kn

(Corollary 2.12) (Corollary 2.9)

Table 2.2.

Tn Pn

F (n; r, q) F (n; q) (if r = n) and ?
0 (if r 6= n)

F (n; r, p) F (n; p) (if r = n) and
(n

r

)(n
p

)

S(r, p)p!

0 if r 6= n (Proposition 2.2)

F (n; r, m) F (n; m) (if r = n) and
(n

m

)(n−m
r−m

)

(n − 1)r−m

0 if r 6= n (Proposition 2.5)
F (n; r, k) F (n; k) (if r = n) and

(n
r

)

[kr − (k − 1)r]
0 if r 6= n (Proposition 2.8)

F (n; q, p) ? ?
F (n; q, m) ? ?
F (n; q, k) ? ?

F (n; p, m) (Theorem 2.14) ?

F (n; p, k)
(k−1

p−1

)

S(n, p)p!
(k−1

p−1

)

S(n + 1, p + 1)p!

(Proposition 2.11) (Proposition 2.10)
F (n; m, k) ? ?

Table 2.3.
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3. Order-preserving or order-reversing partial
transformations

A transformation α ∈ Pn is said to be order-preserving if (∀x, y ∈
Dom α) x ≤ y =⇒ xα ≤ yα. The semigroups of order-preserving
full and partial transformations of Xn will be denoted by On and POn,
respectively. The semigroup On was first studied by Aizenstat [1], and
independently by Howie [21] while the semigroup POn first appeared
in [16].

As in [55] we announce some new results of the author (and his
coauthor), whose detailed proofs will be given in [41].

Proposition 3.1. Let S = POn. Then F (n; r, p, k) =
(n

r

)(k−1

p−1

)(r−1

p−1

)

,

n ≥ r, k ≥ p ≥ 1).

Corollary 3.2. Let S = POn. Then F (n; r, p) =
(n

p

)(n
r

)(r−1

p−1

)

, r ≥ p ≥ 1.

Corollary 3.3. Let S = POn. Then F (n; r, k) =
(n

r

)(k+r−2

r−1

)

, r, k ≥ 1.

Corollary 3.4. Let S = POn. Then F (n; p, k) =
(k−1

p−1

)

e(n, p), k ≥ p ≥ 1.

Corollary 3.5. Let S = POn. Then F (n; r) =
(n

r

)(n+r−1

r

)

, r ≥ 0.

Corollary 3.6. Let S = POn. Then F (n; p) =
(n

p

)

e(n, p), p ≥ 0.

Corollary 3.7. Let S = POn. Then

F (n; k) =
k
∑

p=1

(

k − 1

p − 1

)

e(n, p) =
n
∑

r=0

(

n

r

)(

r + k − 2

k − 1

)

, n ≥ k ≥ 1.

Corollary 3.8. Let S = On. Then F (n; p, k) =
(n−1

p−1

)(k−1

p−1

)

, n ≥ k ≥ p ≥ 1.

Corollary 3.9. Let S = On. Then F (n; p) =
(n−1

p−1

)(n
p

)

, for n ≥ p ≥ 1.

Corollary 3.10. Let S = On. Then F (n; k) =
(n+k−2

k−1

)

, for n ≥ k ≥ 1.

S On POn

| S |
(

2n−1

n−1

)
∑n

r=0

(n
r

)(n+r−1

r

)

= cn

[21] [16, 36]
| E(S) | F2n en

[21] [36]
| N(S) | 0 ?

Table 3.1.
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(2n − 1)(n + 1)cn+1 = 4(3n2 − 1)cn − (2n + 1)(n − 1)cn−1,
c0 = 1, c1 = 2: 1, 2, 8, 38, 192, 1002, 5336, 28814, . . . (A123164);

en+1 = 5(en−en−1)+1, e0 = 1, e1 = 2 : 1, 2, 6, 21, 76, 276, 1001, . . . (A112091).

S On POn

F (n; r) | On | or 0
(n

r

)(n+r−1

n−1

)

[36]
F (n; q) ? ?

F (n; p)
(n−1

p−1

)(n
p

) (n
p

)

e(n, p)∗

[38] [36]

F (n; m) m
n

(

2n
n+m

)

?
[18]

F (n; k)
(n+k−2

k−1

)
∑n

r=1

(n
r

)(k+r−2

r−1

)

∗
[36] [36]

Table 3.2.

