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ABSTRACT. In this paper we present a Galois-Grothendieck-
type correspondence for groupoid actions. As an application a
Galois-type correspondence is also given.

1. Introduction

S. U. Chase, D. K. Harrison and A. Rosenberg developed in [3] a Galois
theory for commutative ring extensions R O K under the assumption that
R is a strongly separable K-algebra and the elements of the Galois group
G are pairwise strongly distinct K-automorphisms of R . Among the main
results of that paper, Theorem 2.3 states a one-to-one correspondence
between the subgroups of the group G and the K-subalgebras of R which
are separable and G-strong.

The Galois theory due to Grothendieck, in its total generality, is
contextualized in the language of schemes (see [7]). A version of this
theory in the specific context of fields has been presented by A. Dress in
[4] (see also [2]). Dress showed that a simplification of the Galois theory
for groups acting on fields is possible by combining Dedekind’s lemma
with some elementary facts on G-sets, in the case that G is a group.

Dedekind’s lemma states that for a field extension L of a field K the set
Algr (A, L) of all K-algebra homomorphisms of a K-algebra A into L is a
linearly independent subset of the L-vector space Homp (A, L). It turns
out that strongly distinct algebra homomorphisms of separable algebras
are a kind of homomorphisms which satisfy a version of Dedekind’s lemma.
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In [5], M. Ferrero and the first author showed that the same approach
used by Dress can be adopted in Galois theory for groups acting on
commutative rings, and, as a natural sequel of this method, they obtained
some new results.

The goal of this paper is to develop a Galois theory for groupoids
acting on commutative rings using the original viewpoints of Grothendieck
and Dress. We start by introducing a new version of Dedekind’s lemma
(section 2) we will need for our purposes, and standard notions and basic
facts concerning to groupoid actions on sets and algebras (section 3). The
Galois-Grothendieck-type correspondence for an action 8 of a groupoid
G on a K-algebra R, given in the section 4, establishes an equivalence
between the category of all finite G-split sets and the category of all R-split
K-algebras, under the assumption that R is a $-Galois extension of K. As
an application of this result we present in the section 5 a generalization of
the Galois-type correspondence given by Chase, Harrison and Rosenberg
in [3].

Throughout, K is a fixed commutative ring with identity and algebras
over K are always commutative and unital. Ring homomorphisms are
assumed to be unitary, and unadorned ® means Q.

2. Dedekind’s Lemma revisited

We start by recalling that a K-algebra R is said to be separable if R
is a projective R ® R-module. This is equivalent to the existence of an
element v =), z; ® y; € R ® R, which turns out to be an idempotent,
unique such that >, x;y; = 1 and rv = vr, for every r € R. If, in
addition, R is projective and finitely generated as a K-module, we say
that R is a strongly separable K-algebra, or, if R is also faithful over K,
a strongly separable extension of K. Any faithful, projetive and finitely
generated K-module is called faithfully projective.

Let f,g : T — S be ring homomorphisms. We say that f and ¢
are strongly distinct if, for every nonzero idempotent 7w € S, there exists
x € T such that f(z)m # g(z)m.

Lemma 2.1. [5, Lemma 1.2] Let T be a separable K -algebra, and f : T —
K a T-algebra homomorphism. Then, there exists a unique idempotent
m €T such that f(r) =1 and xw = f(x)w, for all x € T. Furthermore,
if {fj | 7 € J} is a nonempty set of pairwise strongly distinct K-algebra
homomorphisms from T into K, then the corresponding idempotents
75, j € J, are pairwise orthogonal and f;(m;) = 6;;1k, for alli,j € J.

The next results are slight extensions of similar results given in [5,
Section 2].
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Proposition 2.2. Suppose that T and R are K-algebras with T separable
over K, and V is a nonempty set of homomorphisms of K-algebras v :
T — E,, where E, = R1, and {1,}vecv is a set of nonzero idempotents
of R. Then, the following statements are equivalent:

(i) For eachv € V, the elements of V,, = {u € V| 1, = 1,,} are pairwise
strongly distinct.
(ii) For each u €V, there exist x;y, € Ey, yi, € T, 1 < i < my, such
that > iyt (Yiu) = Ouu Lo, for every u €V,
(iii) For each v €V, V, is free over E, in Homg (T, E,).

Proof. (i) = (ii) Since T is separable over K, for each v € V, E, ® T is
separable over F,. Also, for all u € V,, the mappings

fu: E,@T — E,,
xRy +— zu(y)

are pairwise strongly distinct homomorphisms. Then, by Lemma 2.1, there
exists Ty, = D1 Tiy @ Yiu € Fy @ T such that fi/(m,) = 0,41y, for every
u,u’ €V, and (ii) follows.

(ii) = (iii) Assume that V] is a finite subset of V;, and 3=, ¢y rwu’ = 0
in Homg (T, E,), where 7, € E, = E,. Hence, for u € V|, we have

Tu = (Zu’evv’ Ouu Lo) T = Zu’EVJ(Z;iul Tint (Yin) )T =
Z:iul in(Zu’GVv’ u/(yiu)ru’) =0,

showing that V,, is free over E,,.
(iii) = (i) Immediate. O

Corollary 2.3. Assume that T is a strongly separable extension of K,
R is a K-algebra and V' is a nonempty set of homomorphisms of K-
algebras v : T — E,,, where E, = R1, and {1,}yev is a set of nonzero
idempotents of R. Suppose that for each v € V', the elements of V,, = {u €
V| 1y = 1,} are pairwise strongly distinct. Then, #V, < rankg, Ty, for
every prime ideal p of K.

