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ABSTRACT. We present symbolic and numerical algorithms
for a computer search in the Coxeter spectral classification prob-
lems. One of the main aims of the paper is to study finite posets
I that are principal, i.e., the rational symmetric Gram matrix
Gp:=1[C; + C¥] € M(Q) of [ is positive semi-definite of corank
one, where Cy € M(Z) is the incidence matrix of I. With any such
a connected poset I, we associate a simply laced Euclidean diagram
DI € {A,,D,,Eq, E;,Eg}, the Coxeter matrix Coxy := —C7 - C;”,
its complex Coxeter spectrum specc;, and a reduced Coxeter num-
ber ¢;. One of our aims is to show that the spectrum specc; of any
such a poset I determines the incidence matrix C (hence the poset
I) uniquely, up to a Z-congruence. By computer calculations, we find
a complete list of principal one-peak posets I (i.e., I has a unique
maximal element) of cardinality < 15, together with specc;, €1, the
incidence defect O : Zf — 7, and the Coxeter-Euclidean type DI.
In case when DI € {A,,D,,Eq E7,Es} and n := |I] is relatively
small, we show that given such a principal poset I, the incidence
matrix C7 is Z-congruent with the non-symmetric Gram matrix
ép; of DI, specc; = speccp; and ¢; = ¢pr. Moreover, given a
pair of principal posets I and J, with |I]| = |J| < 15, the matrices
Cr and Cy are Z-congruent if and only if specc; = specc;.
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1. Introduction

Throughout, we freely use the terminology and notation introduced
in [45], [47], [50], [51]. We denote by N the set of non-negative integers,
by Z the ring of integers, and by Q C R C C the field of the rational, the
real, and the complex numbers, respectively. We view Z", with n > 1, as
a free abelian group. By eq, ..., e, we denote the standard Z-basis of the
group Z". Given n > 1, we denote by M,,(Z) the Z-algebra of all square
n by n matrices A = [a;;], with a;; € Z, and by E € M,,(Z) the identity
matrix. Given a finite set J, we denote by M;(Z) the Z-algebra of all
square J by J matrices. The group

Gl(n,Z) := {A € M,(Z), det A € {~1,1}} C M, (Z)

is called the (integral) general linear group. We say that two square
rational matrices A, A" € M, (Q) are Z-congruent (and denote by A ~z A’)
if there exists a Z-invertible matrix B € Gl(n, Z) such that A’ = B!"- A- B.

By a poset J = (J, <) we mean a finite partially ordered set J with
respect to a partial order relation <. Following [43], J is called a one-
peak poset if it has a unique maximal element *. Given a poset J, with
m = |J|, we denote by

Cy= [Cij] S MJ(Z) = Mm(Z) (1.1)

the incidence matrix of J, with ¢;; = 1, for all 7 X j, and ¢;; = 0
otherwise. The rational matrix

Gjy:= %[CJ + Cgr] S MJ(Q) = Mm((@) (1.2)

is called the symmetric Gram matrix of J. Following [50] and [51], we call
the symmetric matrix Ad; := C; + CY — 2 - E the adjacency matrix
of J, and

Py(t) =det(t- E — Ady) € Z][t], (1.3)

the characteristic polynomial of the poset J. We say that the poset
J is Z-bilinear equivalent to a poset J' (and we write J =~z J') if
Cyryg Cp.

We define J to be non-negative (resp. positive) if the rational symmet-
ric Gram matrix Gy (1.2) is positive semi-definite (resp. positive definite).
If J is connected and the symmetric Gram matrix G ; is positive semi-
definite of rank |J| — 1, we call J a principal poset, see [47, Definition
2.1] and [51, Section 3]. In other words, J is principal if and only if the
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quadratic form ¢j(z) = x - C; - 2" is non-negative and the subgroup
Kerqy := {v € Z’; q;(v) = 0} of Z/ is infinite cyclic.

Our study is inspired by important applications of the quadratic forms
and edge-bipartite graphs in constructing linear algebra invariants that
measure a geometric complexity of Nazarova-Roiter matrix problems
over a field K and in the study of module categories and their derived
categories, see the monographs [1], [11], [43], [53], and the articles [2]-]9],
[12]-[24], [27], [29]-[34], [39]-[42], [45]-[52], and [54], [55]. In particular, our
study is inspired by a well-known result of Drozd [10], by the Coxeter
spectral analysis of loop-free edge-bipartite graphs developed in [50], and
the Coxeter spectral classification technique of finite posets introduced in
[44], [45], and [51], see also [26], [28], [36]-[38], and [56].

In the present paper we are mainly interested in the class of non-
negative posets J; in particular, in the class of principal posets. We study
them by applying our recent results on the Coxeter spectral classification
of loop-free edge-bipartite graphs defined in [50] (see also [51]) as follows.

An edge-bipartite graph (bigraph, for short), with n> 2 vertices, is a
pair A = (Ag, A1 = AT UAT), where Ag = {ai,...,a,} is a set of vertices
and A is a finite set of edges such that |A] (a;, a;)| - |AT (ai,a5)| = 0,
for all a; # aj € Ag. Edges in A] (a;,aj) and Af (a;,a;) are visualized
as continuous a; —— a;, and dotted ones a;- - - - a;, respectively. We say
that A is loop-free if Aj(a;,a;) is empty, for all a; € Ay. We denote
by UBigr,, the set of all connected loop-free edge-bipartite graphs, with
n > 2 vertices.

We view any finite graph A = (Ag, A1) as an edge-bipartite graph by
setting A7 (ai,a;) = Ai(ai, a;) and AT (a;,a;) = 0, for a;,a; € A.

A non-symmetric Gram matrix of A € UBigr,, is the matrix

Lody, L d,
v 0o 1 ... d5,
GA = : ) e M, (Z),
0 0 1
where diAj = —|A] (ai,ay)|, if there is an edge a; a; and i < j, d% =
|AT (a;,aj)l, if there is an edge a;- - - - aj and i < j. We set diAj =0, if

the set Aq(a;,a;) is empty or j < i. The rational matrix

1. .
GA3:§[GA+GK] € M, (Q)
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is called the symmetric Gram matrix of A. The Gram quadratic
form of A € UBigr,, is defined by the formula

qa(z) = qalz1, ... Tn) =234 - -—i—ﬂf%—i—Zdiijixj:a:-éA'x”: G-z
i<j

We call A € UBigr,,, with n > 2 numbered vertices, positive (resp. non-
negative of corank s > 1), if its symmetric Gram matrix Ga € M, (Q)
is positive definite (resp. positive semi-definite of rank n — s). Moreover,
we call A € UBigr,, principal if the matrix Ga is positive semi-definite
of rank n — 1, see [50]. Note that a non-negative loop-free bigraph A is of
corank s > 1 if and only if the kernel

Kerga :={v € Z"; qa(v) =v-Ga - 0" =0} C Z"

of ga : Z" — 7Z is a free subgroup of Z" of Z-rank s. Obviously, A is
principal if and only if A is non-negative loop-free and Kerga = Z - h,
with h # 0.

The matrix Ada := Ga + éz — 2. F is called the symmetric adja-
cency matrix of a loop-free edge-bipartite graph A € UBigr,,, and the
spectrum of A is the set specy C R of n real roots of the polynomial

Pa(t) =det(t- E — AdA) € Z[t],

called the characteristic polynomial of the edge-bipartite graph A.
Following [50], with any principal poset J, we have associated in [51] a

loop-free edge-bipartite principal graph Ay, and a simply laced Euclidean

diagram D.J, that is, one of the graphs presented in the following table.

