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On the subset combinatorics of G-spaces

Igor Protasov and Sergii Slobodianiuk

Abstract. Let G be a group and let X be a transitive
G-space. We classify the subsets of X with respect to a translation
invariant ideal J in the Boolean algebra of all subsets of X, introduce
and apply the relative combinatorical derivations of subsets of X.
Using the standard action of G on the Stone-Čech compactification
βX of the discrete space X, we characterize the points p ∈ βX
isolated in Gp and describe a size of a subset of X in terms of its
ultracompanions in βX. We introduce and characterize scattered
and sparse subsets of X from different points of view.

1. Introduction

Let G be a group and let X be a transitive G-space with the action
G × X → X, (g, x) 7→ gx. If X = G and gx is a product of g and x then
X is called the left regular G-space.

A family J of subsets of X is called an ideal in the Boolean algebra
PX of all subsets of X if X /∈ J and A, B ∈ J , C ⊂ A imply A ∪ B ∈ J
and C ∈ J . The ideal of all finite subsets of X is denoted by [X]<ω. An
ideal J is translation invariant if gA ∈ J for all g ∈ G, A ∈ J , where
gA = {ga : a ∈ A}. If X is finite then J = {∅} so in what follows all
G-spaces are supposed to be infinite.

Now we fix a translation invariant ideal J in PX and say that a subset
A of X is

• J-large if X = FA ∪ I for some F ∈ [G]<ω and I ∈ J ;
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• J-small if L \ A is J-large for every J-large subset L of X;

• J-thick if IntF (A) /∈ J for each F ∈ [G]<ω, where IntF (A) = {a ∈
A : Fa ⊆ A};

• J-prethick if FA is thick for some F ∈ [G]<ω.

If J = ∅ we omit the prefix J and get a well-known classification of
subsets of a G-spaces by their combinatorial size (see the survey [11]).

In the case of the left regular G-spaces, the notions of J-large and
J-small subsets appeared in [1].

We say that a mapping ∆J : PX → PG defined by

∆J(A) = {g ∈ G : gA ∩ A /∈ J}

is a combinatorial derivation relatively to the ideal J . If X is the left
regular G-space and J = [X]<∞, the mapping ∆J was introduced in [12]
under the name combinatorial derivation and studied in [13].

In Section 2 we prove that if a subset A of X is not J-small then
∆J(A) is large in G. For the left regular G-space X and J = [X]<ω, this
statement was proved in [6].

We endow X with the discrete topology and take the points of βX, the
Stone-Čech compactification of X, to be the ultrafilters on X, with the
points of X identified with the principal ultrafilters on X. The topology
on βX can be defined by stating that the set of the form A = {p ∈ βX :
A ∈ p}, where A is a subset of X, form a base for the open sets. We note
the sets of this form are clopen and that for any p ∈ βX and A ⊂ X,
A ∈ p if and only if p ∈ A. We denote A∗ = A ∩ X∗, where X∗ = βX \ X.
The universal property of βX states that every mapping f : X → Y ,
where Y is a compact Hausdorff space, can be extended to the continuous
mapping fβ : βX → Y .

Now we endow G with the discrete topology and, using the universal
property of βG, extend the group multiplication from G to βG (see
[8, Chapter 4]), so βG becomes a compact right topological semigroup.

We define the action of βG on βX in two steps. Given g ∈ G, the
mapping

x 7→ gx : X → βX

extends to the continuous mapping

p 7→ gp : βX → βX.

Then, for each p ∈ βX, we extend the mapping g 7→ gp : G → βX to the
continuous mapping

q 7→ qp : βG → βX.



100 On the subset combinatorics of G-spaces

Let q ∈ βG and p ∈ βX. To describe a base for the ultrafilter qp ∈ βX,
we take any element Q ∈ q and, for every g ∈ Q choose some element
Px ∈ p. Then

⋃
g∈Q gPx ∈ qp, and the family of subsets of this form is a

base for the ultrafilter qp.

Given a subset A of X and an ultrafilter p ∈ X∗ we define a p-
companion of A by

△p(A) = A∗ ∩ Gp = {gp : g ∈ G, A ∈ gp},

and say that a subset S of X∗ is an ultracompanion of A if S = △p(A)
for some p ∈ X∗.