Proof. It follows from Proposition 2.2 that V, is free over E, in
Hompg (T, E,). Then, we have via localization that (V), is free over
(Ey)p in Homp, (Ty, (Ey)p), for every prime ideal p of K.

Furthermore, notice that 7T is a faithfully projetive K-module. So, if
n = rankg, Ty, then T, ~ (K,)" as Ky-modules and Homg, (T}, (Ey)p) =~
((Ey)p)™ as (Ey)p-modules. Consequently, #V,, = #(V,), < n. O
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Lemma 2.4. Assume that T and R are K-algebras and V is a non-empty
finite set of homomorphisms of K-algebras v : T — E,,, where E, = R1,
and {1,}vev is a set of nonzero idempotents of R. Suppose that K is
isomorphic to a direct summand of R as K-modules and E, is a faithfully
projective K-module, for each v € V. Then, the following statements are
equivalent:

(i) T is a strongly separable extension of K, for each v € V the ele-
ments of V, = {u € V| 1, = 1, } are pairwise strongly distinct and
rankxT = #V,.

(ii) T is faithfully projective over K, for eachv € V there exist x;, € E,,
Yiv € T, 1 < i < my, such that Yot Tint(Yiv) = Ouwle, for every
u €V, and rankgT = #V,,.

(ili) For each v € V, the mapping v, : By @ T — [lyey, Eu given by
ou(r ®@t) = (ru(t))uev,, is an isomorphism of R-algebras.

Proof. (i)=(ii) Clearly, T is faithfully projective over K, and the rest of
the assertion follows from Proposition 2.2.

(ii)=-(iii) Take v € V. The mapping ¢, is clearly an R-algebra homo-
morphism. ¢, is also surjective since for any r = (7u)uev, € [luev, Bu,
there is 2 = Y ey, 2 TuTiu @ Yiuw € Ey @ T and @,(2) = r. Fur-
thermore, rankp, ([T,ey, Eu) = rankpg, (E,)*V = #V, = rankgT =
rankg,(E, ® T'). Thus, it follows, by [8, Corollaire 1.2.4], that ¢, is an
isomorphism.

(iii) = (i) Since, for each v € V, ¢, is an isomorphism, it follows
that (rankg,(Ey)p)(rankg,Ty) = rankk,(Eg @ T), = rankg, By =
n(rankg,(Ey)p), thus rankg, T, = n, for all prime ideal p of K. Hence,
rankgT = n, so T is faithful over K.

In the sequel we will prove that T is a strongly separable extension of K.
It follows from the assumptions on R and E, that T ~ K ®T ~ K1, QT
is isomorphic to a direct summand of E, @ T ~ [[,ey, Eu = ()",
where n = #V,. Therefore, T is a finitely generated and projective K-
module. Furthermore, by [8, Proposition IIL.1.7 (c)] (Ey)" = [l,ev, Eu is
E,-separable. So, by [8, Proposition I111.2.2], T" is separable over K.

It remains to show that the elements of V,, are pairwise strongly distinct.
Given u € V, take s = (6;,411)1ev, € [lyey, Eu- Then, there exists z =
S riy @iy, € By @ T such that ¢, (2) = s. Thus, (37 riul(tiv))iev, =
<5lu1l)l€Vva that implies > ril(ti) = 0;4,1; for each [ € V,, and the
assertion follows by Proposition 2.2. Ol
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3. Groupoid actions on sets and algebras

The axiomatic version of groupoid that we adopt in this paper was
taken from [9]. A groupoid is a nonempty set GG, equipped with a partially
defined binary operation (which will be denoted by concatenation), where
the usual group axioms hold whenever they make sense, that is:

(i) For every g,h,l € G, g(hl) exists if and only if (gh)l exists and in
this case they are equal;

(ii) For every g,h,l € G, g(hl) exists if and only if gh and hl exist;

(iii) For each g € G, there exist (unique) elements d(g),r(g) € G such
that gd(g) and r(g)g exist and gd(g) = g = r(g9)g;

(iv) For each g € G there exists g~! € G such that d(g) = g~'g and
r(g) =g9~".

An element e € G is called an identity of G if e = d(g) = r(g~!), for
some g € G. We will denote by Gy the set of all the identities of G and
by G? the set of all the pairs (g, h) such that the product gh is defined.

The statements of the following lemma are straightforward from the
above definition. Such statements will be freely used along this paper.

Lemma 3.1. Let G be a groupoid. Then,

L s unique satisfying g~ 1g = d(g)

(i) for every g € G, the element g~
and gg—' = r(g),
(i) for every g € G, d(g~") =r(g) and r(g~") = d(g),
(iii) for every g € G, (¢71) "t =g,
(iv) for every g,h € G, (g,h) € G? if and only if d(g) = r(h),
(v) for every g,h € G, (h=1,g7') € G? if and only if (g,h) € G? and,
in this case, (gh)~!' = h=1g~ 1
(vi) for every (g,h) € G*, d(gh) = d(h) and r(gh) = r(g),
(vii) for every e € Gy, d(e) =r(e) =e and e ! = e,
(viii) for every (g,h) € G2, gh € Gq if and only if g = h™1,
(ix) for every g,h € G, there exists | € G such that g = hl if and only
if r(g) = r(h),
(x) for every g,h € G, there exists | € G such that g = lh if and only
if d(g) = d(h).

