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On the subset combinatorics of (G-spaces

Igor Protasov and Sergii Slobodianiuk

ABSTRACT. Let G be a group and let X be a transitive
G-space. We classify the subsets of X with respect to a translation
invariant ideal J in the Boolean algebra of all subsets of X, introduce
and apply the relative combinatorical derivations of subsets of X.
Using the standard action of G on the Stone-Clech compactification
BX of the discrete space X, we characterize the points p € fX
isolated in GGp and describe a size of a subset of X in terms of its
ultracompanions in SX. We introduce and characterize scattered
and sparse subsets of X from different points of view.

1. Introduction

Let G be a group and let X be a transitive G-space with the action
GxX—X, (g,x) = gz. If X =G and gz is a product of g and z then
X is called the left reqular G-space.

A family J of subsets of X is called an ideal in the Boolean algebra
Px of all subsets of X if X ¢ Jand A,Be€ J,C C Aimply AUB e J
and C € J. The ideal of all finite subsets of X is denoted by [X]|<“. An
ideal J is translation invariant if gA € J for all g € G, A € J, where
gA = {ga :a € A}. If X is finite then J = {@} so in what follows all
G-spaces are supposed to be infinite.

Now we fix a translation invariant ideal J in Px and say that a subset
Aof X is

e J-large if X = FAUI for some F € [G]<¥ and I € J;
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e J-smallif L'\ A is J-large for every J-large subset L of X;

o J-thick if Intp(A) ¢ J for each F € [G]<¥, where Intp(A) = {a €
A:FaC A};

e J-prethick if FA is thick for some F € [G]<“.

If J = @ we omit the prefix J and get a well-known classification of
subsets of a G-spaces by their combinatorial size (see the survey [11]).

In the case of the left regular G-spaces, the notions of J-large and
J-small subsets appeared in [1].

We say that a mapping Aj : Px — Pg defined by

Aj(A)={geG:gANA¢ J}

is a combinatorial derivation relatively to the ideal J. If X is the left
regular G-space and J = [X]|<°°, the mapping A; was introduced in [12]
under the name combinatorial derivation and studied in [13].

In Section 2 we prove that if a subset A of X is not J-small then
Aj(A) is large in G. For the left regular G-space X and J = [X]<¥, this
statement was proved in [6].

We endow X with the discrete topology and take the points of 5X, the
Stone-Clech compactification of X, to be the ultrafilters on X, with the
points of X identified with the principal ultrafilters on X. The topology
on X can be defined by stating that the set of the form A = {p € fX :
A € p}, where A is a subset of X, form a base for the open sets. We note
the sets of this form are clopen and that for any p € X and A C X,
A € pif and only if p € A. We denote A* = AN X*, where X* = 3X \ X.
The universal property of X states that every mapping f : X — Y,
where Y is a compact Hausdorff space, can be extended to the continuous
mapping f?: X =Y.

Now we endow G with the discrete topology and, using the universal
property of G, extend the group multiplication from G to SG (see
[8, Chapter 4]), so SG becomes a compact right topological semigroup.

We define the action of 8G on X in two steps. Given g € G, the
mapping

r—gr: X = pX

extends to the continuous mapping
p—gp: X — BX.

Then, for each p € X, we extend the mapping g — gp : G — X to the
continuous mapping
q+— qp: BG — BX.
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Let ¢ € fG and p € SX. To describe a base for the ultrafilter gp € 8X,
we take any element ) € ¢ and, for every g € ) choose some element
Py € p. Then Uy 9P € gp, and the family of subsets of this form is a
base for the ultrafilter gp.

Given a subset A of X and an ultrafilter p € X* we define a p-
companion of A by

A (A)=A"NGp={gp:g€ G, AEc gp},

and say that a subset S of X* is an ultracompanion of A if S = A ,(A)
for some p € X™.

In Section 3 we characterze the subsets of X of different types in terms
of their ultracompanions. For example a subset A of X is J-large if and only
if A (A) # @ for each p € J,where J = {pe X*: X\I € p for every I €
J}. For the left regular X and J = {@}, these characterizations are
obtained in [15].

In Section 4 we describe the points p € BX isolated in Gp and
introduce the piecewise shifted F P-sets in X to characterize the subsets
A C X such that A (A) is discrete for each p € X™.

