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Semiabelian and self-returning of points

of n-ary groups

Yu. I. Kulazhenko

Communicated by V. V. Kirichenko

Abstract. In this article new criterian Semiabelian of n-ary
Groups is expressed through Self-Returning free point comparatively
element specially built to sequences, consisting of mediums of all
sides free polygonal figure with even number of the tops and one
tops this polygonal figure in term symmetrical point and vector.

Introduction

The investigations in the theory of n-ary groups originated by
W. Dörnte [1] and E. Post [2] find more and more followers (see, for
example, [3–7]).

From our point of view, the interest can be explained by the fact
that various applications of the theory are widely developed. Besides, the
appearance of new methods such as functorial and geometrical enabled
to get a number of interesting results in the field of multi-rings, polyadic
multi-rings and universal algebras (see, for example, [8–11]).

Ternary groups which were studied by H. Prufer [12] and J. Certaine
[13] found their application in projective geometry [14], affine geometry
[15, 16] and other fields of knowledge. Having applied totally new ap-
proaches and methods of investigation S.A.Rusakov generalized the above
mentioned results for the case of an n-ary group (n > 2) in [17]. It should
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be mentioned that the study of the elements of affine geometry by means
of the theory of n-ary groups and the study of properties of n-ary groups
connected with the properties of objects of affine geometry were realized
by many authors (see, for example, [3-7, 18, 19]). We note that in such
applications especially important role play so-called the semiabelian n-ary
groups.

In this connection an important problem in the n-ary group theory is
the problem of finding new criteria of semiabelian of n-ary groups. For
more details concerning the n-ary groups and the applications of n-ary
groups, the reader is referred to [18, 19].

In the note, new criteria of semiabelian of n-ary groups based on the
concept of self-returning elements of n-ary groups.

1. Preliminaries

Throughout this paper, G always denotes an n-ary group.
Let m and k be integers such that m > 0 and k > 0.
1) If k > 0 and m 6 k, then we use xk

m to denote the sequence
xmxm+1 . . . xk (xm, xm+1, . . . , xk ∈ G). In particular, xm

m = xm.

2) If k > 0, then we write
k
x to denote the sequence xx . . . x of length

k; if k = 0, then
0
x is an empty sequence, that is, the sequence which does

not contain any element (x ∈ G).
Recall that universal algebra 〈G, ( )〉 with a single n-ary operation

( ) : Gn → G (n > 2) is called an n-ary group [20] if the following
conditions are satisfied:

1) The operation ( ) is associative on G, that is,

((a1 . . . an)an+1 . . . a2n−1) = (a1 . . . ai(ai+1 . . . ai+n)ai+n+1 . . . a2n−1)

for all i = 1, . . . , n and for all a1 . . . a2n−1 ∈ G;
2) The equation

(a1 . . . ai−1xiai+1 . . . an) = b

has a unique solution in G for any i = 1, . . . , n and a1, . . . , ai−1, ai+1, . . .,
an, b ∈ G.

Recall that G is said to be semiabelian if for any sequence x1, . . . , xn ∈
G the equality

(x1 . . . xn) = (xnx2 . . . xn−1x1)

is true.
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The succession e
k(n−1)
1 ∈ G where k > 1 is said to be a neutral

k(n − 1)-succession G if (e
k(n−1)
1 u) = u = (ue

k(n−1)
1 ) for any element

u ∈ G.
Any n-ary group has its neutral successions. It is conditioned, in

particular, by the solvability of the equation (ae
k(n−1)−1
1 y) = a in an n-

ary group. Neutral successions in an n-ary group are defined ambiguously.
The succession b

j
1 ∈ G is called a reverse succession to the succession

ai
1 ∈ G if the successions b

j
1ai

1 and ai
1b

j
1 are neutral.

It is clear that if b
j
1 is a reverse succession to ai

1, then ai
1 is a reverse

succession to b
j
1.