∗e(n, p) = e(n − 1, p − 1) + 2e(n − 1, p), e(n, 0) = 1 = e(n, n) (A112857);

∗F (n; k) = 2F (n − 1; k) − F (n − 1; k − 1) + F (n; k − 1), F (n; k1) =
2n − 1 (A111516).

A transformation α in Pn for which (for all x, y ∈ Dom α) x ≤ y ⇒
xα ≥ yα is said to be order-reversing. The semigroups of order-preserving
and order-preserving or order-reversing full and partial transformations of
Xn will be denoted by ODn and PODn, respectively. These semigroups
were first studied by Fernandes [7].

Remark 3.11. Every idempotent is necessarily order-preserving. Thus,
there are no additional idempotents from reversing the order.

Remark 3.12. For p = 0, 1 the concepts of order-preserving and order-
reversing coincide but distinct otherwise. However, there is a bijection
between the two sets for p ≥ 2.

Similarly, the detailed proofs of the following propositions and corol-
laries will be given in [41].

Proposition 3.13. Let S = PODn. Then

F (n; r, p, k) =

{

2
(n

r

)(k−1

p−1

)(r
p

)

, n ≥ r, k ≥ p > 1;
(n

r

)

, r = 1 or k = 1 or p = 1.
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S On POn

F (n; r, q) F (n; q) or 0 ?

F (n; r, p) F (n; p) or 0
(n

p

)(n
r

)(r−1

p−1

)

[41]

F (n; r, m) F (n; m) or 0 ?

F (n; r, k) F (n; k) or 0
(n

r

)(k+r−2

r−1

)

[36]

F (n; q, p) ? ?

F (n; q, m) ? ?

F (n; q, k) ? ?

F (n; p, m) ? ?

F (n; p, k)
(n−1

p−1

)(k−1

p−1

) (k−1

p−1

)

e(n, p)

[38] [41]

F (n; m, k)
(n+k−2

k−m

)

−
(n+k−2

k−m−1

)

?

[38]

F (n; r, p, k) F (n; p, k) (if r = n) and
(k−1

p−1

)(n
r

)(r−1

p−1

)

0 (if r 6= n) [41]

Table 3.3.

Corollary 3.14. Let S = PODn. Then

F (n; r, p) =

{

2
(n

r

)(r−1

p−1

)(n
p

)

, r ≥ p > 1;
(n

r

)

, r = 1 or p = 1.

Corollary 3.15. Let S = PODn. Then F (n; r, k) = 2
(n

r

)(r+k−2

k−1

)

−
(n

r

)

,
for r, k ≥ 1.

Corollary 3.16. Let S = PODn. Then

F (n; p, k) =

{

2
(k−1

p−1

)

e(n, p), k ≥ p > 1;

2n − 1, k = 1 or p = 1.

Corollary 3.17. Let S = PODn. Then F (n; r) = 2
(n

r

)(n+r−1

r

)

− n
(n

r

)

,
for n ≥ r ≥ 1.

Corollary 3.18. Let S = PODn. Then F (n; p) =

{

2
(n

p

)

e(n, p), p > 1;

n(2n − 1), p = 1.
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Corollary 3.19. Let S = PODn. Then

F (n; k) = 2
k
∑

p=1

(

k − 1

p − 1

)

e(n, p)−(2n−1) = 2
n
∑

r=1

(

n

r

)(

r + k − 2

k − 1

)

−(2n−1),

for n ≥ k ≥ 1.

Corollary 3.20. Let S = ODn. Then

F (n; p, k) =

{

2
(k−1

p−1

)(n−1

p−1

)

, k ≥ p > 1;

1, k = 1 or p = 1.

Corollary 3.21. Let S = ODn. Then F (n; p) =

{

2
(n−1

p−1

)(n
p

)

, p > 1;

n, p = 1.

Corollary 3.22. Let S = ODn. Then F (n; k) = 2
(n+k−2

k−1

)

−1, n ≥ k ≥ 1.

S ODn PODn

| S | 2
(

2n−1

n−1

)

− n
∑n

i=1

(n
i

)

(2
(n+i−1

i

)

− n) + 1
[7] [7]

| E(S) | | E(On) | | E(POn) |
| N(S) | 0 ?

Table 3.4.

S ODn PODn

F (n; r) | ODn | or 0 2
(n

r

)(n+r−1

r

)

(Corollary 3.5)
F (n; q) ? ?

F (n; p) 2
(n−1

p−1

)(n
p

)

(n ≥ p ≥ 2) 2
(n

p

)

e(n, p)

(Corollary 3.9) (Corollary 3.6)
F (n; m) ? ?