Given a groupoid G and H a nonempty subset of G, we say that H is
a subgroupoid of G if it satisfies the following conditions:

(i) For every g,h € H, if there exists gh then gh € H.
(ii) For every g € H, g~ € H.
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If, in addition, Hy = Gy, we say that H is an wide subgroupoid.

An action of a groupoid G on a nonempty set X is a collection « of
subsets X, = X, (4 of X and bijections v, : X;-1 — X, (9 € G) such
that:

(i) 7e is the identity map Idx, of X, for every e € Gy,
(ii) vy 0 Yn(x) = ygn(x), for every (g,h) € G* and = € Xj-1 = X (gp)-1.

In this case, we also say that X is a G-set. If, in addition, the union of the
subsets X¢, e € Gy, is disjoint and equal to X (shortly X = U.cq,Xe)
we say that X is a G-split set.

Example 3.2. A groupoid G is a G-split set. In fact, for X = G, take
Xy =1(9)G = {r(g)l | r(l) = r(9)} = Xpg) and 75 1 Xg1 — X
given by ~v,4(d(g)l) = gd(g)l (= gl = r(g)gl), for all g € G. Notice that
G = Ueeg,Xe by construction.

Example 3.3. Consider H an wide subgroupoid of GG. Take the equiva-
lence relation =y defined by: for every a,b € G, a =p b if and only if there
exists b~1a and b~'a € H . Notice that g = gd(g) € gH = {gh | 7(h) =
d(g)}, for every g € G, for H is wide. Then, the set % ={g9H | g € G}
is a G-split set. Indeed, for X = %, it is enough to take X, = {IH € %\
r(l) = 7(g)} = X, (g and to define v, : X;-1 — X, by 7,(IH) = glH,
for all g € G. As in the previous example, also here % = UeeGoXe by

construction.

An action of a groupoid G on a K-algebra R [1] is a collection (3 of
ideals F; = E,(,) of R and algebra isomorphisms 3, : E,-1 — E; (9 € G),
such that R is a G-set via (. In this case, the set

RP:={r e R | B,(rx) = rBy(x), forall g € G and z € By}

is indeed a K-subalgebra of R, called the subalgebra of the invariants of
R under the action . If each Ej is unital, with identity element 1,4, then
it is immediate to see that r € RP if and only if B4(r1,-1) = rl, for all
g€ aqG.

Let R, G and 8 = {By : E;-1 — Ey}g4ec be as above. Accordingly
to [1], the skew groupoid ring R x5 G corresponding to 3 is defined as the

direct sum
R+ G = €P Eyd,
geG
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in which the d4’s are symbols, with the usual addition, and multiplication
determined by the rule

2Bq(y)dgn if (g,h) € G*
0 otherwise,

(0g) (yon) = {

for all g,h € G, x € E; and y € E},. It is straightforward to check that
this multiplication is well defined and that R xg G is associative. If Gy
is finite and each E., e € Gy, is unital, then R xg G is also unital [6],
with identity element given by > ., 1ede, where 1. denotes the identity
element of F..

Hereafter, in this section,

e (F is a finite groupoid,

o v={v: X1 = Xy}gec is an action of G on a fixed nonempty
and finite set X such that X = UeeGOXe, that is, X is a finite
G-split set.

e and B ={B;: E;-1 — E,}gec is an action of G on a fixed faithful
K-algebra R such that each E. (e € Gy) is unital with identity
element 1., R = P .cq, Fe, and R° =K.

In this context, any left R xg G-module M is also an R-module via
the imbedding r +— ., 71ede, for all r € R. We put

MY ={z e M| (1,6,)x = 1,4z, for allg € G}

to denote the K-module of the invariants of M under G. Notice that

the K-algebra R is also a left R x3 G-module via the action (rgd,)z =

TgBg(wly-1), forallz € R, g € G and ry € E,, and R =RP =K.
Now, consider the set

Map(X,R) ={f: X - R | f(Xy) C E, forallg € G},

which clearly is an R-algebra (in particular, a K-algebra) under the usual
pointwise operations, whose identity element is > ., 1, where 17 is

defined by
1,g($) _ 1, if = E.Xg
0, otherwise

for every g € G.
Furthermoremore, it is straightforward to check that

o My = Map(X,R)g ={f € Map(X,R) | f(Xn) =0, if X}, # X4}
is an ideal of Map(X, R) with identity element 17;



A. PAQUES, T. TAMUSIUNAS 87

My = M, (g);
ag: My-—1 — My, given by

Bgo f1 _oy,-1(x) if z e X,

1/ _ — g g g

ag(f g 1)) {() otherwise,

is an isomorphism of K-algebras;

a={ay: Myg-1 — My}geq is an action of G on Map(X, R);

Map(X, R) = @ecq, Me;

Map(X, R) is a left RxgG-module via the action (rgdg) f = rgog(f1-1).