In Section 3 we characterze the subsets of X of different types in terms
of their ultracompanions. For example a subset A of X is J-large if and only
if △p(A) 6= ∅ for each p ∈ J̌ , where J̌ = {p ∈ X∗ : X \I ∈ p for every I ∈
J}. For the left regular X and J = {∅}, these characterizations are
obtained in [15].

In Section 4 we describe the points p ∈ βX isolated in Gp and
introduce the piecewise shifted FP -sets in X to characterize the subsets
A ⊆ X such that △p(A) is discrete for each p ∈ X∗.

In Section 5 we extend the notions scattered and sparse subsets from
groups [3] to G-space and characterize these subsets from different points
of view.

2. Relative combinatorial derivations

Let X be a transitive G-space and let J be a translation invariant
ideal in PX .

Lemma 2.1. For a subset A of X, the following statements are equivalent

(i) A is J-small;

(ii) G \ FA is J-large for each F ∈ [G]<ω;

(iii) A is not J-prethick.

Proof. Apply the arguments proving Theorem 2.1 in [1].

The next lemma follows directly from the definition of J-small subsets.

Lemma 2.2. The family of all J-small subsets of X is a translation
invariant ideal in PX .
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Lemma 2.3. Let L be a J-large subset of X. Then given a partition
L = A ∪ B, either ∆J(A) is large or B is J-large.

Proof. We take F ∈ [G]<ω and I ∈ J such that G = F (A∪B)∪I. Assume
that G 6= F∆J(A) and show that B is J-large.

Let F = {f1, ..., fk}. We take g ∈ G\F∆J (A) and put Ii = f−1

i gA∩A,
i ∈ {1, ..., k}. Since g /∈ fi∆J(A), we have Ii ∈ J and f−1

i gx /∈ A for each
x ∈ A \ Ii.

If x ∈ X and F −1gx ∩ L = ∅ then gx /∈ FL so gx ∈ I and x ∈ g−1I.
We put

I ′ = I1 ∪ ... ∪ Ik ∪ g−1I.

If x ∈ A \ I ′ then there is i ∈ {1, ..., k} such that f−1

i gx ∈ A ∪ B. Since
f−1

i gx /∈ A, we have f−1

i gx ∈ B. Hence, A \ I ′ ⊆ F −1gB and

G = F (A \ I ′) ∪ FI ′ ∪ FB ∪ I = FF −1gB ∪ FB ∪ (FI ′ ∪ I),

and we conclude that B is J-large.

Theorem 2.4. If a subset A of X is J-prethick then ∆J(A) is large.

Proof. By Lemma 2.1, A is not J-small. We take a J-large subset L such
that L \ A is not J-large. Since L = (L ∩ A) ∪ (L \ A), by Lemma 2.3,
∆J(L ∩ A) is large so ∆J(A) is large.

Corollary 2.5. If an J-prethick subset A of X is finitely partitioned
A = A1 ∪ ...An then ∆J(Ai) is large for some i ∈ {1, ..., n}

Proof. By Lemma 2.2 some cell Ai is prethick. Apply Theorem 2.4.

Remark 2.6. Given a translation invariant ideal J in PX , there is a
function ΦJ : N → N such that, for any n-partition X1 ∪ ... ∪ Xn of X,
there exists Ai and F ∈ [G]<ω such that G = F∆J(Ai) and |F | 6 ΦJ(n).
These functions are intensively studied in [2] and [4].

3. Ultracompanions

Given a translation invariant ideal J in PX , we denote

J̌ = {p ∈ X∗ : X \ I ∈ p for each I ∈ J},

and observe that J̌ is closed in X∗ and gp ∈ J̌ for all g ∈ G and p ∈ J̌ .

Theorem 3.1. For a subset A of X, the following statements hold
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(i) A is J-large if and only if △p(A) 6= ∅ for each p ∈ J̌ ;

(ii) A is J-thick if and only if there exists p ∈ J̌ such that △p(A) = Gp;

(iii) A is J-prethich if and only if there exists p ∈ J̌ and F ∈ [G]<ω such
that △p(FA) = Gp;

(iv) A is J-small if and only if for every p ∈ J̌ and every F ∈ [G]<ω,
we have △p(A) 6= Gp;.