TABLE 1.1. Simply laced Euclidean diagrams

/o
_ ; \
An % ° Lo ° n > 1,
o2 on + 1
iy —1
Dy, . E i l s n>4,
e5
+4
Eg: PR . .
.‘5
o 4
Er: o : . . . . .
.‘4
Eg: : o 8 . . . .
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We recall that DJ is the simply laced Euclidean diagram DA J obtained
from A by applying the inflation algorithm A — DA presented in
[28, Algorithm 5.4] and [50, Algorithm 3.1] (see also [52]). Consequently,
we have the passage

J s Ay DJ:= DAj.

We study the Coxeter spectral properties of any principal poset J by
means of the Coxeter spectral properties of the associated simply laced
Euclidean diagram DJ € {An, D, Eg,ﬁq,ng}.

Following [45], with any poset J, we associate the Coxeter matrix

Coxy:=—-Cy- C}tT,

with det Cox; = (—1)™, where m = |J| and C;" = (C¥)~1. The Cox-
eter spectrum specc; C C of J is defined to be the set of all m = |J|
complex roots of the Coxeter polynomial

coxy(t) = det(t - E — Coxy) € Z[t],

the Coxeter number c; > 2 is the minimal integer such that Cox§ = E,
and the Coxeter transformation of J is the group automorphism

o;:727 77, ®;(v) :==v— v-Coxy,

see [45] and [51] for details. If J is non-negative, the Coxeter spectrum
specc lies on the unit circle S = {2 € C; |z| = 1}, consists of roots of
unity, and 1 ¢ specc; if and only if J is positive, see [50, Lemma 2.1]
and [51]. In this case we have associated with J (see [47] and [51]) a
reduced Coxeter number ¢; and the incidence defect homomorphism
5J :Z7 — Kerqy C Z” such that

<I>'::,"(v) =0 +09;(v), forall v e Z7,

where Kerqy := {v € Z7; q;(v) = 0} is the kernel of the incidence
quadratic form ¢y : Z7 — 7 defined by the formula

qs(x) :ijz—Finazj =2-Cy-2'.
jed i<j

Since J is assumed to be non-negative, the quadratic form ¢; is non-
negative and Ker gy is a subgroup of Z”, see [47]. If, in addition, the
poset J is principal, the kernel Ker ¢y is an infinite cyclic subgroup of
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Z” of the form Kerq; = Z - h, where hy is a non-zero vector in Ker ¢
uniquely determined by J, up to multiplication by —1. In this case,
07(v) = d5(v) - hy, where 0y : Z7 — 7Z is a group homomorphism, called
the incidence defect of J, see [51].

The following characterisation of principal posets obtained in [51,
Proposition 9] is of importance.

Theorem 1.4. Assume that J is a connected poset with m = |J| > 2 and
let Gy € Mj(Q) be the symmetric incidence Gram matriz of J (1.2). The
following four conditions are equivalent.

(a) The poset J is principal.

(b) The incidence symmetric Gram matriz G j is positive semidefinite
of rank m — 1.

(c) The incidence quadratic form qy: Z? — 7 of J is non-negative
and Ker q; = 7 - h, for some non-zero vector h € Z”.

(d) There exists a simply laced Euclidean diagram

DJ e {A& s> 37 ]ﬁ)nv n > 47 IAEGaIﬁ[i'77:|?€'8}

(uniquely determined by J) such that the incidence symmetric Gram
matriz G j is Z-congruent to the symmetric Gram matrizr Gpy € Mp;(Q)
of the Fuclidean diagram DJ, that is, there exists a Z-invertible matrix
B € Gl(m,Z) such that Gpy = B -G - B.

Proof. Apply [51, Proposition 3.2] and a characterisation of principal
loop-free edge-bipartite graphs given in [50]. O

One of the aims of the Coxeter spectral analysis of finite posets is to
study the following problem.

Problem 1.5. When the Coxeter spectrum specc; of a poset J deter-
mines the incidence matrix C; (hence the poset J) uniquely, up to a
Z-congruence.

In connection with Problem 1.5, and a problem studied by Horn and
Sergeichuck in [25], we also consider the problem if for any Z-invertible
matrix A € M,,(Z), there exists B € M,,(Z) such that A" = B" - A-B
and B? = E (the identity matrix).

We would like to note that the following problem remains unsolved.
Problem 1.6. Show that DJ # Am_l, if J is a one-peak connected
principal poset, with m = [J| > 5.

A partial solution of Problems 1.5 and 1.6 is given in the following
three theorems proved in Sections 2 and 3.
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Theorem 1.7. (a) Assume that I is a poset of the shape ﬁﬁ?s,p,ﬁ,(i?s,
ﬁﬁi}s,p,ﬂé}&p,155,??57,,,“1%2}5@,,” or 257(7?5 listed in Table 1.11, and |I| =
m > 5. Then I is principal and the associated Euclidean graph DI of 1
s the diagram Dy,.

(b) If I is any of the one-peak posets listed in Tables 4.1 and 4.2 then
1 is principal and the associated Euclidean graph DI of I is the diagram
Epn—1, where m = |1|.

Theorem 1.8. Assume that I is a one-peak principal poset with m =
|I| <15 and DI is its associated Euclidean diagram.

(a) m > 5 and DI is not the diagram Ap_1. In particular, form =5,
we have DI =Dy and I is one of the four posets:

1 3 10\ 3 1.\
oo °
-y S -y 4>44>5 =~ / \5 ~(6) 2.\2
D, _X./‘ D). 2o D 53 D)L e
sy S " k] 3./ IR \g/ 1y 3.7

(b) If m > 6 and DI = D,,_; then I is one of the 2.115 posets of
the shapes presented in Table 1.11. In particular, for m = 6, we have
DI = D5 and I is one of the 13 posets:

1 3 2 4
°o—e o —0
] 6 1 3 1_7 ~.6
(1) oo (1) . *H®~8 1) o X e
D505 o>§o/ D56 ,>§,/v‘ Dyig:  reS'e”
2 4 3 5
2 4 o5
2
[ ]

N 16,14 5 6 " 1/3\5 6 . e >e e
D(2) e—>e0—>e ,D(Z) e >e—>0—>0 D(3) ~N
507 207 5,1 / 52,2° 3e—>e

3e ie 4./5
/'2\ : .
[ )
1 3 5 6
D(4) e >e—>0—>e D(4) /3\6 15(4) ) i%2£ﬁ>2
514 >~ 5150 10050 N4
o4 \ / o5
e —>0
4 5
1 4 1 e
° ° 2 e l1e
(5) >E< >2 ~(6) 3 I4>o§a 6 ~(6) \5 6
D436 . . Ds 05,3 N D5o52: 20030
e 4 4@
1 2 3 3e
.*).*).\6
5(7) _~°
S
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(¢) If m =7 and DI = Eg then I is one of the 31 posets presented

in Table 4.1. B
(d) If m =8 and DI = E; then I is one of the 132 posets presented

in Table 4.2. N _ _
(e) If m=9 and DI = Eg then I is one of the posets J{%,..., JES
listed in [21]. In particular, we have

58. 2—>3—>4—>5—>6—>7—>8—>9 ES.
jl . j31' 4*)6/7

1

B 6 - 2—>4—>6
AT iy SO - BT T
7

3—>5—>7
6

jo ! 4\6\ I ! 4 N
E8 E8

L2 —> 7T —9 c2 7—9

j412 < s j422 3;5 s

8

(f) The total number of principal posets J (not necessarily one-peak
ones), with m = |J| < 15, equals 158.448 and the number # J of such
posets J of the Cozeter-Euclidean type DJ € {]ﬁ)m_l,ﬁm_l} is listed in
the following tables.

n=1J|n=5 n=6 n=7 n=8 n=9 n=10

!
!