We will denote by A(X) the K-subalgebra of the invariants of
Map(X, A) under «, as well as under G, that is, A(X) = Map(X, R)* =
{f € Map(X, R) | ay(f1! 1) = f1y, for allg € G} = Map(X, R)“. No-
tice that if f € A(X), then By(f(x)) = f(74(x)), for every x € X 1.

For g € G and every x € X, set B, = E,. For g € G and x € X, let
pz : A(X) — E, be the algebra homomorphism given by p,(f) = f(zx), for
every f € A(X). Set Vy(X) 1= {ps | ¥ € Xy}. Clearly, Vy(X) = Vi(4)(X).

Lemma 3.4. Assume that K is a direct summand of R as K-modules
and Ey is a faithfully projective K-module, for each g € G. Then the
following conditions are equivalent:

(i) Foreveryg € G, the elements of V(X)) are pairwise strongly distinct,
rankrg A(X) = #V4(X) and A(X) is a strongly separable extension
of K;

(ii) For every g € G, the map ¢4 : E; @ A(X) — [Loex, Bz, given by
0g(r® f) = (rf(x))zex,, is an isomorphism of R-algebras.

Proof. It is an immediate consequence of Lemma 2.4. O

Following [1] R is a 3-Galois estension of R® = K if there exist
elements r;,s; € R, 1 <1i < m, such that 37 <, 7ifg(silg-1) = e gle,
for all e € Gy and g € G. The elements x;,y; are called the g-Galois
coordinates of R over RP. It is immediate to see that, in this case, the
trace map

tg: R— R, givenby tg(r)= Z By(rly-1),
geG

is a K-linear map, and t3(R) = K by [1, Lemma 4.2 and Corollary 5.4].
Hence, K is a direct summand of R as K-modules.
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Lemma 3.5. Assume that R is a §-Galois extension of K. Then, for
each g € G, the map ¢4 : Eq @ A(X) — [loex, Bz, given by 0g(r® f) =
(rf(x))zex,, is an isomorphism of R-algebras.

Proof. Since Map(X,R)® = A(X), it follows from [1, Theorem 5.3]
that the map pu : R® A(X) — Map(X,R) given by u(r ® f) = rf is
an isomorphism of R-algebras, which clearly induces an isomorphism
Ly Eg ® A(X)) = Map(Xy, Ey). On the other hand, Map(Xy, Ey) ~
[loex, Bz, as R-algebras, via the map 7y : f — (f(2))zex,. Since ¢4 =
Ngltg, the result follows. O

4. The Galois-Grothendieck-type correspondence

We start recalling that G, R, X, 5 and « are as in the previous section.
Let V(X) = Uyeq, Ve(X) = {pala € Xoye € Go} = {plz € X, € GY.

Let Y and W be G-sets via the actions ¢ = {g,: Y;-1 — Y }4ec and
¥V = {0, : Wy = Wy}geq, respectively. A map ¢ : Y — W is said an
isomorphism of G-sets if the following conditions are satisfied:

(i) ¢ is a bijection;
(ii) ¥ (Yy) = Wy, for all g € G;
(iii) ¥(eqg(y)) = Vy(¥(y)), forall y € Y,-1 and g € G.

Lemma 4.1. Assume that R is a 5-Galois extension of K. Then:

(i) V(X) is a G-split set;
(ii) The elements of Vy(X) are pairwise strongly distinct, for every
geG,;
(iii) The map w: X — V(X), given by w(x) = pg, is an isomorphism
of G-sets.

Proof. (i) Take 0 = {0y : V;-1(X) — Vy(X)}geq, where o4(p.)(f) =
By(f(x)), for every x € X -1. Observe that f € A(X), hence o4(p.)(f) =
By((2) = F(1p(@)) = Dy (f) and, consequently, ay(p.) € Vy(X),
showing that the map o, is well-defined. Moreover, o, is a bijection with
inverse o1, for every g € G. It is immediate to check that o is an action
of G on V(X), and V(X) = Ueq, Ve(X) by construction.

(ii) It follows from Lemma 3.5 that, for every g € G, the map ¢, : E4®
A(X) = Tlzex, Eo, given by ¢g(r® f) = (rf(2))sex,, is an isomorphism
of R-algebras. Thus, for each x € X, there exist r;; € E4 and f;; €
A(X), 1 <i < my, such that (331" rig fiz (y))yex, = (0zy1g)yex, . Hence,
Yot rinpy(fiz) = Doi Tiw fiz(y) = 0zylg, for every y € X4, and the
assertion follows by Proposition 2.2.
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(iii) Consider the surjective map wg : Xy — V,4(X) given by wy(x) = pa,
for every x € X,. Indeed, wy is a bijection. If p, = p,, for z,y € X,, then

F() = f(y), for every f € A(X).
On the other hand, the map 71, : Map(Xy, Eq) — erXg E,, given by

ng(f) = (f(z))zex,, is an isomorphism of R-algebras, whose inverse is
the map 7 : [[,ex, Bz — Map(Xy, Ey) given by ny(r)(z) = ry, where
r = (rz)eex, € llzex, Es- Furthermore, the map ¢, : E; ® A(X) —
[loex, Bz, given by @q4(r @ f) = (rf(z))zex,, is also an isomorphism of
R-algebras, by Lemma 3.5.