Proof. (i) Suppose that A is J-large and choose F ∈ [G]<ω and I ∈ J
such that X = FA ∪ I. We take an arbitrary p ∈ J̌ and choose g ∈ F
such that gA ∈ p so A ∈ g−1p and △p(A) 6= ∅

Assume that △p(A) 6= ∅ for each p ∈ J . Given p ∈ J , we choose

gp ∈ G such that A ∈ gpp. Then we consider a covering of J̌ by the subsets
{g−1

p A∗ : p ∈ J̌} and choose its finite subcovering g−1
p1

A∗, ..., g−1
pn

A∗ We
take I ∈ J and H ∈ [X]<ω such that X \ (g−1

p1
A∗ ∪ ... ∪ g−1

pn
A∗) = I ∪ H.

At last, we choose F ∈ [G<ω] such that {g−1
p1

, ..., g−1
pn

} ⊆ F and H ⊆ FA.
Then X = FA ∪ I and A is J-large.

(ii) We note that A is J-thick if and only if X \ A is not J-large and
apply (i).

(iii) follows from (ii).
(iv) follows from (iii) and Lemma 2.1.

We suppose that J 6= {∅} and say that a subset A of X is J-thin if,
for every F ∈ [G]<ω, there exists I ∈ J such that |Fa ∩ A| 6 1 for each
a ∈ A \ I.

Theorem 3.2. A subset A of X is I-thin if and only if △p(A) 6 1 for
each p ∈ J .

Proof. Suppose that A is not J-thin and choose F ∈ [G]<ω such that,
for each I ∈ J , there is aI ∈ A \ I satisfying FaI ∩ A 6= {aI}. We pick
gI ∈ F and bI ∈ A such that gIaI = bI and bI ∈ A. Then we put
AI = {aI′ : I ⊆ I ′, I ′ ∈ J} and take p ∈ J̌ such that AI ∈ p for each
I ∈ J . Since p is an ultrafilter, there exists g ∈ F such that gp 6= p and
A ∈ gp. Hence {p, gp} ⊆ △p(A) and |△p(A)| > 1.

Assume that |△p(A)| > 1 for some p ∈ J . We pick distinct g1p, g2p ∈

△p(A) and put F = {g2g−1
1 }. Since A\ I ∈ g1p∩g2p for each I ∈ J , there

is aI ∈ A \ I such that g−1
2 g1aI ∈ A \ {aI}. Hence, A is not J-thin.

Remark 3.3. We say that a non-empty subset S of βX∗ is invariant if
gS ⊆ S for each g ∈ G. It is easy to see that each closed invariant subset
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S of X contains a minimal by inclusion closed invariant subset M and
M = cl(Gp) for each p ∈ M . By analogy with Theorem 4.39 from [8], we
can prove that for p ∈ X∗ the subset cl(Gp) is minimal if and only if, for
every P ∈ p, there exists F ∈ [G]ω such that Gp ⊆ (FP )∗.

Remark 3.4. Given a translation invariant ideal J in PX , we denote

K(J̌) =
⋃

{M : M is a minimal closed invariant subset of J̌}.

By analogy with Theorem 4.40 from [8], we can prove that p ∈ cl(K(J̌))
if and only if each subset P ∈ p is J-prethick. It is worth to be mentioned
that each closed invariant subset S of X∗ is of the form S = J̌ for some
translation invariant ideal J in PX .

Remark 3.5. By Theorem 6.30 from [8], for every infinite group of
cardinality κ, there exists 22κ distinct minimal closed invariant subsets of
G∗. We show that this statement fails to be true for G-spaces. Let X = ω
and G be the group of all permutations of X. If S is a closed invariant
subset of X∗ then S = X∗.

Remark 3.6. We describe a relationship between ultracompanions and
relative combinatorial derivations. Let J be a translation invariant ideal
in PX , A ⊆ X, p ∈ J̌ . We denote Ap = {g ∈ G : A ∈ gp} so △p(A) = App.
Then

∆J(A) =
⋂

{A−1
p : p ∈ J̌ , A ∈ p}.

4. Isolated points

Given any p ∈ X∗, we put

St(p) = {g ∈ G : gp = p},

and note that, by [8, Lemma 3.33], gp = p if and only if there exists P ∈ p
such that gx = x for each x ∈ P .