M M De 7 Dg M)
DJ Dy D5 5 5 5 Dy
92 227 577
# J 8 30 31 0 5103 1.357

n=|J||n=11 n=12 n=13 n=14 n=15
DJ D10 D11 D12 D13 D1y
#J 3.217 7.371 16.897 38.069 85.561

Theorem 1.9. Assume that I is a one-peak principal poset with 5 <
m = |I| <15, DI is its associated Euclidean diagram, Gpr is the non-
symmetric Gram matriz of the graph DI, and ®; : Z' — Z! is the
incidence Cozeter transformation of I. Denote by

Rr:= qu = {’U S ZI; qI(v) = 1}

the set of roots of the incidence quadratic form qr : Z' — 7.
(a) There exists a Z-invertible matriz B € M, (Z) such that Gpr =

B'".Cr- B,
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(b) The Coxeter number c; of I is infinite, the incidence defect ho-
momorphism O : Z! — Z is non-zero and the set B?RI U Ker gr admits
a ®r-mesh translation quiver F(@?RI UKerqy, ®7) of a sand-glass tube
shape (in the sense of [46]-[47]), where

NR; ={veZ; q(v) =1 and 8;(v) = 0}.

(c) There exists a Z-invertible matriz C € M,,(Z) such that C* = E
and Ct" = C'" . Cr - C.

The proofs of Theorems 1.7-1.9 are given in Sections 2 and 3.

We finish this section by a result that relates the Coxeter spectrum
specc; with the usual spectrum spec; of a poset I, compare with [50,
Proposition 2.4(c)].

Theorem 1.10. Assume that I = {1,...,m} is an arbitrary poset and
Py(t) := det(t - E — Ady) is the characteristic polynomial of the Euler
adjacency matriz Ady := 6? +Cr —2E of I, where C := C’I_1 is the
Euler matriz of I, see [45].

(a) If the Hasse quiver of I (see [43]) is a tree then

coxy(t?) =™ Pyt + 1).

(b) Assume that I is a one-peak poset and m = |I| < 15. If I is
positive or I is principal then coxr(t?) = t™ - P(t + %) if and only if the
Hasse quiver of I is a tree.

Proof. Since det C7 = 1, the Euler matrix C := C; ' lies in M, (Z) and
ctr =0t .Cr-Cy.

(a) Assume that the Hasse quiver of I is a tree. Without loss of gen-
erality, we may assume that the points of I = {ay,...,a;,} are numbered
in such a way that a; < a; implies ¢ < j in the natural order. Let At be
the Euler edge-bipartite graph associated with I, see [51, (33)].

By the definition of A7, the non-symmetric Gram matrix of the edge-
bipartite graph A coincides with the Euler matrix C';. Hence, COXZI =
Cox; = —C; - C; and coxg (t) = det(t - E — Coxy) = cox/(t), see
[50] and [51, Corollary 6]. Since the Hasse quiver of I is a tree then, by
[44, Proposition 2.12], the Euler matrix Cj := C’;l of I has the form

1 ¢y o0 ¢y
_ 1 0 1 ... ¢y,
Cr=c;t=| . . .| € ML(2),
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with
ec=...=Cpm =1,
e ¢, = —1, if there is an arrow a — b in the Hasse quiver )7 of I,

ec, =0,if a £bor thereisapatha <j; <... <js_1 < js="0bof
length s > 2 in the Hasse quiver Q);.

It follows from [51, (33)] that the Euler edge-bipartite graph A is a
tree and, by [50, Proposition 2.4(c)|, we get

coxi () = o, () = 7 P, (0 §) = ¢ it + 1)

(b) Assume that I is a one-peak poset, m := |I| < 15, and I is positive
or I is principal. If the Hasse quiver Q; of I is a tree, the statement (a)
applies. To prove the converse implication, assume to the contrary that
the Hasse quiver ()7 of I is not a tree. If I is positive, I is one of the
non-tree shape posets described in [18, Theorem 5.2(e)], see also [19]. If 1
is principal, I is one of the non-tree shape poset described in Theorem 1.8.
By a case by case inspection of the posets from our lists, a straightforward
computer calculations show that coxy(t?) # t™ - Pr(t + 1).

For example, if I, I', I”, and J, J’, J"” are the positive and principal
posets

1 — 2
\ \ 1—>2—>3—> 4 —> * \ \

= 3— 14—« I/: / I”: 3 6 —> *

~N S 5—6 =37 NS
5 —> 6 5
L=
2 —> 4

J = 2\6>)* J = 14275\* J//_l/Y >< Dl P
7 ~ >~ >l 7 7
3 e 4—6 7> 8
41— 7

then we have

2 o 1
L COXg(t ) tm-Pg(t—i-?)
I 14 12 48 46 | ¢14 3412 _gell 13410 1849 — 2148 — 227 — 2146 — 18¢°
241 —13t4 —8t3 —3t2 +1

I ] 16 gt g2 1 | 416 14 18 3412 g1l 710 _8g9 — 848 — 8¢7 — 746
—6t5 — 3t — 213 — 12 + 1

T | 16 4414 _ 410 48 | 416 _ 3414 _ G413 _ 10412 — 14410 — 16410 — 189 — 19¢5 — 18t7
—t6 241 —16t0 — 14t° — 10t* — 613 — 3¢2 + 1
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+t2 41

J |t 412 — 248 — 91§

t14 — 5¢12 — 12411 — 20410 — 2849 — 36t8 — 40t7 — 36t6 — 28¢5
—20t* — 123 — 512 + 1

—t0 1241

J! | 46 414 410 o8

t16 — 3¢14 — g¢13 — 14¢12 — 20¢11 — 25¢10 — 289 — 30t8 — 28¢7
—25t6 — 205 — 14¢* — 83 — 3t2 + 1

—t6 — 4 12+ 1

J” (18 4 416 _ 414 _ 412

t18 — 7416 _ 24415 _ 53414 — 88¢13 — 121412 — 144¢11 — 15610
—160t9 — 156t8 — 1447 — 1216 — 88¢% — 53¢t% — 243 — 7t + 1

This finishes the proof of Theorem 1.10. O

TABLE 1.11. Seven infinite series of principal one-peak posets of
Coxeter-Euclidean type D,

s+ 1 s+ 3
o— e
~ 1 P m m+1
DNyt o < >< Mol e 0<ss+5<p<m+1,
Y el s
s s s p—
2 CIAN s 1 +1
~N 1 : s m — m
D7(n’)8: o —> *»3\ /o—» o— >0 — > % 0<s,4<m,s+4<m
®s+ 2 ®s+3
1 p m+1
~(3) +1 AN LT l<p<s<m-—3
. P s<m—
Dm,s,p- o> . —>e o3 P Y p=s= ’
\.Z+2 m-1 ™ 5 < m, delete o5 if s = p
s+1e@
~ 1 . 2 +1 m+ 1
D%)sp' o —> *foit»ob o> % 1<s,s+3<p<m,
: -
35, :34) Hz 4<m
s
+1le +1le
~(5) 1 AN sts PN P, momil O0<ss+3<p,
Dm,s,p,r: e ° P ° *= 6<p+3<r<m+l,
®s+2 ep+2 e—- - @ X
p+3 r—1 delete op i3 if p+3 =1
s+1e@
1 o /24N pt1 m m 41 0<s,s5+2<m,
1’5(6) L e—> —> 0 >0 >0 —> —> 0 ——> X
MSPT o ee e >0 4srt+t2=<ps=m,
s+3 T\TAJ:T/4+:+3 P delete o if r =5+ 2