In Section 5 we extend the notions scattered and sparse subsets from
groups [3] to G-space and characterize these subsets from different points
of view.

2. Relative combinatorial derivations

Let X be a transitive G-space and let J be a translation invariant
ideal in Px.

Lemma 2.1. For a subset A of X, the following statements are equivalent

(i) A is J-small;
(ii) G\ FA is J-large for each F € [G]~%;
(iii) A is not J-prethick.

Proof. Apply the arguments proving Theorem 2.1 in [1]. O
The next lemma follows directly from the definition of J-small subsets.

Lemma 2.2. The family of all J-small subsets of X is a translation
invariant ideal in Px.



I. PROTASOV, S. SLOBODIANIUK 101

Lemma 2.3. Let L be a J-large subset of X. Then given a partition
L =AU B, either Aj(A) is large or B is J-large.

Proof. We take F' € [G]<¥ and I € J such that G = F(AUB)UI. Assume
that G # FAj(A) and show that B is J-large.
Let F = {f1,..., fr}. Wetake g € G\FA;(A) and put I; = f; 'gANA,
i€ {1,...k}. Since g ¢ f;A;(A), we have I; € J and f; ‘gz ¢ A for each
Ifz€Xand FlgrN L= then gr ¢ FLsogr €l andx € g 1.
We put
I'=LU.UL,Uug I

If 2 € A\ I’ then there is i € {1,...,k} such that f; gz € AU B. Since
filgr ¢ A, we have f, 'gx € B. Hence, A\ I' C F~'gB and

G=FA\I'YUFI'UFBUI=FF 'gBUFBU(FI'UI),
and we conclude that B is J-large. O

Theorem 2.4. If a subset A of X is J-prethick then Aj(A) is large.

Proof. By Lemma 2.1, A is not J-small. We take a J-large subset L such
that L \ A is not J-large. Since L = (LN A) U (L \ A), by Lemma 2.3,
Aj(LNA) is large so Aj(A) is large. O

Corollary 2.5. If an J-prethick subset A of X is finitely partitioned
A=Ay U.. A, then Aj(A;) is large for some i € {1,...,n}

Proof. By Lemma 2.2 some cell A; is prethick. Apply Theorem 2.4. [

Remark 2.6. Given a translation invariant ideal J in Py, there is a
function ®; : N — N such that, for any n-partition X; U ... U X, of X,
there exists A; and F' € [G]<¥ such that G = FA;(4;) and |F| < ®;(n).
These functions are intensively studied in [2] and [4].

3. Ultracompanions
Given a translation invariant ideal J in Py, we denote
J={peX*:X\Iepforeach e J},
and observe that J is closed in X* and gp € J for all g€ Gandpe J.

Theorem 3.1. For a subset A of X, the following statements hold
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(i) A is J-large if and only if A,(A) # & for each p € J:
(ii) A is J-thick if and only if there exists p € J such that A,(A) = Gp;

(iii) A is J-prethich if and only if there exists p € J and F € [G]<% such
that A, (FA) = Gp;

(iv) A is J-small if and only if for every p € J and every F € [G]<¥,
we have A, (A) # Gp;.

Proof. (i) Suppose that A is J-large and choose F € [G]<¥ and [ € J
such that X = FAU I. We take an arbitrary p € J and choose geF
such that gA € pso A € g~ 'p and A,(A) # @

Assume that A (A) # @ for each p € J. Given p € J, we choose
gp € G such that A € g,p. Then we consider a covering of J by the subsets
{gp_lA* ip € j} and choose its finite subcovering g;llA*, ...,gp_nlA* We
take I € J and H € [X]|<¥ such that X \ (g,,'!A*U..Ug 1A*) =TUH.
At last, we choose F' € [G<¥] such that {gp_ﬁ, gy} C Fand H C FA.
Then X = FAUI and A is J-large.

(27) We note that A is J-thick if and only if X \ A is not J-large and
apply (7).

(ti1) follows from (7).

(iv) follows from (ii7) and Lemma 2.1. O

We suppose that J # {@} and say that a subset A of X is J-thin if,
for every F € [G]<“, there exists I € J such that [Fa N Al <1 for each
ac A\

Theorem 3.2. A subset A of X is I-thin if and only if A,(A) <1 for
each p € J.