It should be emphasized that a reverse succession the length of which
is more than one is defined ambiguously.

An n-ary group can be an algebra with two or more operations [6]. In
particular, an n-ary group can be an algebra with one associative n-ary
operation and one unary operation.

The algebra G = 〈X, ( ),[−2] 〉 of the type, where n > 2 is called an
n-ary group [6] if

1) An n-ary operation ( ) on the set X is associative;

2) For any elements x and y from X the equations (x[−2] n−2
x (

n−1
x

y)) = y = ((y
n−1
x )

n−2
x x[−2]) are true.

The symbol x[−2] which can be seen in the given equation is the

solution of the equation (y
2(n−1)

x ) = x, i.e. (x[−2] x
2(n−1)

x ) = x, where
x, y ∈ G.

It follows from the last equation that x[−2] 2n−4
x will be a reverse

succession to any x ∈ G. Indeed, (x[−2]x
2(n−1)

x ) = (xx[−2] 2n−4
x x) = x.

Apparently, xx[−2] 2n−4
x = x[−2] 2n−4

x x are neutral successions.
Hereinafter, the elements of an n-ary group G will be called points.

According to [17] the set of two points a and b is called a segment
and designated either [ab] or [ba]. The succession of k arbitrary points
〈a1, a2, . . . , ak〉 is called a k-angle G, where a1, a2, . . . , ak ∈ G.

It is proved in [17] that for any points a, b, c ∈ G the equations

(ab[−2]
2n−4

b c) = b, (1)

(cb[−2]
2n−4

b a) = b (2)

are equivalent.
If equation (1) or (2) is true b is called the middle of the segment

[ac]. If equation (1) (equation (2)) is true the point c (point a) is called a
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point symmetric to the point a (point c) with respect to the point b and
designated by Sb(a) (by Sb(c)), i.e. c = Sb(a) (a = Sb(c)).

It follows from (1) or (2) that

Sb(a) = (ba[−2] 2n−4
a b), (3)

Sb(c) = (bc[−2] 2n−4
c b) (4)

It is established in [2] that an n-ary group G will be semiabelian if

for any x, y, z ∈ G the equation (xy[−2]
2n−4

y z) = (zy[−2]
2n−4

y x) is true.
Hereinafter, the reverse succession to any x ∈ G will be designated

by x−1, i.e. x−1 = x[−2] 2n−4
x . Then equations (3) and (4) can be written

in the forms Sb(a) = (ba−1b), Sb(c) = (bc−1b), accordingly. And an n-
ary group G will be semiabelian if for any x, y, z ∈ G the equation
(xy−1z) = (zy−1x) is true.

We remind from [21] that the point Sak
(. . . (Sa2

(Sa1
(p))) . . .) is called

a round of the elements of the succession 〈a1, . . . , ak〉 by a point p, where
a1, . . . ak, p ∈ G. If Sak

(. . . (Sa2
(Sa1

(p))) . . .) = p, they say that p self-
returning with respect to the elements of the succession 〈a1, . . . , ak〉.

2. Semiabelian and self-returning of points of

n-ary groups

Theorem 1. Let b1, . . . , bk be arbitrary points of an n-ary group G (k ∈ R,

k > 4, k is even), and a1, . . . , ak ∈ G so that

b2 = Sa1
(b1), b3 = Sa2

(b2), . . . , bk = Sak−1
(bk−1), b1 = Sak

(bk). (5)

An n-ary group G will be semiabelian when an arbitrary point p ∈ G

self-returning with respect to the elements of the succession 〈a1, . . . , ak〉,
i.e. when the equation

Sak
(. . . (Sa2

(Sa1
(p))) . . .) = p (6)

is true.

Proof. Let G be a semiabelian n-ary group. We shall find out the validity
of equality (6).