Thus, Eg ® A(X) ~ [lex, o = Map(Xy, Eg), and so, for every
p € Map(Xy, Ey), there exists A = >71,,,, 7 ® fi € By @ A(X) such
that p = 7 0 ¢4(A). Consequently,

pla) = (0 0 pg(N)) (@) = ng(( Y 7ifi(2))zex,)(x)

1<i<m
= Z Tlfl(.%) = Z Tzfz(y) = p(y)7
1<i<m 1<i<m

for every p € Map(Xg, Ey). So, x = y.

Therefore, the map w: X — V(X), given by w(z) = wy(x) if z € Xy,
is also a bijection, and w(X,) = V,(X).

Finally, w commutes with the actions o and ~. Indeed, for z € X,
and f € A(X), we have

w(g(@))(f) = pry(a)(f) = f(1g(2))
= By(f (@) = ag(p2)(f) = og(w(@))(f),

which concludes the proof. ]

For any K-algebras B and C, we will denote by Algx (B, C') the set
of all K-algebra homomorphisms from B into C.

Lemma 4.2. Let B be a K-algebra and g € G. Suppose that E, is

faithfully projective and there exists an isomorphism of Eg-algebras o :
E,® B — (Ey)", ng > 1. Then:

(i) B is faithfully projective over K with constant rank ng;

(ii) B is a strongly separable extension of K ;

(iii) There exist ©(g1)s-- -, P(gny) € Algr (B, Eg) such that o4(r @ b) =
(16(g,)(b))1<i<n for every r € Ey and b € B;

(iv) The elements of Vy(B) = {p(gi| 1 < i < ny} are pairwise strongly
distinct;

(v) Vyg(B) = Algk (B, E;) whenever the elements of Algk (B, Ey) are
pairwise strongly distinct.
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Proof. The assertions (i) and (ii) follows by the same arguments used in
the proof of Lemma 2.4((iii)=(i)).

(iii) Denote by ny : B = E4 ® B the map given by b — 1, ® b, and
by 74+ (Eg)" — E4 the it"-projection, for every 1 < i < ng,. Clearly,
the maps (i) := (g5 PgTg are in Algr (B, Ey) and it is easy to see that
@g(r @) = (10(4,)(b))1<i<n,, for all 7 € E; and b € B.

(iv) Since ¢4 is an isomorphism, for each 1 < i < ng, there ex-
ist r;; € By and by € B, 1 <1 < my, such that @Q(Zﬁgl T @ by) =
(212 rapg.g) (b)) 1<i<n, = (Bij1g)1<j<n,, that is, 3379 sup (g (bi) =
d;,j14, for every 1 < j < n4. Consequently, the elements of V(B) are
pairwise strongly distinct, by (ii) and Proposition 2.2.

(v) Suppose that the elements of Algk (B, E,) are pairwise strongly
distinct. Then, by (i), (ii) and Corollary 2.3, #Algx (B, E,) < rankg B =
ng = #V,(B) < #Algk (B, E,). Thus, V,(B) = Algx (B, E,). O

The next lemma provide us a necessary and sufficient condition for the
set V(B) = Ueeg, Ve(B) to be a G-set. Again here, this union is disjoint
and finite by construction.

Lemma 4.3. Let B, E,, ¢, and Vy(B) (g € G), be as in Lemma 4.2.
Then the following assertions are equivalent:

(i) V(B) is a G-set via & = {& : Vy1(B) — Vy(B)}eeq, with
g(P(g-1.))(0) = By(p(g-1,0) (b)), for every b € B;

(ii) For every g,h € G with r(g) = r(h) and Vj-1(B) = V},-1(B), the
elements £g(pg-14)) and En(pg-15)) are strongly distinct for all
1<4,j < n,.

Proof. (i) = (ii) It is enough to notice that if r(g) = r(h) then Vy(B) =
V3, (B). Now, the assertion follows from Lemma 4.2(iv).

(ii) = (i) It is enough to show that each £, g € G, is a bijection for the
conditions (i)-(ii) of the definiton of a groupoid action are straightforward.
Also, each &, is injective by construction, thus it is enough to prove that
it is surjective.

We start by noticing that the elements of V-1 (B) are pairwise strongly
distinct, by Lemma 4.2. Consequently, the elements of ,(V,-1(B)) are
pairwise strongly distinct and it follows from the assumption that also the
elements of Yy (B) = Unearn)=r(g)} $n(Vy-1(B)) are pairwise strongly
distinct.

Clearly, Y, (B) C V,(B), and noting that r(r(g)) = r(g) and Vy(B) =
Vi) (B) = Vi(g)-1(B) = &(g)(Vi(g)-1(B)), we have that Vy(B) C Yy(B),
for every g € G.
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Furthermore, {,(V,-1(B)) C Yy(B) = Vy(B) and by Lemma 4.2
#Eg(Vy-1(B)) = #V,-1(B) = ng1 = rankg B = ny, = #Vy(B). Hence,
§g(Vy-1(B)) = Vy(B), and &, is a bijection. O

Assume that S = @j_; S; is a K-algebra, where S; = S1; and
{1;}1<j<n are pairwise orthogonal central idempotents in .S, for some
n > 1. An K-algebra T is said to be S-split if:

(i) For each 1 < j < n, there exists an isomorphism of K-algebras
¢j S ®T — (S;)™, for some given m > 1;

(i) V(T) = Uj=; V5(T) is a G-set, where V;(T') is defined as in Lemma 4.2.