F (n; k) 2
(n+k−2

k−1

)

2
∑k

p=1

(k−1

p−1

)

e(n, p)

(Corollary 3.10) (Corollary 3.7)

Table 3.5.

Bn+1 =
∑n

k=0

(n
k

)

Bk : 1, 2, 5, 15, 52, 203, 877, 4140, . . . (A000110).
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S ODn PODn

F (n; r, q) F (n; q) or 0 ?

F (n; r, p) F (n; p) or 0 2
(n

p

)(n
r

)(r−1

p−1

)

(Corollary 3.2)
F (n; r, m) F (n; m) or 0 ?

F (n; r, k) F (n; k) or 0 2
(n

r

)(k+r−2

r−1

)

(Corollary 3.3)
F (n; q, p) ? ?

F (n; q, m) ? ?
F (n; q, k) ? ?

F (n; p, m) ? ?

F (n; p, k) 2
(n−1

p−1

)(k−1

p−1

)

2
(k−1

p−1

)

e(n, p)

(Corollary 3.8) (Corollary 3.4)
F (n; m, k) ? ?

Table 3.6.

4. Order-decreasing transformations

A transformation α in Pn for which xα ≤ x (for all x ∈ Dom α) is
said to be order-decreasing. Order-increasing is defined analogously. The
semigroups of order-decreasing full and partial transformations of Xn

will be denoted by Dn and PDn, respectively. A general study of these
semigroups was initiated by Umar [51] and they arise in language theory
[18]. From [53, Theorem 4.2 & Corollary 4.3] we deduce the following
result.

Theorem 4.1. Let Dn and PDn be the semigroups of order-decreasing
full and partial transformations of Xn, repectively. For each α ∈ PDn,
define α∗ by

xα∗ =

{

xα if xα is defined,
0 otherwise.

Then α∗ ∈ Dn+1 (on X0
n = {0, 1, 2, . . . , n}) and α −→ α∗ is an isomor-

phism between PDn and Dn+1.

Lemma 4.2. Let α −→ α∗ be the isomorphism defined in Theorem 4.1.
Then for 0 ≤ m ≤ p ≤ k ≤ n, we have

1) | {α ∈ PDn : h(α) = p} |=| {α∗ ∈ Dn+1 : h(α∗) = p + 1} |;
2) | {α ∈ PDn : f(α) = m} |=| {α∗ ∈ Dn+1 : f(α∗) = m + 1} |;
3) | {α ∈ PDn : w+(α) = k} |=| {α∗ ∈ Dn+1 : w+(α∗) = k + 1} | .
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In other words, the isomorphism α −→ α∗ is height-, fix- and right waist-
preserving.

The Eulerian numbers triangle is denoted by A(n, p) and defined by

A(n, p) = pA(n−1, p)+(n−p+1)A(n−1, p−1), A(n, 1) = 1 = A(n, n).

From Theorem 4.1 and Lemma 4.2 we deduce the following corollaries.

Corollary 4.3. Let S = PDn. Then F (n; p) is the triangle of Eulerian
numbers A(n + 1, p + 1), where(n ≥ p ≥ 0).

The signless or absolute Stirling numbers of the first kind triangle is
denoted by | s(n, r) | and defined by:
| s(n, r) |= n | s(n − 1, r − 1) | + | s(n − 1, r) |), | s(n, r) |= 1 (A130534).

Corollary 4.4. Let S = PDn. Then F (n; m) =| s(n, n − m + 1) | is the
triangle of transpose or reverse signless or absolute Stirling numbers of
the first kind for (n ≥ m ≥ 0) (A094638).

Corollary 4.5. Let S = PDn. Then

1) | S |= (n + 1)!
2) | E(S) |= Bn+1

3) | N(S) |= n!.

S Dn PDn

| S | n! (n + 1)!
[52] (Corollary 4.5)

| E(S) | Bn Bn+1

[52] (Corollary 4.5)
| N(S) | (n − 1)! n!

[52] (Corollary 4.5)

Table 4.1.

S Dn PDn

F (n; r) | Dn | or 0 ?
F (n; q) ? ?
F (n; p) A(n, p) A(n + 1, p + 1)

[52] (Corollary 4.3)
F (n; m) | s(n, n − m + 1) | | s(n + 1, n − m) |

[52] (Corollary 4.4)
F (n; k) ? ?