Proof. Suppose that A is not J-thin and choose F' € [G]<“ such that,
for each I € J, there is ay € A\ I satisfying Fa;y N A # {ar}. We pick
gr € F and by € A such that gra;y = by and by € A. Then we put
Ar={ap : I CI',I' € J} and take p € J such that A; € p for each
I € J. Since p is an ultrafilter, there exists g € F' such that gp # p and
A € gp. Hence {p,gp} C A,(A) and |A,(A)] > 1.

Assume that |A,(A4)| > 1 for some p € J. We pick distinct g1p, gop €
A,(A) and put F = {g2g7 ). Since A\ T € gipNgap for each I € J, there
is ar € A\ I such that gy 'giar € A\ {as}. Hence, A is not J-thin. [

Remark 3.3. We say that a non-empty subset S of SX* is invariant if
gS C S for each g € G. It is easy to see that each closed invariant subset
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S of X contains a minimal by inclusion closed invariant subset M and
M = cl(Gp) for each p € M. By analogy with Theorem 4.39 from [8], we
can prove that for p € X* the subset ¢l(Gp) is minimal if and only if, for
every P € p, there exists F' € [G]* such that Gp C (FP)*.

Remark 3.4. Given a translation invariant ideal J in Py, we denote

K(J) = U{M : M is a minimal closed invariant subset of .J}.

By analogy with Theorem 4.40 from [8], we can prove that p € cl(K(J))
if and only if each subset P € p is J-prethick. It is worth to be mentioned
that each closed invariant subset S of X* is of the form S = J for some
translation invariant ideal J in Pyx.

Remark 3.5. By Theorem 6.30 from [8], for every infinite group of
cardinality s, there exists 22” distinct minimal closed invariant subsets of
G*. We show that this statement fails to be true for G-spaces. Let X = w
and G be the group of all permutations of X. If S is a closed invariant
subset of X™* then § = X*.

Remark 3.6. We describe a relationship between ultracompanions and
relative combinatorial derivations. Let J be a translation invariant ideal
inPx, AC X,pe€J. Wedenote A, = {g € G: A € gp} so A,(A) = App.
Then

Aj(A) =4, ipeJ Aep}
4. Isolated points

Given any p € X*, we put

St(p) ={g9 € G : gp = p},

and note that, by [8, Lemma 3.33], gp = p if and only if there exists P € p
such that gx = « for each x € P.

Theorem 4.1. For every p € X*, the following statements are equivalent

(i) p is not isolated in Gp;
(ii) there exists ¢ € (G \ St(p))* such that qp = p;
(iii) there exists € € (G \ St(p))* such that ee =€ and ep = p.
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Proof. The implications (i) = (éi) and (iii) = (i) are evident.
(i7) = (i4i). In view of Theorem 2.5 from [8], it suffices to show that
the set

S={q€(G\St(p))* :qp=p}

is a subsemigroup of G*. Let ¢, € S, @ € q. For each = € @), we choose
R, € r such that x71St(p) N R, = @. Then xy ¢ St(p) for each y € R,.
We put

P = U TR,
zeQ
and note that P € gr and P N St(p) = &. Hence gr € S. O

Remark 4.2. For each g € G, the mapping p — gp: X — X is a
homeomorphism. It follows that Gp has an isolated point if and only if
Gp is discrete.

Let (gn)new be sequence in G and let (x,)n € w be a sequence in X
such that

(1) {g5°---g5rawn :e; € {0,1} N {gs’...¢5mTm : €; € {0,1}} = & for all
distinct m,n € w;

2 S0 gEnxy, e € 0,11} = 27t for every n € w.

(2) K96°---9n : y

We say that a subset Y of X is a piecewise shifted F P-set if there
exist (gn)new, (Tn)new satisfying (1) and (2) such that

Y = {g5°.g5"®n s & € {0,1},n € w}.
For definition of an F'P-set in a group see [8, p. 108].

Theorem 4.3. Let p be an ultrafilter from X™* such that Gp is not discrete.
Then every subset P € p contains a piecewise shifted F'P-set.

Proof. We choose gy € G such that p # gop, P € gop and take Py C P,
Py € p such that go Py N Py = @. We pick an arbitrary zg € Fp.