Notice that (i) is equivalent to say that S ® T'~ S™ and, in particular,
V(T) is a finite G-split set.

Lemma 4.4. Let B, E,, ¢, and Vy(B) (g € G) be as in Lemma 4.2.
Assume that R is a -Galois extension of K and V(B) is a G-set via
§=1{& : Vy-1(B) = Vy(B)}gec- Then, the mapping v : B — A(V(B)),
given by v(b)(¢(g,4)) = @g,0)(b), for b € B and ¢, € V(B), is an
isomorphism of K-algebras.

Proof. We start by checking that v is a well defined. Indeed, for g € G,
be B and ¢, € V(B), we have

g1, -1 )(p(g,i)) = Bg o V(D)1 1 0 Eg-1((g.0)) = Ba(V(b)(§g-1 (P(g,0))) 1g-1)
= Bg(&g- (@(gz J(0)1g-1) = Bg(Bg—1(p(g,iy(b)1g)14-1)
= Br(e)(P(g.0) (D) Lr(g)) = P(9.0) (O)1r(g)
= ©(g,0)(D)1g = v (D) (¢(g,i))1g = ¥(D) 1} (¥ (g.5))s

showing that v(b) € A(V(B)). Clearly, v is an algebra homomorphism.
It remains to check that it is a bijection.

Given a,b € B, if a # b, then ¢,4(15 ® a) # @4(1, ®b), since for each
g € G, Ey is faithful over K and ¢, is an isomorphism. Thus, there exists
1 < i < ng such that v(a)(@(g,i) = (g, (a) # (g, (b) = v(0)(P(g,))- So,
v(a) # v(b) and v is injective.

By Lemmas 3.5 and 4.2, the K-algebras A(V(B)) and B are faithfully
projective and separable, and rankx A(V(B)) = #V,(B) = rankgB.
Since, v(B) ~ B as K-algebras, it follows from [5, Lemma 1.1] that
v(B) = A(V(B)), so v is surjective. O]

Let p_gpitUlg denote the category whose objects are the R-split K-
algebras and whose morphisms are algebra homomorphisms. Also, let
G—splitsinSet denote the category whose objects are finite G-split sets and
whose morphisms are G-maps (i.e, maps that commute with the action of
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Q). Let 0 :q_spiit FinSet — p_sprir Alg and 0 :p_gpiie Alg — G sprir FinSet
be the maps given by X — A(X) and B — V(B), respectively.

Theorem 4.5 (The Galois-Grothendieck equivalence). Assume that R is
a 8-Galois extension of K and Ey is faithfully projective, for every g € G.
Then, 0 is a contravariant functor that induces an equivalence between
the categories ¢_spit§inSet and p_ s 2Alg, with inverse §'.

Proof. By Lemma, 3.5, given a finite G-split set X, the map ¢, : Fy ®x
A(X) — Ilyex, Ev defined by ¢q4(r @k f) = (rf(z))zex, is an isomor-
phism of R-algebras, for every g € G. Thus, it is immediate, from the
definitions, that V;(A(X)) = V,(X), for every g € G. Indeed, it is enough
to see that

g0 (f) = T(g,0)PgMg (f) = Tg.0)(0g(1g @K f))
= 7(g,0) ((f(2))zex,) = f(x) = p(f),

for all f € A(X) and 1 <4 < ngy. Hence V(X) = V(A(X)).

Finally, recall that X ~ V(X) as G-sets, and B ~ A(V(B)) as R"-
algebras, by Lemmas 3.5, 4.1 and 4.4. Hence, X ~ V(A(X)) = 0'(0(X))
and B ~ A(V(B)) = 6(0'(B)). O

5. The Galois-type correspondence

Let R, G and 8 = {f; : E;-1 — E; | g € G} be as in the previous
section, and H C G an wide subgroupoid of G. Then, g = {f} : Ej-1 —
En | h € H} is an action of H on R. Furthermore, recall from Example 3.3
that % = {gH |g € G} is a finite G-set via the action v = {v, : X;-1 —
Xg}gea, where Xy = {IH € S| r(l) = r(9)} = X, (g and v(1H) = glH,
for all g € G. Recall also that % = UeeGoXe'

Lemma 5.1. A(%) ~ RPH s K -algebras, for every wide subgroupoid H
of G.

Proof. We start by noticing that Y ..q f(eH) € RPH | for every f €
A($). Indeed, recall that f(eH) € E., for all e € Gy, By-1(f(1H)) =

fy-1(IH)) = f(h~YH), for all IH € X}, and hH = r(h)H, for all
h € H. So,

n(Y fleH)y-1) = > Bu(f(eH)1y-1) = Bu(f(d(h)H))

ecGo ecGo

= Br(f(h"'hH)) = Br(By-1(f(RH))) = By (f(RH))
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= f(hH) = f(r(h)H) = f(r(h)H)1.n) = f(r(h)H)1y

= > fleH)1p.

ecGy

Therefore, the map

0 AS) — RPH
fo— Yeeq, fleH).

is well defined.