Table 4.2.
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S Dn PDn

F (n; r, q) F (n; q) or 0 ?
F (n; r, p) F (n; p) or 0 ?

F (n; r, m) F (n; m) or 0 ?
F (n; r, k) F (n; k) or 0 ?

F (n; q, m) ? ?
F (n; q, p) ? ?
F (n; q, k) ? ?

F (n; p, m) ? ?
F (n; p, k) ? ?

F (n; m, k) ? ?

Table 4.3.

5. Order-preserving and order-decreasing partial transfor-
mations

We define Cn = On ∩ Dn and PCn = POn ∩ PDn as the semigroups
of order-preserving and order-decreasing full and partial transformations
of Xn, respectively. The monoid Cn is also known as the Catalan monoid
because | Cn | is the n-th Catalan number [18]. In the same fashion we
shall call PCn the “Schröder monoid" (this seems more apposite than
“partial Catalan monoid" used in [48]). The former semigroup was first
studied by Higgins [18] while the latter semigroup first appeared in [48]).
Both semigroups also arise in language theory [18]

Proposition 5.1. Let N(S) be the set of nilpotents in S. Then

1) | N(Cn) |= 1

n−1

(

2n−3

n−2

)

= Cn−1;

2) | N(PCn) |= 1

n−1

∑n
r=0

(n−1

r

)(n+r−1

r−1

)

= rn−1;

Proof. (1) This is [38, Proposition 2.3].
(2) The proof of (1) above can be carefully adapted to yield this result.

Conjecture 5.2. Let S = PCn. Then F (n; r, m) = 1

n+r−m

(n+r−m
n

)

[
( n

r+1

)

+

m
(n+1

r+1

)

].

Conjecture 5.3. Let S = PCn. Then F (n; p0) = 1 = F (n; np) and

(

n − 1

p − 1

)

F (n; p) = 2

(

n

p − 1

)

F (n − 1; p) +

(

n

p

)

F (n − 1; p − 1).

Conjecture 5.4. Let S = Cn. Then F (n; m, k) = n+m−k−1

n−1

(n+k−m−2

n−2

)

.
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S Cn PCn

| S | 1

n

(

2n
n−1

)

= Cn
1

n

∑n
r=0

(n
r

)(n+r
r−1

)

= rn

[18] [37]

| E(S) | 2n−1 3n+1

2

[18] [37]
| N(S) | Cn−1 rn−1

[35] (Proposition 5.1)

Table 5.1.

S Cn PCn

F (n; r) | Cn | or 0 1

n

(n
r

)(n+r
r−1

)

[37]
F (n; q) ? ?

F (n; p) 1

n−p+1

(n−1

p−1

)(n
p

)

(Conjecture 5.3)

[35]

F (n; m) m
2n−m

(

2n−m
n

)

?
[18]

F (n; k) n−k+1

n

(n+k−2

k−1

)

n−k+1

n

∑n
r=1

(n
r

)(k+r−2

r−1

)

[35] [37]

Table 5.2.

S Cn PCn

F (n; r, q) F (n; q) or 0 ?
F (n; r, p) F (n; p) or 0 ?

F (n; r, m) F (n; m) or 0 (Conjecture 5.2)

F (n; r, k) F (n; k) or 0 n−k+1

n

(n
r

)(k+r−2

r−1

)

[37]
F (n; q, p) ? ?

F (n; q, m) ? ?
F (n; q, k) ? ?

F (n; p, m) ? ?

F (n; p, k) n−k+1

n−p+1

(n−1

p−1

)(k−2

p−2

)

?

[35]
F (n; m, k) (Conjecture 5.4) ?

Table 5.3.
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6. Orientation-preserving/ orientation-reversing
partial transformations

Let a = (a1, a2, . . . , at) be a sequence of t (t > 0) elements from the
chain Xn. We say that a is cyclic (anti-cyclic) if there exists no more
than one index i ∈ {1, 2, . . . , t} such that ai > ai+1 (ai < ai+1), where
at+1 denotes a1. For α ∈ Pn, suppose that Dom α = {a1, a2, . . . , at}, with
t ≥ 0 and a1 < a2 < . . . < at. We say that α is orientation-preserving
(orientation-reversing) if (a1α, a2α, . . . , atα) is cyclic (anti-cyclic). The
semigroups of orientation-preserving full and partial transformations of Xn

will be denoted by OPn and POPn, respectively while the semigroups of
orientation-preserving or reversing full and partial transformations of Xn

will be denoted by ORn and PORn, respectively. The semigroups OPn

and ORn were first studied by Catarino and Higgins [4], and independently
by McAlister [43] while the semigroups POPn and PORn first appeared
in [7].