Let us consider the left part of equality (6) with account of the fact
that Sa(b) = (ab−1a) and the neutrality of successions xx−1 and x−1x for
any x ∈ G. We have

Sak
(. . . (Sa2

(Sa1
(p))) . . .) = Sak

(. . . (Sa2
(a1p−1a1)) . . .) =
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= Sak
(. . . (Sa3

(a2a−1
1 pa−1

1 a2) . . .).

Making the similar transformations and taking into account that k is
an even natural number we obtain

Sak
(. . . (Sa2

(Sa1
(p))) . . .) = (aka−1

k−1 . . . a2a−1
1 pa−1

1 a2 . . . a−1
k−1ak). (7)

As the element p ∈ G is arbitrary we consider p = b1. In this case we
re-write equality (7) in the form

Sak
(. . . (Sa2

(Sa1
(b1))) . . .) = (aka−1

k−1 . . . a2a−1
1 b1a−1

1 a2 . . . a−1
k−1ak). (8)

On the other hand, with account of equalities (5) the expression
Sak

(. . . (Sa2
(Sa1

(b1))) . . .) is equal to b1, i.e.

Sak
(. . . (Sa2

(Sa1
(b1))) . . .) = b1. (9)

Then with account (8) and (9)

b1 = (aka−1
k−1 . . . a2a−1

1 b1a−1
1 a2 . . . a−1

k−1ak). (10)

We multiply both the parts of equality (10) on the right by the
expression a−1

k ak−1 . . . a−1
2 a1b−1

1 p, we obtain

(b1a−1
k ak−1 . . . a−1

2 a1b−1
1 p) =

= (aka−1
k−1 . . . a2a−1

1 b1a−1
1 a2 . . . a−1

k−1aka−1
k ak−1 . . . a−1

2 a1b−1
1 p). (11)

With account of the neutrality of successions xx−1 and x−1x for any
x ∈ G we re-write equality (11) in the form

(b1a−1
k ak−1 . . . a−1

2 a1b−1
1 p) = (aka−1

k−1 . . . a2a−1
1 p). (12)

With account of (12) equality (7) can be re-written in the form

Sak
(. . . (Sa2

(Sa1
(p))) . . .) = (b1a−1

k ak−1 . . . a−1
2 a1b−1

1 pa−1
1 a2 . . . a−1

k−1ak) =

= ((b1a−1
k ak−1 . . . a−1

2 a1b−1
1 p)a−1

1 a2 . . . a−1
k−1ak) =

= (pa−1
k ak−1 . . . a−1

2 a1b−1
1 b1a−1

1 a2 . . . a−1
k−1ak) = p. (13)

Based equality (13) we conclude that

Sak
(. . . (Sa2

(Sa1
(p))) . . .) = p.

2. Let equality (6) be true. We shall prove that G is a semiabelian
n-ary group.
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Since we did not use the property of semi-commutativity of the group
G in the transformations from point 1 to equality (13) inclusive we
consider without repeating the reasoning that

Sak
(. . . (Sa2

(Sa1
(p))) . . .) = (b1a−1

k ak−1 . . . a−1
2 a1b−1

1 pa−1
1 a2 . . . a−1

k−1ak).

Then with account of equality (6) and (7) we have

(b1a−1
k ak−1 . . . a−1

2 a1b−1
1 pa−1

1 a2 . . . a−1
k−1ak) = p. (14)

Let xn
1 be arbitrary points from G. We consider p = (xn

1 ), a1 = xn,
a2 = a3 = . . . = ak = b1 = x1.

With account of equality (14) and neutral successions xx−1 and x−1x

for any x ∈ G we have

(xn
1 ) = ((xn

1 )x−1
n xn x−1

1 x1 . . . x−1
1 x1

︸ ︷︷ ︸

k

) =

= (x1x−1
1 . . . x1x−1

1
︸ ︷︷ ︸

k/2

xnx−1
1 (xn

1 )x−1
n x1 x−1

1 x1 . . . x−1
1 x1

︸ ︷︷ ︸

k/2−1

) =

= (xnx−1
1 (xn

1 )x−1
n x1) = ((xnx−1

1 x1xn−1
2 (xnx−1

n x1)) =

= (xnxn−1
2 x1).