1
’“(7) o——> 00— i—»
m,s - >%/ 5<m,l<s<m-—2
’ o —> — e

Convention 1.12. In Table 1.11, the following convention is used: we
delete the vertex o, if a = 0.
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Remark 1.13. Let I be a one-peak principal poset I such that |I| <
15. It follows from Theorem 1.9 that the Coxeter polynomial cox;(t) €
Z|[t] coincides with the Coxeter polynomial coxpy(t) of the simply laced
Euclidean diagram DI € {]ﬁ)n, n >4, Eg, Er, IES} associated with I, where

gl pgn _yn=1 _yn=2 _ 43 421411 if DI=D,,

tT 416 —2tt — 263 4t 1 it DI=Ee
N ) ~0 (113
COXDI() t8+t7—t5—2t4—t3+t+1; lfDI:E7, ( )
O 48 —6 5 By, if DI =Eg,

see [33] and [45]. In particular, for n =4 and n = 5, we have
coxg (1) =t° +11 =267 — 2% +- £ + 1,
coxg (t) =10+ 17—t =263 — 4+t + 1.
5
2. Proof of Theorems 1.7 and 1.8

In this section we present the proof of Theorems 1.7 and 1.8 that are main
results of the paper. First, we note that every poset J = ({1,...,m}, <)
is Z-bilinear equivalent to a poset J’ with vertices numbered in such a
way that ¢ < j implies ¢ < j in a natural order and the matrix C is
upper triangular. Therefore, without loss of generality, we can assume
that the matrix C; € M j(Z) of any poset J has an upper triangular form.
Following [51], we identify a poset J = (J, %) with its acyclic edge-
bipartite graph A; (usually viewed as a signed graph in the sense of
[56]) without continuous edges, and with the dotted edges e;- - - -, for
all i < j. We recall from [51] that A is uniquely determined by its
non-symmetric Gram matrix Ga ,=Cy.
One of our main tools is the second step A — A’ := ¢, A of the
inflation algorithm [28, Algorithm 5.4] and [50, Algorithm 3.1] (see also
[52]) that associates to any loop-free principal edge-bipartite graph A,
with a fixed dotted edge e4- - - -e, in A1 (a,b), a # b, the loop-free principal
edge-bipartite graph A’ :=1t_; A as follows:
e we set Ag = Af and replace the dotted edge e4- - - o in A by a
continuous one ey o in A/,

e given ¢ # a in Ag = Afj such that Aq(a,c) # 0, we define A/ (b, c)
to be the set with exactly dbAC/ dotted edges if dbAc/ > 0, and exactly
—dbAc/ continuous edges if dﬁ; < 0, where dbAC/ = dbAC - daAc . daAb/ ,

e cach of the remaining edges of A; becomes an edge in A, i.e., we set
AT (a', V) = AT (a',b') and A (d/, V') = AT (a', V), if (a', V) # (a,b)
or (a',b') # (b, c).
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The main idea of the inflation algorithm is to reduce the number of
dotted edges in A. Tt is shown in [50] that Gar = V((T)" - Ga - Top),
where

1, ifi=jor (i,5) # (a,b),
Ta_b = [ti]‘], with ti; = -1, if (Z,]) = (a,b),
0, otherwise,

and the operation C'+ V(C) = [¢}j] (introduced in [47, (4.5)]) associates

7
to any square matrix C' = [¢;;] € M, (R) the upper triangular matrix

ety cgz . cgm
0 (322 Ce Cl
V(C) =[] = _ ™ | e M (®)
0 0 ... ¢hm

by setting cj; = cij + cji, for i < j, ¢ = 0, for i > j, and ¢; = ¢;;, for
j=1...,m.

Note that the inflation matrix T,, = [t;;] € M,,(Z) is the identity
matrix with an element ¢, changed to —1.

Proof of Theorem 1.7. (a) Assume that

Ie {57(5)51,, D2 PO pW PO D) IGRY

m7s7p7 m7s7p7 m7s’p7r7 m787p’/r’ m7s

with |I| =m + 1 > 5, as listed in Table 1.11. Our aim is to construct a
matrix By € M, 4+1(Z) such that

(égm +G5 )= B -(CI' +Cr)- Br.

Since det C; = 1, the matrix C} is Z-invertible and C’I_1 = C’I_1 -Cr
C;'". Note that, for BY := C;'", we have (C;"" + C; 1) = Bt . (O +
Cr) - BY. Therefore, it is sufficient to construct a Z-invertible matrix
B} € Gl(m + 1,Z) such that

B" - (C;" +CY) By = (G +Cf ),
because then, for By := B} - B} € M,;,11(Z), we have
(GF +G5 ) =B (C;"+Cr ') By
= B{" - (B{" - (C{"+CI1)- Bf) - B

= (B} - B)" - (C]" +Cr) - (B] - BY)
=BY - (Ci"+Cy) - By.
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We construct the matrix B} € M,,11(Z) in six cases considered below,
in the form of the product of inflation matrices T, = [t;;] € My11(Z),
by applying the inflation algorithm procedure.

First, we note that our assumptions imply that the matrix CI_1 is
upper triangular and coincides with the non-symmetric Gram matrix CVT‘ZI

that defines the Euler acyclic edge-bipartite graph A; of I, see [51].

Case 1° Assume that I = 15,(71,)5@. The Euler bigraph A; of I, with
GZI = C’;l, has the shape

To simplify the notation, we set

(1) .~ (2) . - -
tg( ) =ti430b510 by '(_)tj s+1° %5519,
1 - 2 _
T, =T g Tjgand T;7 =T - T s

The passage A;+— DA and the construction of the matrix B} € M, 11(Z)
can be illustrated as follows.

. t(l) 1
A[é e
t‘(gl_)l 1 s—2
— °
s+ 3
th )y
s+ 4
s+ 3

I I C I
RS 15

Summing up, DA = D,, and we define B} € Gl(m + 1,Z) to be the

matrix

By i=1®,.. 1@ 1@ @@ 0 ) )
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Case 2° Assume that I = D(Q) The Euler bigraph A; of I, with
GZI = C;!, has the shape

s+1le
~ 1 s/ N\ s+4 m—-—1 m m+1
AI: o — — e ° o— o *
N/ /
®s+2 ®s+3

We set tg-l) =t and Tj(l) =T} 4. The passage Ar+— DAy and the
construction of the matrix B} € M, +1(Z) can be illustrated as follows:

—_ tgl) 1 s—1 5/.S+SI+4 m—1 m m+1
A= eo—  —e—0o—oe o— o — x
T Nes 42 o5 +3
B RO R
s—2 1 1,/ s s+4 m — 1 m m+1
=N P o — — e —eo e ——eo — %
\.s+2 ®s+ 3

Case 3° Assume that I is one of the posets I; = 15,(5’?5,,, and I = 553,)3,7,.
Then DA; =D, and B is defined to be the matrix

By =1 . r® ) T, 1D i1 = 1 and
B, =Ty 12 .7 .1 ...1®. 7% .1 .1 i1 =1,

m—

1

(1) - 2 _ @) _ -
where T =T, .5, 17 =T, g and T;7 =15, ;4.