Theorem 4.1. For every p ∈ X∗, the following statements are equivalent

(i) p is not isolated in Gp;

(ii) there exists q ∈ (G \ St(p))∗ such that qp = p;

(iii) there exists ε ∈ (G \ St(p))∗ such that εε = ε and εp = p.
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Proof. The implications (i) ⇒ (ii) and (iii) ⇒ (i) are evident.
(ii) ⇒ (iii). In view of Theorem 2.5 from [8], it suffices to show that

the set
S = {q ∈ (G \ St(p))∗ : qp = p}

is a subsemigroup of G∗. Let q, r ∈ S, Q ∈ q. For each x ∈ Q, we choose
Rx ∈ r such that x−1St(p) ∩ Rx = ∅. Then xy /∈ St(p) for each y ∈ Rx.
We put

P =
⋃

x∈Q

xRx,

and note that P ∈ qr and P ∩ St(p) = ∅. Hence qr ∈ S.

Remark 4.2. For each g ∈ G, the mapping p 7→ gp : βX → βX is a
homeomorphism. It follows that Gp has an isolated point if and only if
Gp is discrete.

Let (gn)n∈ω be sequence in G and let (xn)n ∈ ω be a sequence in X
such that

(1) {gε0

0 ...gεn

n xn : εi ∈ {0, 1}} ∩ {gε0

0 ...gεm

n xm : εi ∈ {0, 1}} = ∅ for all
distinct m, n ∈ ω;

(2) |{gε0

0 ...gεn

n xn : εi ∈ {0, 1}}| = 2n+1 for every n ∈ ω.

We say that a subset Y of X is a piecewise shifted FP -set if there
exist (gn)n∈ω, (xn)n∈ω satisfying (1) and (2) such that

Y = {gε0

0 ...gεn

n xn : εi ∈ {0, 1}, n ∈ ω}.

For definition of an FP -set in a group see [8, p. 108].

Theorem 4.3. Let p be an ultrafilter from X∗ such that Gp is not discrete.
Then every subset P ∈ p contains a piecewise shifted FP -set.

Proof. We choose g0 ∈ G such that p 6= g0p, P ∈ g0p and take P0 ⊆ P ,
P0 ∈ p such that g0P0 ∩ P0 = ∅. We pick an arbitrary x0 ∈ P0.

Suppose that the elements g0, ..., gn from G and x0, ..., xn from X
have been chosen so that

(3) gε0

0 ...gεk

k xk ∈ P for all εi ∈ {0, 1} and k 6 n;

(4) {gε0

0 ...gεk

k xk : εi ∈ 0, 1} ∩ {gε0

0 ...gεm

m xm : εi ∈ {0, 1}} = ∅ for all
k < m 6 n;

(5) |{gε0

0 ...gεk

k xk : εi ∈ 0, 1}| = 2k+1 for all k 6 n;
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(6) P ∈ gε0

0 ...gεk

k p for all εi ∈ {0, 1} and k 6 n;

(7) |{gε0

0 ...gεk

k p : εi ∈ 0, 1}| = 2k+1 for all k 6 n.

Since p is not isolated in Gp, we use (6) and (7) to choose gn+1 ∈ G
such that P ∈ gε0

0 ...g
εn+1

n+1 p for all εi ∈ {0, 1} and |{gε0

0 ...g
εn+1

n+1 p : εi ∈
{0, 1}}| = 2n+2.

Then we choose Pn+1 ∈ p such that gε0

0 ...g
εn+1

n+1 Pn+1 ⊆ P for all
εi ∈ {0, 1} and

gε0

0 ...g
εn+1

n+1 Pn+1 ∩ gδ0

0 ...g
δn+1

n+1 Pn+1 = ∅

for all distinct (ε0, ..., εn+1) and (δ0, ..., δn+1) from {0, 1}n+2

We pick xn+1 ∈ Pn+1 so that

{gε0

0 ...g
εn+1

n+1 xn+1 : εi ∈ {0, 1}} ∩ {gε0

0 ...gεk

k xk : εi ∈ {0, 1}} = ∅

for each k 6 n.

After ω steps, we get the sequences (gn)n∈ω and (xn)n∈ω which define
the desired FP -set in P .