Conversely, given ¢1,g2 € G and r € RPH_if g¢gH = ¢oH then
591(7“1g;1) = By, (rlg;1). Indeed, from ¢g1H = g2H it follows that for
any hy € H there exists hg € H such that gihy = gohe. So, g1 =
gld(gl) = gﬂ“(hl) = glhlhl_l = gghghl_l. Furthermore, E(
E,, =F yand £ 1 = E, , 1. Thus,

92 2Ry

g2hahTH -1 =
(hahi ')~

591(7491—1) - ﬁgghgh (1h1h 19_1) BQQ(ﬁhzh 1(r1 hihy gy 1))
= Bgz(ﬁ}mh 1(rl hihy* *ﬂﬁhgh (1h1h 19’1))
= 692(6}12’11( hihy )5}12/1 (hlhgl)) 692( hahy )
592(Tlg;1)

Hence, the map
¢ : RPv — Map(%, R),
roo— 0

where 0/.(1H) = B)(r1;-1), is well defined. In fact, 0..(gH) € A(%) since

0‘9(9;1;71)(”{) = 59(9;1; 1 (g )

1(1H))) = By(0L(g~ TH)1,1)
(7“11 ' )) ﬁ(
— (L)
o(LH),

-1y (51(7“11 1))
ﬁr(g)(ﬂl(rll_l))
— Bi(rl)1, =611

for all g € G such that r(g) = r(l). If r(g) # r(l) then ay(6,.1) )(I1H) =
0= 6.1 (IH).

Clearly, 6 and 0" are homomorphisms of K-algebras. Furthermore,

000(r) = 0(6L) = Sec, 0, (H)
= ZeEGO /Be(rl ) ZeeGO rle =,
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for every r € R, and

00 O(F)GH) = 05 i (9H) = Byl Seccy )1y )

= By(f(d(g)H)) = Bg(By—1(f(gH)))
= By (f(gH)) = f(gH),

for every f € A(%) and g € G. The proof is complete. O

For any K-subalgebra T of R put Hr = {g € G | By(tl,-1) =
tly, for all t € T'}. It is easy to check that Hp is an wild subgroupoid of
G. We say that T is -strong if for every g, h € G such that r(g) = r(h)
and g~'h ¢ Hp, and, for every nonzero idempotent e € E, = E}, there
exists an element ¢ € T' such that 3,(t1,-1)e # Bp(t1,-1)e.

Lemma 5.2. For each gH € %, let pgp - A(%) — E,(g) the homomor-
phism of K -algebras given by pgu(f) = f(gH), for every f € A(%) If
the elements of Vyu = {piar| (1) =1r(9)} are pairwise strongly distinct,
then RPH s B-strong.

Proof. By the Lemma 5.1, A(%) ~ RPH via the map 6. Consider bgH =
PgH © 6~ : RPH — E,(y)- Since the elements of Vi are pairwise strongly
distinct, it is easy to see that the elements of VgH ={o| r)=r(g)}
are also pairwise strongly distinct.

Let T = RP# and take g, h € G such that r(g) = r(h) and g~ 'h ¢ Hrp.
Given a nonzero idempotent e € £, = Ej,, there exists r € RPH such that

dgr(1)e # ¢pu(r)e. Thus,

By(rlgr)e = 071 (r)(gH)e = pgr (0~ (r))e = dgm(r)e
# onu(r)e = ppa(07'(r))e=60""(r)(gH)e
= Br(rly-1)e.
Therefore, RPH is f3-strong. O

Lemma 5.3. Assume that R is a 3-Galois extension of K and suppose
that T is a subalgebra of R which is separable over K and [3-strong. Then
there exist elements x;,y; € T, 1 < i < m, such that 337" 2By (yily—1) =
de,gle, for all e € Go. In particular, T is a faithfully projective K-module.

Proof. Let v=>" 2;®y; € T ®T be the separability idempotent of T’
over K and p : T ® T the multiplication map. For g € G, define

by TOT —  T®E,
TRy = 1@ By(yly-1).
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and take vy, = p(hy(e)) = >0 2iBy(yil,—1) € E,. Clearly, vy is an idem-
potent of Fy, for p and 1 are K-algebra homomorphisms. In particular,
Ve = lg, for all e € Gy.

Moreover, i and 1), are T' ® K-linear. Thus, for every t € T,

tug = tu(Yg(e)) = (E @ 1r).u(tg(e)) = u(ty((t @ 1r)e))
= g(iégl((h; ®t)e)) = u(Yg((1r © 1)) u(ty(e))

Since T is -strong, if g & Go, then v, = 0, that is, >34 284 (yil,-1) = 0.
For the second part, it is enough to take the maps f; € Homg (T, K)
given by fi(t) = trg(yit), 1 <i < m, and to see that

n

Stz =) Bylyitl 1)z = > 1t = 1zt =t,

i=1 i=1geG e€Go
for every t € T. O

Lemma 5.4. Assume that R is a -Galois extension of K and let T be
a subalgebra of R. Then the following conditions are equivalents:

(i) T is separable over K and [3-strong;
(ii) T = RPrr.

In particular, in this case, T is R-split.