Case 4° If I = 75227)54,,“ then DA; = D, and B is defined to be the

matrix

B = T(Q) -7 Tr(ri)q T . 'Tr(—z&-)l 7@ 'Ts(i)l .7

r—

(W) _ g 2) _ e
where T\ = T7 ,, and TV = T,

Case 5° If I = 757(757)57p,r, then DA; = D, and B} is defined to be the
matrix

By =1l 1 1 1 7 1)

where T\ = T;. . and T = T}, .
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Case 6° If I = 757(71)3, then DA; = D,, and B is defined to be the
matrix

1)

1 1 2 2 —
By o= 10 1 10T T 10, Ty

where Tj(l) =Tj, and Tj(2) =T; 541

To finish the proof of (a), we recall from [50] that the Euclidean
diagrams are principal and the existence of a Z-equivalence of a finite
poset I with a Euclidean diagram Dy, implies that I is principal.

(b) The proof is a computational one and we proceed similarly as
in the proof of (a). As earlier, we identify the poset I with its acyclic
edge-bipartite graph A; and apply the inflation algorithm to Aj. In this
way we obtain a matrix B; defining the Z-equivalence of the poset I with
the Euclidean diagram E,,, where m = |I| — 1. Hence I is principal and
the proof is complete. O

Proof of Theorem 1.8. Assume that m < 15 and [ is a principal one-
peak poset. We compute a complete list of such posets I, with |I| =
m < 15, and their Coxeter-Euclidean types DI by applying the inflation
algorithm [50] and Algorithm 3.1 described in Section 3. In particular,
the computations show that:

(a) there is no such a poset I that DI = A,,_1,

(b) if DI = D,,_1, then I is one of the posets listed in Theorem 1.7,

(c)if 7<m <9and DI = E,m—1, then I is one of the posets listed in
(¢), (d), and (e) of Theorem 1.8. O

3. Algorithms

In this section, we outline a description of computational algorithms we
use in the proofs of Theorems 1.8 and 1.9. First, we discuss an algorithm
used in computation of all principal posets with at most 15 elements,
compare with [37] and [38].

Algorithm 3.1. Input: An integer 1 < n < 15.

Output: Finite sets princ|[l], ..., princ[n] of all connected non-negative
posets of corank 1 encoded in the form of their incidence matrices. That
is, the set princ[i] contains the principal posets with i vertices.

Step 1° Initialize the set princ[l] with the matrix [ 1 } e My (Z).

Step 2° For every m from 2 to n:

Step 2.1° Initialize an empty list candidatey,.
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Step 2.2° For every poset J € princ[m — 1], generate a list of all
possible extensions of J to a poset with m vertices. In other words,
generate a list W 3 w of all vectors w = [wa, ..., wy] € {0,13™! such
that the matrix

Cy, = l (1) éUJ 1 = [cij] € M (Z)

is an incidence matrix of a poset J,, (matrix with the following transitivity
property: ¢;; = 1 and ¢;js = 1 implies ¢;s = 1, for 1 < 4,7,5 <m).

Step 2.3° For every poset J € princ[m — 1] and for every vector
w € Wy, construct the matrix C, € M,,(Z) and add the poset J,, to
the list candidate,, if the symmetric matrix C, + C’Z’“ is non-negative
of corank at most 1, (by checking, for example, if all diagonal minors of
the matrix are non-negative - the extended Sylvester criterion, see [16]).

Step 2.4° Construct the set princ[m] by selecting non isomorphic
posets from the list candidatey, (using the Hasse digraph representation
in order to test poset isomorphism).

Step 3° Remove from the sets princ[l], ..., princ[n] the matrices of
posets J,, that are not connected (using a graph search algorithm, such
as breadth-first search — BFS) or have the symmetric matrix C;,, + C%
positive definite (for example, by checking if all principal minors of C'y, +
Cf]fv are positive - Sylvester criterion).

Step 4° Return the sets princ[l], ..., princ[n] as a result.

Remark 3.2. (a) Note that posets J, with |J| < 3, need not to be

checked, because any such a poset has the shape (o), (o o), (o — o),
(0 0 o), (0 0—0), (0—+0—0), (0—+0%0) or (0<—o0—0) and is positive.

(b) Note that Step 2.3° and Step 2.4° can be done simultaneously
by adding to the set princ[m] only these non-negative posets that have
Hasse digraphs not isomorphic to the posets that are already in the set
princ|m)].

(¢) In our implementation of the algorithm we use the igraph pack-
age (http://igraph.sourceforge.net/) to test digraph isomorphism
in step 2.4°.

(d) A simple check of the equivalence of the degrees of vertices to detect
non-isomorphic digraphs before the usage of more advance algorithm in
the step 2.4° gave us a considerable speed up.
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(e) It is easy to efficiently implement the algorithm in a parallel
environment (for example, Step 3° can be executed in parallel without
need of any synchronisation).

In the proof of Theorem 1.9 we determine the Z-congruence C' Iwzé DI,
for any principal poset I, |I| < 15, of the Coxeter-Euclidean type

DIE{]ﬁ)m, m >4, EG,E’?,ES}.

We do it by constructing a matrix B € M,,(Z) with n = |I|, such that C; =
B .G pr - B. We essentially use the following theorem and Procedure 3.6.

Theorem 3.3. (a) Let D be one of the Fuclidean diagrams D,,, m > 4,
]:Eﬁ, I~E7, Eg, with vertices numbered as in Introduction. Let Rp be the set of
roots of the Euler quadratic form qp of D. Then there exists a unique ®p-
mesh translation quiver I'(Rp, ®p) of ®p-orbits of the set Rp (called a
® p-mesh geometry of roots of D) such that T'(Rp,®p) admits a principal

Coxeter ®a-orbit configuration FgD of simple roots of the form presented
below (see also [47] and [48, Table 4.7]).

(b) If I is a connected principal poset, with n > 5 elements, of
the Coxeter-Euclidean type DI and B € Gl(n,Z) is such a matriz that
Gpr=B-Gy- B, then the following diagram is commutative

hl: hl: (3.4)

where h = hp is the group isomorphism defined by hp(x) = x - B.

If R :== Ry, is the set of roots of the unit quadratic form qr : 7' -7
and T'(Rpr, ®pr) is ®pr-mesh geometry of roots of DI (with princi-
pal Cozeter ®pr-orbit configuration Fg?’), then the group isomorphism
h = hp carries it to the ®r-mesh geometry I'(Ry, ®1) (with a principal
Cozeter ®r-orbit configuration F?’), induces the mesh translation quiver
isomorphism

h:T(Rpr, ®pr) —T(Ry, ;)

and the quiver isomorphism h : Fg’}” if?f. Moreover, the matriz B

has the form

B=| . |. (3.5)
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Proof. Apply [46, Section 5], [46, Theorems 4.7 and Proposition 4.8] and

their proofs, see also [47], [48, Lemma 4.3], and [50]. O
re r¢
EG E’?
NS NN
LTI, LS
NSNS Lo
SNC NN R WA
CRREEICEEETISEEEELD S D20 T T TN
G ré
—~ _Es A A]D)s
b \01—62—\—‘0 h ~ /il\
w AN
>ei—>e ~/'€4\ \/\
,/ix.,/: >. e5 > ET 0 >e—>e >0 —>e
T A
NN TN TN, ~
SN N N N SN ~eﬁ;:+76j+A
e— - —-€9———- €8 ———- €7 ——— €6 - —— €5 €; = e1 s €4

Procedure 3.6. Assume that [ is a poset of the Coxeter-Euclidean type
DIe {ﬁ)n_l,ﬁﬁ,ﬁ}y, Eg}, with n = ‘I‘

To construct a matrix B that defines a Z-equivalence Cj ~7 G DI, We
proceed as follows.