Suppose that the elements gy, ..., g, from G and =z, ...,z, from X
have been chosen so that

(3) g3°...g; xp € P for all g; € {0,1} and k < n;

(4) {9595k xr e € 0,1} N {gg"...95ram : & € {0,1}} = & for all
k<m<n

(5) {g6°.--g5*an : € € 0,1} = 25+ for all k < n;



I. PROTASOV, S. SLOBODIANIUK 105

(6) Pegy...gp for all &, € {0,1} and k < n;
(7) [{g5°---g5%p : & € 0,1} = 28+ for all k < n.

Since p is not isolated in Gp, we use (6) and (7) to choose gn4+1 € G
such that P € gSO...gZTllp for all ¢; € {0,1} and ]{ggo...gf[ffp 1 g €
{0,1}}] = 2n+2.

Then we choose P,11 € p such that gSO...gZ’fanH C P for all
e; € {0,1} and

€ En+l ) On41 o
90" It Pnr1 N gy’ 9,51 Prv1 = 9

for all distinct (g, ..., en41) and (&g, ..., 6pr1) from {0, 1}7+2
We pick x,, 41 € P41 so that

{96 gt wngr e € {0, 11 N {gg" g3ty s i € {0,1}} = &

for each k < n.

After w steps, we get the sequences (g, )new and (2, )new which define
the desired F'P-set in P. ]

Theorem 4.4. For an infinite subset A of a G-space X, the following
statements are equivalent

(i) Gp is discrete for each p € A*;

(ii) A contains no piecewise shifted F P-sets.

Proof. The implication (i7) = (i) follows from Theorem 4.3. To prove
(1) = (i1), we suppose that A contains a piecewise shifted F'P-set Y
defined by the sequence (g, )necw and (Tn)new- By [8, Theorem 5.12], there
is an idempotent € € G* such that, for each m € w,

{g7m..grm 1e; €{0,1},m <n <w} €e.
We take an arbitrary ¢ € A* such that {z, : n € w} € ¢. Put
p = eq. Since Y C A, we have p € A*. Clearly, ep = p. We note that

gor...gsr € St(p) if and only if €, = ... = ¢, = 0. Hence G \ St(p) € ¢
and, applying Theorem 4.1, we conclude that p is not isolated in Gp. [
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5. Scattered and sparse subsets of G-spaces

Given F € [G]<¥ and z € X, we denote B(z, F') = Fx U {z} and say
that B(x, F) is a ball of radius F around x. For subset Y of X andy € Y,
we denote By (y, F) = B(y, F)NY.

A subset A of X is called

e scattered if, for every infinite subset Y of X, there exists H €
[G]<% such that, for every F' € [G]<¥ there is y € Y such that
By (y, F') N By (y, H) = &;

e sparse if, for every infinite subset Y of X, there exists H € [G]<¥
such that, for every F' € [G]<“ there is y € Y such that B4 (y, F) N
BA (y7 H) =3J.

Clearly, each sparse subset is scattered. The sparse subsets of groups
were introduced in [7] and studied in [9] [10]. From the asymptotic point
of view [16], the scattered subsets of G-spaces can be considered as
counterparts of the scattered subspaces of topological spaces.

Proposition 5.1. A subset A of a G-space X 1is sparse if and only if
A, (A) is finite for each p € X*.

Proof. Repeat the arguments proving Theorem 10 in [14]. O

Proposition 5.2. A subset A of a G-space X is scattered if and only if,
for every infinite subset Y of X, there exists p € Y™ such that A,(Y) is
finite.

Proof. Repeat the arguments proving Proposition 1 in [3]. O]

To formulate further results, we need some asymptology (see [16,
Chapter 1]). Let G, G2 be groups, X be a G-space, X2 be a Ga-space,
Y1 C X1, Yo C Xo. A mapping f : Y1 — Ys is called a <-mapping if, for
every F' € [G1]<Y, there exists H € [G2]<“ such that, for every y € Y1

f(BYI(y7 F)) - BYz(f(y)vH)

If f is a bijection such that f and f~! are <-mappings, we say that f is an
asymorphism. The subset subsets Y7 and Y5 are coarsely equivalent if there
exist asymorphic subsets Z; C Y1, Zo C Y3 such that Y1 = By, (71, F),
Yo = By,(Z2,H) for some F € [G1]<%, H € [G2]<¥. We say that a
property P of subsets of G-spaces is coarse if P is stable under coarse
equivalent, and note that "sparse" and "scattered" are coarse properties.
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In asymptology, the group @,Z, is known under name the Cantor
macrocube, for its coarse characterization see [5].