Proof. (i) = (ii) By Lemma 5.3, T' is projective and finitely gener-
ated as K-module. Since T' C RPHr | we have T, C (RPar),, and thus
rankg, T, < rankg, (RPrir ), for every prime ideal p of K. We shall prove
that indeed rankg, T, = rank, (RPrr), for every prime ideal p of K,
and, consequently, T' = R’Hr | by [5, Lemma 1.1].

Let {g; € G |1 <i < n} be a left tranversal of Hy in G. Define

fi T — Egi
t — 691.(1519_71).

Clearly, the f;’s are K-algebra homomorphisms and the elements of
Vg, = {fj | 1g; = 14} are pairwise strongly distinct, for 7" is -strong.
Therefore, by Corollary 2.3, #V,, < rank r8), Tps for every prime ideal p
of K.
By Lemma 3.5, we have that E, ® RPHr  ~ IL.., e\ E., thus
gi LEE( Hp )gi
(Eg)p ®k, (RPrr), ~ [ee (Ey)p- Recall from Example 3.3 that

Hp )gi



96 A GALOIS-GROTHENDIECK-TYPE CORRESPONDENCE

(HQT)QZ. ={lHr| r(l) =r(gi)}. Then, #V,, = #(HQT)gi. Therefore,

rank:Kp(RﬁHT)p = rank:(Egl_)p((Egi)p Rk, (RBHT)p)
- rank:(Egi)p er(%)gi (Ez)p
= #(H%)gi = #Vy, < rankgs), Ty,

and so rankg, T, = rankg, (RPrr),,.

(ii) = (i) By Lemmas 3.5 and 2.4, T = RPir ~ A(HQT) is separable
over K. Furthermore, by Lemma 4.1 the elements of V,z, are pairwise
strongly distinct. Hence, T is g-strong, by Lemma 5.2.

The last assertion follows from Lemmas 3.5 and 4.1. Ol

Theorem 5.5 (The Galois correspondence). Assume that R is a 5-Galois
extension of K and E, is faithfully projective, for every g € G. Then
the correspondence H — RPH is one-to-one between the set of all the
wide subgroupoids of G and the set of all the subalgebras of R which are
separable over K and (-strong.

Proof. Let wsg(G) be the set of the wide subgroupoids H of G, quot(G)
the set of the quotients sets % of G and sss(R) the set of the separable
and fS-strong K-subalgebras of R. The bijection between wsg(G) and
quot(G) is obvious. The bijection between quot(G) and sss(R) follows
from Lemma 5.4 and Theorem 4.5. O

6. A final remark

Again, R, G and  are as in the previous sections. In almost all
results in the two last sections the assumption that Ej, is a faithful
K-module was required. So, it is natural to ask under what conditions
such an assumption occurs. To answer this question it is necessary to
have a description of the elements in R® = K. An easy calculus shows
that an element z = > .o, Te € R = @ e, Ee is in RS if and only if
Tpg) = By(Ta(g)), for all g € G. It is an immediate consequence of this
fact that, given x € K and g € G, z1y = 0 if and only if z,(,) = 0 if and
only if x4y = 0. Therefore, given x € K and g € G, x1;, = 0 implies
x = 0 if and only if, for all h € G, either d(h*') = d(g) or d(h*!) = r(g).
From these considerations we have the following lemma.

Lemma 6.1. For each g € G, E; is faithful over K if and only if either
d(h*Y) = d(g) or d(h*™) =r(g), for all h € G.

The following two examples illustrate the above lemma. Notice that
both of them are also examples of §-Galois extensions.
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Examples 6.2. (1) Consider R = Sv; @ Svy @ Svz @ Svg, where S is a
ring and vy, ve, v3 and vy are pairwise orthogonal central idempotents of R,
with sum 1g. Let G = {g,97*,d(g),7(g9)} be a groupoid and 3 the action
of G on R given by: E, = Er(g) = Svs ® Sy, ngl = Ed(g) = Sv; & Sve,
Br(g) = IE’V‘(g)’ Bd(g) = IEd(g)’ ﬁg(avl + bvz) = avsy + bU4, 69—1(0,7)3 + bv4) =
avy +bvg, for all a,b € S. It is easy to see that R is a §-Galois extension of
K = RS = S(vy +v3) ®S(ve +v4), with S-Galois coordinates x; = v; = v,
1 <@ < 4. Furthermore, it is immediate that 2F; = 0 = xEg if and
only if x =0, for all x € K.

(2) Let R = Sv; @ Svg @ Svs @ Svy @ Svs @ Svg, where S is a ring
and v;, 1 <1 < 6, are pairwise orthogonal central idempotents of R, with
sum 1p. Take the groupoid G' = {g,97*,d(g),7(g),h = h=1,d(h) = r(h)}
and B = {B; : E;-1 — Ej}icq, where E; and 3, for | = d(g),7(g), 9,97,
are as in the example (1), B, = E,) = Svs + Svs, By = 1B,
and fBp(avs + bvg) = avg + bus. Again, R is a (-Galois extension of
K = R = S(v1 +v3) @ S(va +v4) ®S(vs+vg), with B-Galois coordinates
x; =v; = y;, 1 <i < 6. Nevertheless, in this case we have, for instance,
zE, =0for x =v; +v3 € K.
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