1° First, by applying the mesh toroidal algorithm described in [46,
Proposition 4.5] and [47] (see also [48, Lemma 4.6 and Algorithm 4.8.2]),
we construct the ®7-mesh translation quiver I'(Rr, ®r), with a principal
Coxeter ®r-orbit configuration I' IC’ of simple roots of g7, together with a
mesh quiver isomorphism 5 : Fg’}” — F?’ .

2° Next, we define the matrix B by setting

h(e1)
h(e2)

)

h(en)

as in (3.5) and [48, Lemma 4.3].
3° Finally, we check the matrix equality Gp; = B - Cf - B'". O
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Remark 3.7. Procedure 3.6 has implementations in Maple and Python,
with an assistance of programming and graphics in Java.

Algorithm 3.8. Input: A non-negative poset I, with n elements, encoded
in the form of incidence matrix C1 € M,,(Z).
Output: Reduced Coxeter number ¢; € Z.
Step 1° Initialize the symbolic vector v := [v1,...,vy)].
Step 2° Calculate the Coxeter matrix Coxy := —C7 - C;tr.
Step 3° For r =1,2,3,...
Step 3.1° Calculate w := v - Cox] — v.
Step 3.2° If g (w) := w-Cr-w' equals zero then stop the calculations
and return ¢; as a result.

Remark 3.9. By [51, Theorem 18|, Algorithm 3.8 returns €y in a finite
number of steps.

We use the following algorithm computing the incidence defect of any
principal poset.

Algorithm 3.10. Input: A principal poset I, with n elements, encoded
in the form of incidence matrix C1 € M,,(Z).
Output: The incidence defect dr : Z"™ — Z.

Step 1° Initialize the symbolic vector v := [vy,...,v,] and calculate
the Coxeter matrix Coxy := —Cf - C’I_”.

Step 2° Using Algorithm 3.8, compute the reduced Coxeter number
&7 € Z and calculate the vector w = [wy, ..., wy] := v - Cox$ — v.

Step 3° Compute the vector h € Z" such that Ker ¢ = Z-h by solving
in Z the system of Z-linear equations (C; + C¥") - v'" = 0 (for example,
using the procedure isolve of the LinearAlgebra package in MAPLE).

Step 4° Solve the symbolic system of linear equations A - h; = w (in
Z), for the unknown A, and return computed A as a result.

Outline of proof of Theorem 1.9. Assume that [ is a one-peak prin-
cipal poset with m := |[I| < 15. By Theorem 1.8, I is one of the four five
elements posets listed in 1.8(a), one of the 2.115 posets with 6 < m < 15
of the shape listed in Table 1.11, one of the 31 posets listed in Table 4.1,
one of the 132 posets listed in Table 4.2, or one of the 422 posets listed
n [21]. By applying Algorithms 3.8 and 3.10, for each of the posets I
from this finite list, we calculate its reduced Coxeter number ¢; and the
incidence defect 07 : Z! — 7Z. In particular, we show that J; is non-zero.
It follows from [51, Theorem 1.18 (c)] that the Coxeter number ¢y of I is
infinite, see also [47, Corollary 4.15 (c)] and [49, Proposition 3.12].
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(a) By applying Procedure 3.6 as in [17, Section 7], for each of the
posets I from the finite list described above, we construct a Z-invertible
matrix By such that éDI =B;-Cr- B}T. By setting B := B}’” we get the
required equality Gpr = B'"-C;- B.

The proof is long and a computational one. Here we do not present a
complete proof, but we illustrate its idea on examples of several posets.
The proof for the remaining posets of the list is analogous.

(7)

First we illustrate an application of Procedure 3.6 for the posets 755’3

and j2€6 presented in Theorem 1.8 (b) and Table 4.1, respectively.
7)

1° If we enumerate the elements of the poset J := §é3 from Theorem
1.8 (b) as follows

then the incidence matrix C; € Mg(Z), the Coxeter matrix and the
incidence quadratic form ¢ : Z% — Z are given as follows

111011 000 10-1
011001 000 011
001001 110 0 1-1
Cr=1loo01111]| Coxy= 010 00-1]>
000011 001 001
000001 10 1-11-1

qs(z) = x%—i—x%—i—at%—i—a:i—&—x%—i—x%—i—xlxg—i-xg(xl—|—x2—|—x4)
+(x1 + z4)xs + (21 + 22 + T3 + 24 + T5)T6

2 2
= (:Ul + %:cg + %933 + %3:5 + %xg) +% (:cQ + %553 — %3:5 + %a%)
2 2
+% (953 + %x4 — %1‘5 + iSUg) + % (:C4 + x5 + %CCG) + %x%
It follows that ¢ : Z5 — Z is non-negative and Kerq; = Z - hy, where

h; =11,0,-1,1,-1,0]; hence J is principal. By Theorem 1.7, the poset
J is of Euclidean type DJ = 5. A routine calculations show that

e cox;(t) :t6+t5—t4—2t3—t2+t+1:coxm(t),
e ¢;=06,cy =00,

° 5](’[1) = 2(U1 +v9 —|—U3—|—U4+U5) ‘hy, 3](1}) = 2(1)1 +1)2+03+U4—|—U5),
and the set R of roots of ¢; has the decomposition

Ry=RF 47 hy,
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where the finite set
R = {v e Z% vy =0 and q;(v) = 1}
is a reducer of R in the sense of [47]. One shows that
(R = 40, [99RIF| = 10, 95 R = |0f R = 15,

where 80727"6d 07 Rmd and 8+RT6d is the subset of Rmd consisting of the
Z€ro- defect vectorb, negative- defect vectors, and pos1t1ve—defect vectors,
respectively. It is easy to see that the negative-defect part 9;R; of R is
the set

Ry =0, R +7Z-hy

and admits the following ® ;-translation quiver structure I'(0; R, ®7):

Oy ------ 001001 - = = = = = = = - 000010[- = = = = = = = - Il - = = = = = = — - 101010

02,03 010101—»000100*)001011 001111 111121 —> 110010 —> 212121 —> 102111

\/\/\/\

04,05 100000—»010011 HW—) 111011 —> 001000 —> 102121 —> 101121 —> 212231
Og 000011 — = = — = — = — - 010000|- = = = = = = — - 101011 = = = = = = = — - 001110 - - - — — —

Hence, by applying Procedure 3.6 and using the vectors in I'(0; R s, ® )
marked by the framed boxes, we obtain the Z-invertible matrix

By =

_HOoOOoOOoOOoOOo
el e i )]
|
OO~ OFRO
OO O~ FEO
(==
OO OorOo

such that GVDJ:éﬁr :BJ‘GVJ‘BZ:]T.

2° If we enumerate the points of the poset I := Jsg K6 from Table 4.1
as follows

/'T\
= 1

T\T/'T

1
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then the incidence matrix C; € My(Z), the Coxeter matrix and the
incidence quadratic form q; : Z7 — Z have the forms

1101011 001010 -1
0100001 -100101 ~1
0011001 110001 ~1

Cr=1]10001001|, Coxy=|-111001~-11,
0000111 -110100 —1
0000011 -110110 ~1
0000001 -210101 —1

gr(z) = 22 + 23 + 23 + 23 + 22 + 22 + 22 + 2120 + (21 + 23) 74
+ (21 + @5)76 + (71 + 22 + T3 + T4 + T5 + T6) 77
= (w1 + fxo+ tas + fa + %x7)2 +3 (962 — 314 — 376 + %x7)2
+ (wg + 34+ %1»7)2 + 35 (:r4 — §z6 + %fw)z
+ (a:5 + %x(; + %x7)2 + % (6 + :C7)2 .