Theorem 4.4. For an infinite subset A of a G-space X, the following
statements are equivalent

(i) Gp is discrete for each p ∈ A∗;

(ii) A contains no piecewise shifted FP -sets.

Proof. The implication (ii) ⇒ (i) follows from Theorem 4.3. To prove
(i) ⇒ (ii), we suppose that A contains a piecewise shifted FP -set Y
defined by the sequence (gn)n∈ω and (xn)n∈ω. By [8, Theorem 5.12], there
is an idempotent ε ∈ G∗ such that, for each m ∈ ω,

{gεm

m ...gεn

n : εi ∈ {0, 1}, m < n < ω} ∈ ε.

We take an arbitrary q ∈ A∗ such that {xn : n ∈ ω} ∈ q. Put
p = εq. Since Y ⊆ A, we have p ∈ A∗. Clearly, εp = p. We note that
gεm

m ...gεn

n ∈ St(p) if and only if εm = ... = εn = 0. Hence G \ St(p) ∈ ε
and, applying Theorem 4.1, we conclude that p is not isolated in Gp.
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5. Scattered and sparse subsets of G-spaces

Given F ∈ [G]<ω and x ∈ X, we denote B(x, F ) = Fx ∪ {x} and say
that B(x, F ) is a ball of radius F around x. For subset Y of X and y ∈ Y ,
we denote BY (y, F ) = B(y, F ) ∩ Y .

A subset A of X is called

• scattered if, for every infinite subset Y of X, there exists H ∈
[G]<ω such that, for every F ∈ [G]<ω there is y ∈ Y such that
BY (y, F ) ∩ BY (y, H) = ∅;

• sparse if, for every infinite subset Y of X, there exists H ∈ [G]<ω

such that, for every F ∈ [G]<ω there is y ∈ Y such that BA(y, F ) ∩
BA(y, H) = ∅.

Clearly, each sparse subset is scattered. The sparse subsets of groups
were introduced in [7] and studied in [9] [10]. From the asymptotic point
of view [16], the scattered subsets of G-spaces can be considered as
counterparts of the scattered subspaces of topological spaces.

Proposition 5.1. A subset A of a G-space X is sparse if and only if
△p(A) is finite for each p ∈ X∗.

Proof. Repeat the arguments proving Theorem 10 in [14].

Proposition 5.2. A subset A of a G-space X is scattered if and only if,
for every infinite subset Y of X, there exists p ∈ Y ∗ such that △p(Y ) is
finite.

Proof. Repeat the arguments proving Proposition 1 in [3].

To formulate further results, we need some asymptology (see [16,
Chapter 1]). Let G1, G2 be groups, X1 be a G1-space, X2 be a G2-space,
Y1 ⊆ X1, Y2 ⊆ X2. A mapping f : Y1 → Y2 is called a ≺-mapping if, for
every F ∈ [G1]<ω, there exists H ∈ [G2]<ω such that, for every y ∈ Y1

f(BY1
(y, F )) ⊆ BY2

(f(y), H).

If f is a bijection such that f and f−1 are ≺-mappings, we say that f is an
asymorphism. The subset subsets Y1 and Y2 are coarsely equivalent if there
exist asymorphic subsets Z1 ⊆ Y1, Z2 ⊆ Y2 such that Y1 = BY1

(Z1, F ),
Y2 = BY2

(Z2, H) for some F ∈ [G1]<ω, H ∈ [G2]<ω. We say that a
property P of subsets of G-spaces is coarse if P is stable under coarse
equivalent, and note that "sparse" and "scattered" are coarse properties.
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In asymptology, the group ⊕ωZ2 is known under name the Cantor
macrocube, for its coarse characterization see [5].

Theorem 5.3. A subset A of a G-space X is sparse if and only if A has
no subsets asymorphic to the subset W2 = {g ∈ ⊕ωZ2 : suptg 6 2} of the
Cantor macrocube.

Proof. Apply arguments from [14, Proof of Theorem 3].

Theorem 5.4. For a subset A of a G-space X, the following statements
are equivalent

(i) A is scattered;

(ii) △p(A) is discrete for each p ∈ X∗;

(iii) A contains no piecewise shifted FP -sets;

(iv) A contains no subsets coarsely equivalent to the Cantor macrocube.