The proofs of the following proposition and corollaries are given [56].

Proposition 6.1. Let S = POPn. Then

F (n; r, p, k) =

{

(n
r

)(k−1

p−1

)(r
p

)

p, n ≥ r, k ≥ p > 1;
(n

r

)

, r = 1 or k = 1 or p = 1.

Corollary 6.2. Let S = POPn. Then

F (n; r, p) =

{

(n
r

)(n
p

)(r
p

)

p, n ≥ r ≥ p > 1;

n
(n

r

)

, r = 1 or p = 1.

Corollary 6.3. Let S = POPn. Then

F (n; r, k) = r

(

n

r

)(

r + k − 2

r − 1

)

− (r − 1)

(

n

r

)

,

for r ≥ k ≥ 1.

Corollary 6.4. Let S = POPn. Then

F (n; p, k) =

{

p2n−p
(n

p

)(k−1

p−1

)

, n ≥ k ≥ p > 1;

2n − 1, k = 1 or p = 1.

Corollary 6.5. Let S = POPn. Then

F (n; r) =

{

r
(n

r

)(n+r−1

n−1

)

− n(r − 1)
(n

r

)

, n ≥ r ≥ 1;
1, r = 0.
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Corollary 6.6. Let S = POPn. Then

F (n; p) =











p2n−p
(n

p

)2
, n ≥ p > 1;

n(2n − 1), p = 1;
1, p = 0.

Corollary 6.7. Let S = POPn. Then

F (n; k) =

{

n
∑n

r=1

(n−1

r−1

)(r+k−2

r−1

)

− (n − 2)2n−1 − 1, n ≥ k ≥ 1;
1, k = 0.

Corollary 6.8. Let S = OPn. Then

F (n; p, k) =

{

(k−1

p−1

)(n
p

)

p, n ≥ k ≥ p > 1;

1, k = 1 or p = 1.

Corollary 6.9 ([4, p. 198]). Let S = OPn. Then

F (n; p) =

{

p
(n

p

)2
, n ≥ p > 1;

n, p = 1.

Corollary 6.10. Let S = OPn. Then

F (n; k) =

{

n
(n+k−2

k−1

)

− (n − 1), n ≥ k > 1;
1, k = 1.

S OPn POPn

| S | n
(

2n−1

n−1

)

− n(n − 1) [4, 43] 1 + (2n − 1)n +
∑n

j=2 j
(n

j

)2
2n−j [8]

| E(S) | L2n − (n2 − n + 2) [4] 1 +
∑n

j=1[
(n

j

)

L2j − (j2 − j + 2)] [9]

| N(S) | 0 ?

Table 6.1.

S OPn POPn

F (n; r) | OPn | or 0 (Corollary 6.5)
F (n; q) ? ?

F (n; p)
(n

p

)2
p [4] (Corollary 6.6)

F (n; m) ? ?
F (n; k) (Corollary 6.10) (Corollary 6.7)

Table 6.2.
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S OPn POPn

F (n; r, q) F (n; q) or 0 ?
F (n; r, p) F (n; p) or 0 (Corollary 6.2)

F (n; r, m) F (n; m) or 0 ?
F (n; r, k) F (n; k) or 0 (Corollary 6.3)
F (n; q, p) ? ?

F (n; q, m) ? ?
F (n; q, k) ? ?

F (n; p, m) ? ?
F (n; p, k) (Corollary 6.8) (Corollary 6.4)

F (n; m, k) ? ?
F (n; r, p, k) F (n; p, k) or 0 (Proposition 6.1)

Table 6.3.

Remark 6.11. Every idempotent is necessarily orientation-preserving.
Thus, there are no additional idempotents from reversing the orientation.

Remark 6.12. For p = 0, 1, 2 the concepts of orientation-preserving and
orientation-reversing coincide but distinct otherwise. However, there is a
bijection between the two sets for p > 2.

Similarly, the proofs of the following proposition and corollaries are
given in [56].

Proposition 6.13. Let S = PORn. Then

F (n; r, p, k) =











2
(n

r

)(k−1

p−1

)(r
p

)

p, n ≥ r, k ≥ p > 2;

2(k − 1)
(n

r

)(r
2

)

, n ≥ r, k ≥ p = 2;
(n

r

)

, r = 1 or k = 1 or p = 1.