It follows that ¢; : Z” — Z is non-negative and Kerg; = Z - hy, where
h; =[1,-1,0,-1,0, -1, 1]; hence I is principal. By theorem 1.7 the poset
1 is of Euclidean type DI = [Eg. A routine calculations show that

o coxy(t) =t +1 - 2t* — 26° + t + 1 = coxg (1),

e ¢ =06, c;r =00,

e 0r(v) = (v1 —vy) - hy, Or(v) = vy — vr,
and the set R of roots of ¢; has the decomposition

R =Ry +7Z hy,
where the finite set
Ryl ={veZ"; vy =0 and q;(v) = 1}
is a reducer of Ry in the sense of [47]. One shows that
Ry = 72, |0R = 14, 07 Ry = 0 Rj*| = 29,

where YR, 07 Ry, and 9 R%e? is the subset of R7°? consisting of the
zero-defect vectors, negative-defect vectors, and positive-defect vectors,
respectively. It is easy to see that the negative-defect part 9; Ry of Ry is
the set

O R =0, R +7Z -y

and admits the following ®r-translation quiver structure I'(0; Ry, ®r):
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[0 T —— 1011110 - = = = — = — - 1100000 ———————— 0100001 ———————— 0010101
Oy 1011111 - === ==~ - 2111110 - == = == = — - 1000001 = — = = = — = — - 0110102 - - — — - —
O3
Oy
Os

SN N TN S

~~ ~~ ~

Og 2101110 - = = = = = — — - 1011001 = = = = = = — — - 1010111 = == = = = — — - 1000101 — = — = — —

N N N TN

. . ~
O7 ------ 1001000 - - — - — - - 0010001(- - - - - — - - 1000110~ - - — - — - - 0000011

Hence, by applying Procedure 3.6 and using the vectors in I'(0; R, ®r)
distinguished by the framed boxes, we obtain the Z-invertible matrix

|
——r o000 O
|
coor OO
|
coor~OO
cor~roooOr~
ococococoor~
o RO O RO

&

~

|

|
—oOoORR O~

such that éD[ = GVEG = By - é[ . B?ﬂ

Now we collect a final effect of the computational Procedure 3.13
(presented below) applied to principal posets of type Eg. For example,
consider the principal posets

~71 ~731 ERSS ~74F§87 Iy = «71%;?7 Is = ~74E17§7 Is = 74]%52;
from Theorem 1.8 (e). Using Procedure 3.13, computer calculations yield
the following Z-invertible matrices Bj, ..., Bg € Mg(Z):

5 3 4 -2 -1 -2 -2 -1 -2 1 1 0-2-2-1 1 1 0
5 4 3 -1 -2 -2 —-1-2 -2 1 1-1-1-2-1 1 0 1
6 3 4 -2 -2 -1 -2 -2 -2 1 1-1-2-1-1 0 1 1
8 -5 -5 2 3 2 3 2 3 —2 -1 1 2 2 2 -1-1-1

Bi=| 83-1-2 1 1 1 0 1 1 , By = 0-1 1 1 0 0 0 0 0 [,
—2-2-2 1 1 0 1 1 1 -1 0 0 1 1 0 0 0—1
-3 -2-1 1 0 1 1 1 1 00 0 0 1 1 0-1 0
—2-1-2 0 1 1 1 1 1 0-1 0 1 1 1-1 0 -1
-3 -2 -2 1 1 1 1 1 0 ~1-1 1 1 1 0 0-1 0
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r 0 0 1 0 0 0 1 0 —11 r o 2 2—-1—-1-2-1 0 0 1
00 0 0 1 1 1-1-1 11 1 0 0-2-2 0 1
00 0 1 0 0 0 0—1 0 1 2 0-1-2-2 1 0
00 0-1 0-1-1 0 2 -1 -2-2 0 1 3 3 -1 0
B3 = 000 0 0-1 0 0 0 1 |, B4 = 0 0-1 0 0 1 1 0 0 [,
00 0-1 0 0-1 1 0 0-1-1 0 1 1 1 0-—1
0 1-1 0 0-1 0 0 1 0-1-1 0 0 2 1-1 0
1-1 0 0 0 0 0 0 0 0-1-1 1 0 0 1 0 0
L-1 o o o o 0o 0 0 o0 L -1 o-1 0o 1 1 0 0 o0
roo2 2 2 1 -1 -1 -2 —1 —1 1 r 1t 1 1 0 1 -1 0—1—1 1
13 1 1 -1 -1-2—-1—1 1 2 1 0 0 0-1—-1—1
1 3 2 2 -1-1-3-2 0 11 1 1 1 -1 -1-1 -1
—2 -4 -2 -2 1 1 4 2 1 -1 -2-1-1-1 1 1 1 2
Bs = 0-1-1-1 0 1 1 1 0 |, Bg=| -1-1 0 0-1 0 1 1 0 ,
-1-2-1 0 1 0 1 1 0 0 0-1 0 0 0 0 0 1
0-1-1-1 1 0 1 0 1 0-1-1-1 0 1 0 1 0
-1 -1 0-1 0 1 1 1 0 -1 0 0 0 0 0 0 0 1
L -1 -2 -1-1 1 1 2 0 0 L -1-1-1 0 0o 1 1 0 o0

for the poset I, Io, I3, I, I5, and Ig, respectively. One checks that Gpr =

Gﬁs:Bj'GIj‘B;?T? forj:17-"76'

(b) By (a) and [46, Theorems 4.7 and 4.8], for each of the posets
I from the finite list described above, there is a Z-invertible matrix B
such that Gp; = B - Gy - B" and, by [46, Proposition 4.8], we have the
commutative diagram (3.4), with D = DI and h = hp. Hence, in view of
our remarks made in the first part of proof, (b) is a consequence of the
results in [46, Section 5.

(c) Given a principal poset I such that m := |I| < 15, fix a matrix
Bj € Gl(m, Z) such that Gp; = BY - C; - By, as in (a). By applying the
technique used in [17, Section 7], one can construct a matrix C' € Gl(m, Z)
such that G%, = C* . Gpr - C and C? = E. Then

étDTI:B;T'C;T‘BI a/ndétDTI:CtT'GVDI‘C:OtT'B}T‘CI'BI'C,
Hence we get
C}T:Bl_tr'Ctr‘B?'C['B['C-Bl_l :6”’6'['6,

where C = By - C' - By *. Tt follows that C' € Gl(m,Z) and C” = E. This
finishes the proof of (c¢) and of Theorem 1.9. O

Corollary 3.11. Assume that I is a principal one-peak poset such that
m = |I| < 15. Then there exists a ®r-mesh translation quiver of roots
L(Ry, @) satisfying the conditions stated in Theorem 3.3 (b).

Proof. Let DI be the Coxeter-Euclidean type of I. By Theorem 1.9 (a),
there exists a matrix B € Gl(m,Z) such that éD[ =B- é[ - B and the
diagram (3.4) is commutative, where h = hp is the group isomorphism
defined by hp(x) = = - B. Therefore the corollary is a consequence of
Theorem 1.9 (b). O
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We recall from [50] that a Z-invertible matrix B € M,,(Z) defines a
Z-congruence A =z A’ between edge-bipartite graphs A, A’ in UBigr, if
the equality Gar = B - Ga - B! holds.

Now we outline an alternative, more general heuristic algorithm con-
structing a Z-invertible matrix B € My (Z) defining the Z-congruence
G a ~z G between the non-symmetric Gram matrices Ga, Gar € M, (Z)
of non-negative edge-bipartite graphs A and A’, that is, satisfying the
equality G A =B- G A - B, Tts idea uses the following observations made
in [45, Proposition 2.8].