Proof. The equivalence (ii) ⇒ (iii) follows from Theorem 4.4. To prove
(i) ⇒ (iii), repeat the arguments from [3, Proof of Theorem 1].

(ii) ⇒ (i). Let Y be an infinite subset of A. We denote by F the family
of all closed invariant subsets of X∗ and put FY = {F ∩ Y ∗ : F ∈ F}. By
the Zorn’s lemma, there exists minimal by inclusion element M ∈ FY .
We take an arbitrary p ∈ M and show that △p(Y ) is finite. Assume the
contrary. Then the set △p(Y ) has a limit point q. Since M is minimal
and p ∈ M , there exists r ∈ βG such that p = rq. By the definition of the
action of βG on βX, for every P ∈ p, there exists Q ∈ q and g ∈ G such
that gQ ⊆ P . It follows that p is a limit point of △p(Y ). Hence, △p(Y )
is not discrete and we get a contradiction.

The implication (i) ⇒ (iv) is evident because the Cantor macrocube
is not scattered. To prove (iv) ⇒ (i), we use the characterization of
the Cantor macrocube from [5] and the arguments from [3, Proof of the
Proposition 3].

Remark 5.5. Let G be an amenable group, A be scattered subset of G.
By [3, Theorem 2], µ(A) = 0 for each left invariant Banach measure µ on G.
This statement cannot be extended to all G-spaces. As a counterexample,
we take X = ω and G is a group of all permutations of X with finite
supports. In this case, each subset of X is scattered.

Let X be a G-space, J be a translation invariant ideal in PX . We say
that a subset A of X is
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• J-sparse if △p(A) is finite for each p ∈ J̌ ;

• J-scattered if, for every subset Y of A, Y /∈ J̌ , there is p ∈ J̌ ∩ Y ∗

such that △p(Y ) is finite.

In this context, sparse and scattered subsets coincide with [X]<ω-sparse
and [X]<ω-scattered subsets respectively.

The arguments proving (ii) ⇒ (i) in Theorem 5.4 witness that A is
scattered provided that each point p ∈ J̌ ∩ A∗ is isolated in X∗.

Question 5.6. Assume that A is J-scattered. Is every point p ∈ J̌ ∩ A∗

isolated in X∗?

If a subset A of X has a subset Y /∈ J coarsely equivalent to ⊕ωZ2

then A is not J-scattered.

Question 5.7. Assume that a subset A of X has no subsets Y /∈ J
coarsely equivalent to ⊕ωZ2. Is A J-scattered?

We note that the families σ(J) and ∂(J) of all J-sparse and J-scattered
subsets of X are translation invariant ideals in PX and say that J is
σ-complete (resp. ∂-complete) if σJ = J (resp ∂(J) = J). We denote by
σ∗(J) (resp. ∂∗(J)) the intersection of all σ-complete (resp ∂-complete)
ideals containing J . Clearly, σ∗(J) and ∂∗(J) are the smallest σ-complete
and ∂-complete ideals such that J ⊆ σ∗(J) and J ⊆ ∂∗(J). We say that
σ∗(J) and ∂∗(J) are the σ-completion and ∂-completion of J respectively.

We define a sequence (σn(J))n<ω by the recursion: σ0(J) = J ,
σn+1(J) = σ(σn(J)), and note that

⋃
n∈ω σn(J) ⊆ σ∗(J). If X is left

regular, by [10, Theorem 4(1)], σ∗(J) =
⋃

n∈ω σn(J) and by [10, Theorem
4(2)], σn+1([G]<ω) 6= σn([G]<ω) for each n ∈ ω.

Question 5.8. Is σ∗J) =
⋃

n∈ω σn(J) for each translation invariant ideal
J in an arbitrary G-space X?

In contrast to σ-completion, for each translation invariant ideal J in
PX , we have ∂∗(J) = ∂(J). In particular the ideal ∂([X]<ω) of all sparse
subsets of X is ∂-complete. Indeed, assume that A /∈ ∂(J) and choose
Y ⊆ A, Y /∈ J such that △p(Y ) is infinite for each p ∈ J̌ ∩ Y ∗. Then
Y /∈ ∂(Y ) and A /∈ ∂2(J). Hence, ∂2(J) = ∂(J) so ∂∗(J) = ∂(J).
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