Theorem 5.3. A subset A of a G-space X is sparse if and only if A has
no subsets asymorphic to the subset Wo = {g € ®,,Zs : suptg < 2} of the
Cantor macrocube.

Proof. Apply arguments from [14, Proof of Theorem 3]. O

Theorem 5.4. For a subset A of a G-space X, the following statements
are equivalent

(i) A is scattered;
(ii) A,(A) is discrete for each p € X*;
(iii) A contains no piecewise shifted F P-sets;

(iv) A contains no subsets coarsely equivalent to the Cantor macrocube.

Proof. The equivalence (ii) = (iii) follows from Theorem 4.4. To prove
(1) = (ii7), repeat the arguments from [3, Proof of Theorem 1].

(7) = (i). Let Y be an infinite subset of A. We denote by F the family
of all closed invariant subsets of X* and put Fy = {FNY*: F € F}. By
the Zorn’s lemma, there exists minimal by inclusion element M € Fy.
We take an arbitrary p € M and show that A (Y) is finite. Assume the
contrary. Then the set A,(Y) has a limit point ¢. Since M is minimal
and p € M, there exists r € G such that p = rq. By the definition of the
action of G on X, for every P € p, there exists () € ¢ and g € G such
that g@Q C P. It follows that p is a limit point of A,(Y"). Hence, A, (Y)
is not discrete and we get a contradiction.

The implication (i) = (iv) is evident because the Cantor macrocube
is not scattered. To prove (iv) = (i), we use the characterization of
the Cantor macrocube from [5] and the arguments from [3, Proof of the
Proposition 3]. O

Remark 5.5. Let G be an amenable group, A be scattered subset of G.
By [3, Theorem 2|, 1(A) = 0 for each left invariant Banach measure y on G.
This statement cannot be extended to all G-spaces. As a counterexample,
we take X = w and G is a group of all permutations of X with finite
supports. In this case, each subset of X is scattered.

Let X be a G-space, J be a translation invariant ideal in Px. We say
that a subset A of X is
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e J-sparse if AA,(A) is finite for each p € J;

e J-scattered if, for every subset Y of A, Y ¢ J, thereispe JNY*
such that A, (Y) is finite.

In this context, sparse and scattered subsets coincide with [X]<“-sparse
and [X]<“-scattered subsets respectively.

The arguments proving (i) = (i) in Theorem 5.4 witness that A is
scattered provided that each point p € J N A* is isolated in X*.

Question 5.6. Assume that A is J-scattered. Is every point p € J N A*
isolated in X*?¢

If a subset A of X has a subset Y ¢ J coarsely equivalent to @7,
then A is not J-scattered.

Question 5.7. Assume that a subset A of X has no subsets Y ¢ J
coarsely equivalent to ®,Z9. Is A J-scattered?

We note that the families o(J) and 9(.J) of all J-sparse and .J-scattered
subsets of X are translation invariant ideals in Px and say that .J is
o-complete (resp. 0-complete) if oJ = J (resp 9(J) = J). We denote by
o*(J) (resp. 0%(J)) the intersection of all o-complete (resp d-complete)
ideals containing J. Clearly, o*(J) and 0*(.J) are the smallest o-complete
and J-complete ideals such that J C ¢*(J) and J C 0*(J). We say that
o*(J) and 0*(J) are the o-completion and 0-completion of J respectively.

We define a sequence (0"(J))n<, by the recursion: o%(J) = J,
o"(J) = o(c™(J)), and note that U,,c,, 0™ (J) C o*(J). If X is left
regular, by [10, Theorem 4(1)], 0*(J) = U, e, 0" (J) and by [10, Theorem
4(2)], o™ H([G]<¥) # o™([G]<¥) for each n € w.

Question 5.8. Is 0*J) = U, c,
J in an arbitrary G-space X ¢

o"(J) for each translation invariant ideal

In contrast to o-completion, for each translation invariant ideal .J in
Px, we have 9*(J) = 9(J). In particular the ideal 9([X]<%) of all sparse
subsets of X is 0-complete. Indeed, assume that A ¢ 9(J) and choose
Y C A, Y ¢ J such that A, (Y) is infinite for each p € JNY*. Then
Y ¢ 0(Y) and A ¢ 8%(J). Hence, 9%(J) = 9(J) so 9*(J) = d(J).
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