G is a semiabelian n-ary group.

Theorem 2. Let bk
1 be a succession of points of an n-ary group G (k ∈ N ,

k > 4, k is even) and ak
1 ∈ G so that

b2 = Sa1
(b1), b3 = Sa2

(b2), . . . , bk = Sak−1
(bk−1), b1 = Sak

(bk). (15)

An n-ary group will be semi-commutative only when the equality

−−−−−→
pSa1

(p) +
−−−−−−−−−−−−−→
Sa1

(p)Sa2
(Sa1

(p)) + . . . +

+
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−→
Sak1

(. . . (Sa2
(Sa1

(p))) . . .)Sak
(Sak−1

(. . . (Sa2
(Sa1

(p))) . . .)) =
−→
0 . (16)

is valid.

Proof. 1. Let G be a semi-commutative n-ary group. We shall establish
the validity of equality (16).

We shall substitute the expression in equality (15) for the expression
from the last but one and obtain

b1 = Sak
(Sak−1

(bk−1)). (17)
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As a result of the similar procedure we obtain

b1 = Sak
(Sak−1

(. . . (Sa2
(Sa1

(b1))) . . .)). (18)

We shall consider the right part of equality (18) with account of
determining symmetric points. We have

Sa1
(b1) = (a1b−1

1 a1),

Sa2
(Sa1

(b1)) = Sa2
(a1b−1

1 a1) = (a2(a1b−1
1 a1)−1a2) = (a2a−1

1 b1a−1
1 a2).

Keeping the same procedure and taking into account that k is even
we have

Sak
(Sak−1

(. . . (Sa2
(Sa1

(b1))) . . .)) =

= (aka−1
k−1 . . . a2a−1

1 b1a−1
1 a2 . . . a−1

k−1ak). (19)

With account of (18) and (19) we obtain that

b1 = (aka−1
k−1 . . . a2a−1

1 b1a−1
1 a2 . . . a−1

k−1ak). (20)

We multiply both the parts (20) on the right by the expression
a−1

k ak−1 . . . a−1
2 a1b−1

1 p. We obtain

(b1a−1
k ak−1 . . . a−1

2 a1b−1
1 p) =

= (aka−1
k−1 . . . a2a−1

1 b1a−1
1 a2 . . . a−1

k−1aka−1
k ak−1 . . . a−1

2 a1b−1
1 p).

From which with account of neutrality of the successions we have

(b1a−1
k ak−1 . . . a−1

2 a1b−1
1 p) = (aka−1

k−1 . . . a2a−1
1 p). (21)

We transform the left part of equality (16) with account of definition
5 from [17]. We have

−−−−−→
pSa1

(p) +
−−−−−−−−−−−−−→
Sa1

(p)Sa2
(Sa1

(p)) + . . . +

+
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−→
Sak1

(. . . (Sa2
(Sa1

(p))) . . .)Sak
(Sak−1

(. . . (Sa2
(Sa1

(p))) . . .)) =

=
−−−−−−−−−−−−−−−−−−−−−−−−→
pSak

(Sak−1
(. . . (Sa2

(Sa1
(p))) . . .)). (22)

We transform the expression Sak
(Sak−1

(. . . (Sa2
(Sa1

(p))) . . .)) with
account of determining symmetric points. We have

Sa1
(p) = (a1p−1a1),
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Sa2
(Sa1

(p)) = (a2(a1p−1a1)−1a2) = (a2a−1
1 pa−1

1 a2).