Corollary 6.14. Let S = PORn. Then

F (n; r, p) =











2
(n

r

)(n
p

)(r
p

)

p, r ≥ p > 2;

2
(n

r

)(r
2

)(n
2

)

, n ≥ r ≥ p = 2;
n
(n

r

)

, r = 1 or p = 1.

Corollary 6.15. Let S = PORn. Then

F (n; r, k) =



















(n
r

)

[2r
(r+k−2

k−1

)

− (2r − 1) − 2(k − 1)
(r

2

)

], r, k > 2;
(2k − 1)

(n
2

)

, k ≥ r = 2;
(n

r

)

+ 2
(n

r

)(r
2

)

, r ≥ k = 2;
(n

r

)

, r = 1 or k = 1.
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Corollary 6.16. Let S = PORn. Then

F (n; p, k) =



















p2n−p+1
(k−1

p−1

)(n
p

)

p, k ≥ p > 2;

2n−1
(n

2

)

+ 2n − 1, k = 2;
(k − 1)2n−1

(n
2

)

, p = 2;
2n − 1, k = 1 or p = 1.

Corollary 6.17. Let S = PORn. Then

F (n; r) = 2r

(

n

r

)(

n + r − 1

n − 1

)

− n(2r − 1)

(

n

r

)

− 2

(

n

r

)(

r

2

)(

n

2

)

, r ≥ 1.

Corollary 6.18. Let S = PORn. Then

F (n; p) =











p2n−p+1
(n

p

)2
, p > 2;

2n−1
(n

2

)2
, p = 2;

n(2n − 1), p = 1.

Corollary 6.19. Let S = PORn. Then

F (n; k) = 2n
n
∑

r=1

(

n − 1

r − 1

)(

r + k − 2

r − 1

)

−(n−1)2n −1−(k−1)2n−1

(

n

2

)

= 2n
k
∑

p=1

(

k − 1

p − 1

)(

n − 1

p − 1

)

2n−p−(n−1)2n−1−(k−1)2n−1

(

n

2

)

, k ≥ 1.

Corollary 6.20. Let S = ORn. Then

F (n; p, k) =











2
(k−1

p−1

)(n
p

)

p, k ≥ p > 2;
(k−1

p−1

)(n
p

)

p, k ≥ p = 2;

1, k = 1 or p = 1.

Corollary 6.21. Let S = ORn. Then

F (n; p) =











2p
(n

p

)2
, p > 2;

2
(n

2

)2
, p = 2;

n, p = 1.

Corollary 6.22. Let S = ORn. Then

F (n; k) = 2n

(

n + k − 2

k − 1

)

− 2(k − 1)

(

n

2

)

− 2n + 1, k ≥ 1.
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S ORn PORn

| S | n + n
(

2n
n

)

1 + (2n − 1)n + 2
(n

2

)2
2n−2

−n2(n2 − 2n + 5)/2 [4, 43] +
∑n

j=3 2j
(n

j

)2
2n−j [7]

| E(S) | [4] | E(OPn) | | E(POPn) | [9]
| N(S) | 0 ?

Table 6.4.

S ORn PORn

F (n; r) | ORn | or 0 (Corollary 6.17)
F (n; q) ? ?
F (n; p) (Corollary 6.21) (Corollary 6.18)

F (n; m) ? ?
F (n; k) (Corollary 6.22) (Corollary 6.19)

Table 6.5.

S ORn PORn

F (n; r, q) F (n; q) or 0 ?
F (n; r, p) F (n; p) or 0 (Corollary 6.14)

F (n; r, m) F (n; m) or 0 ?
F (n; r, k) F (n; k) or 0 (Corollary 6.15)
F (n; q, p) ? ?

F (n; q, m) ? ?
F (n; q, k) ? ?

F (n; p, m) ? ?
F (n; p, k) (Corollary 6.20) (Corollary 6.16)

F (n; m, k) ? ?
F (n; r, p, k) F (n; p, k) or 0 (Proposition 6.13)

Table 6.6.

7. Concluding remarks

Remark 7.1. All these combinatorial functions can be computed when
restricted to special subsets within a particular semigroup, for example,
the set of nilpotents, N(S) or the set of idempotents, E(S) [34,38].

Remark 7.2. When the totally ordered set Xn is replaced by a partially
ordered set (poset), for each n > 1 there are ’several’ non-isomorphic
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posets, each of which gives rise to potentially different combinatorial
results.
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