Since k is an even number, then keeping the similar reasoning we
obtain

Sak
(Sak−1

(. . . (Sa2
(Sa1

(p))) . . .)) =

= (aka−1
k−1 . . . a2a−1

1 pa−1
1 a2 . . . a−1

k−1ak). (23)

We substitute the expression aka−1
k−1 . . . a2a−1

1 p in (23) for the corre-
sponding expression from (21). We have

Sak
(Sak−1

(. . . (Sa2
(Sa1

(p))) . . .)) =

= (b1a−1
k ak−1 . . . a−1

2 a1b−1
1 pa−1

1 a2 . . . a−1
k−1ak). (24)

We transform the right part of equality (24) with account of the
property of semi-commutativity of the group G and the neutrality of
successions. We have

Sak
(Sak−1

(. . . (Sa2
(Sa1

(p))) . . .)) =

= ((b1a−1
k ak−1 . . . a−1

2 a1b−1
1 p)a−1

1 a2 . . . a−1
k−1ak) =

= (pa−1
k ak−1 . . . a−1

2 a1b−1
1 b1a−1

1 a2 . . . a−1
k−1ak) = p. (25)

Taking into account (22) and (25) equality (16) can be re-written in
the form −−−−−→

pSa1
(p) +

−−−−−−−−−−−−−→
Sa1

(p)Sa2
(Sa1

(p)) + . . . +

+
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−→
Sak1

(. . . (Sa2
(Sa1

(p))) . . .)Sak
(Sak−1

(. . . (Sa2
(Sa1

(p))) . . .)) =

=
−−−−−−−−−−−−−−−−−−−−−−−−→
pSak

(Sak−1
(. . . (Sa2

(Sa1
(p))) . . .)) = −→pp =

−→
0 .

Thus, the first part of the theorem is proved. Let equality (16) be
true. We shall prove that G is semi-commutative

2. As in the first part of our proof we used the property of semi-
commutativity of an n-ary group only in equality (25) we shall consider
all the preceding reasoning true.

From equality (22) and the condition of the theorem it follows that

−−−−−−−−−−−−−−−−−−−−−−−−→
pSak

(Sak−1
(. . . (Sa2

(Sa1
(p))) . . .)) =

−→
0 . (26)

Since according to definition 6 from [17] −→pp =
−→
0 , equality (26) can

be re-written in the form

−−−−−−−−−−−−−−−−−−−−−−−−→
pSak

(Sak−1
(. . . (Sa2

(Sa1
(p))) . . .)) = −→pp. (27)
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From equality (27) with account of definitions 2 and 4 from [17] it
follows that

Sak
(Sak−1

(. . . (Sa2
(Sa1

(p))) . . .)) = p. (28)

With account of equality (23) equality (28) can be re-written in the
form

(aka−1
k−1 . . . a2a−1

1 pa−1
1 a2 . . . a−1

k−1ak) = p. (29)

We shall substitute the expression aka−1
k−1 . . . a2a−1

1 p in (29) for the
corresponding one with account equality (21). We obtain

((b1a−1
k ak−1 . . . a−1

2 a1b−1
1 p)a−1

1 a2 . . . a−1
k−1ak) = p. (30)

We shall suppose in equality (30) that

p = (xn
1 ), b1 = x1, ak = x1, a1 = a2 = . . . = ak−1 = xn.

We obtain

(x1x−1
1 xn x−1

n xn . . . x−1
n xn

︸ ︷︷ ︸

k−2

x−1
1 (xn

1 )x−1
n xnx−1

n . . . xnx−1
n

︸ ︷︷ ︸

k−2

x1) = (xn
1 ). (31)

With account of the neutrality of successions and the fact that that k

is an even number equality (31) can be re-written in the form

(xnx−1
1 (x1xn−1

2 xn)x−1
n x1) = (xn

1 ). (32)

Since an n-ary operation ( ) is associative equality (32) has the form

((xnx−1x1)xn−1
2 (xnx−1

n x1)) = (xn
1 ). (33)

From which
(xnx−1

2 x1) = (xn
1 ). (34)

On the basis of equality (34) and the definition of semi-commutativity
of an n-ary group we conclude that G is semi-commutative.
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