Lemma 3.12. Assume that A ~z A’ are loop-free edge-bipartite graphs
in UBigr,, and B € M,,(Z) is a Z-invertible matriz satisfying the equality
Gar = B-Ga - B, that is, B defines the Z-congruence A ~gz A'.

(a) Coxar = B-Coxp - B~1 and coxa/(t) = coxa(t).

(b) FEach of the rows w of the matriz B is a root of the unit form
qa = 2" — 7 of A, that is, we have ga(w) = 1.

(c) Each of the rows of the matriz B! is a root of the unit form
qar 2 24" — 7 OfA,.

Proof. (a) Apply [45, Proposition 2.8].

(b) Denote by w®, ..., w(™ the rows of the matrix B. Then B has the
form B = [wM, ... w™]" and, given j € {1,...,n}, we have ;- B = w()
and

1 =qar(e;) = ej-éA/ -ezr 5

(B éA Btr)-ez«r:(6j~B)-GA-(ej-B)tT

_ <> Cin - w® = gu(w).

(c) The equality Ga = B-Ga - B yields Gao = B~1-Ga/- B7" and
(b) applies. This finishes the proof. O

It follows from Lemma 3.12, that in the situation we are interested
in, the unknown matrix B € M,,(Z) defining a Z-congruence A =~z A’
(that is, the equality G A= B- éA - B'" holds) satisfies the equation
Coxas - B— B -Coxa = 0. Moreover, the rows w(®), ..., w(™ of the matrix
B =[wW, ... w™]" are roots of the quadratic form ga(v) = v-Ga - v'".

Using these two observations we obtain the following heuristic proce-
dure used already in its "positive version" [18, Algorithm 7.5] for positive
edge-bipatite graphs.
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Procedure 3.13. Input: The non-symmetric Gram matrices
G N G A €M, (Z) of a pair of non-negative loop-free edge-bipartite graphs
A and A’ such that coxa/(t) = coxa(t).

Output: A Z-invertible matrix B € M,,(Z) such that Gar = B-Ga -
B! or error, if the matrix B has not been found.

Step 1° Compute the Coxeter matrices Coxp = —Ga - égtr and
COXA/ = —éA/ . sz/fr

Step 2° By applying [47, Algorithm 3.9] compute a finite root reducer
R”Aed CRa={veZ” qga(v) =1} CZ", that is, a finite sevt of roots of
the non-negative quadratic form ga: Z" — Z, ga(v) = v - Ga - v'", such
that Ra = R + Ker, .

Step 3° Construct an n x n square matrix B = [b;;|= [w®, .. w]tr
with n? symbolic variables bij, 1,7 € {1,...,n}, and compute the matrix

E = [gl]] = COXA/ -B—B- COXA.

Solve the system

gij =0, fori,je{l,...,n}
of n? linear equations and update the matrix B = [w(®, ... w™]" with
calculated values.

Step 4° Find a row w® in the matrix B that contains any of the
variables b;; and proceed to Step 5°. If there is no such a row then proceed
to Step 6°.

Step 5° For every root w € R’"Aed, replace the row w®) in the matrix B
by the vector w, update the matrix B accordingly and proceed recursively
with Step 4°.

Step 6° If det B = 1 and éA/ =B GA - B! stop with B as a result.
Otherwise continue the search.

Step 7° If the search is completed and no matrix B has been found
return the error.

Remark 3.14. Our heuristic Procedure 3.13 is a backtracking algorithm
that incrementally checks all possible Z-invertible matrices
B=[wW, ... wM]" with w®, ... w lying in the finite set
RO R + ] U (R — ),

where h € Z" is a generator of Ker ga, if we assume that A and A’ are
principal edge-bipartite graphs.

Although we have not proved yet any theoretical result that would
guarantee the existence of a Z-invertible matrix B of such a form and
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satisfying Ga = B-Ga - BT (assuming that there exists a Z-congruence
A =z A'), in our experience Procedure 3.13 finds a required matrix in less
than a minute, if n < 15. For instance, each of the matrices By, ..., Bg
listed in the outline of proof of Theorem 1.9 has been computed in several
seconds.

The following corollary announced in [51, Corollary 11] contains a
partial solution of Problem 1.5.

Corollary 3.15. Assume that I and J are principal one-peak posets, DI
and DJ are their Cozeter-Eulidean types, m = |I| = |J| and 2 < m < 15.
Let I'(Rr, ®r) and I'(Ry, @) be the ®y-mesh translation quivers of roots
(see Corollary 3.11). The following conditions are equivalent.

(a) DI=DJ.

(b) specc; = specc;.

(¢) Cr=yz Cy (i.e., the incidence matrices Cr and Cy of I and J are
Z-congruent).

(d) There exists a group isomorphism h : 77 — 7! that induces the
mesh translation quiver isomorphism h: T'(Ry, ®;) — T (R, ®1).

Proof. (a)<(c) By Theorem 1.9 (a), we have C; ~z Gpr and Cy ~z Gp.
Therefore C7 =~z Cy if and only if DI = DJ.

(c)=(b) Note that the equality C; = B" - C; - B, with a matrix
B € Gl(m,Z) implies that Cox; = B - Cox; - B~ see Lemma 3.12 (a).
Hence, cox;(t) = cox;(t) and specc; = specc;.

(c)=(d) Note that the equality C; = B - Cj; - B, with a matrix
B € Gl(m,Z) implies the commutativity of the diagram (3.4), with D
and J interchanged. It follows that the group isomorphism h : Z7 — Z!
in (3.4) induces the mesh translation quiver isomorphism

h:T(Ry,®;) —=T(R;, &)

see [47], [48, Lemma 4.3], and [50].

(b)=-(c) Assume that specc; = speccy, that is, cox;(t) = coxj(t).
Since, by Theorem 1.9 (a), specc; = specc; = specc; = speccp s,
the simple analysis of possible Coxeter polynomials (1.13) proves that
DI = DJ. Hence, by applying Theorem 1.9 (a) again, we conclude that
C[ 7 CJ.

(d)=-(a) Assume that there exists a mesh translation quiver isomor-
phism h : T'(Ry, @) iﬂ‘(Rl,q)[) induced by a group isomorphism
h:Z’ — 7Z'. By Theorem 1.9 (a), we have the isomorphisms
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I'(Rpy,®ps) =T(R,,@,) 2 L(R1, 1) 2T (Rpr, Ppr)-
Hence, in view of [46, Corollary 5.7], we get the graph isomorphism
DI = DJ. Ol

The following example shows that the implication (b)=(c) in Corol-
lary 3.15 does not hold for an arbitrary pair of non-negative posets I and
J. We present such a pair that I is principal and J is non-negative of
corank two.

Example 3.16. Consider the following pair of one-peak posets I and J,
with m = 7 vertices.

5
B \5%6 B 1%3\\
I >< o J 2i<4/

One easily checks that
(a) each of the posets I, J is non-negative, [ is principal, J is not
principal, and
cox(t) = coxy(t) =T +t0 -5 —t* — 3 2+t 4+ 1= coxg, (t),
) specc; = specc; = speccg
) ¢; =00, 6 =¢5=cy =4,
) Kerq;=27-[1,1,—1,-1,0,0,0],
(e) Ker¢gy=72-11,1,-1,-1,0,0,0]®Z-[1,1,0,0,1,1, —2],
) Or: ZT —s Ker qr, 91(v) = (v1 4 vo + v3 4+ v4) - [1,1,—1,—1,0,0,0],
) y: Z7 —s Kerqy is zero.

The matrices C; and C'; are not Z-congruent, because the poset [ is
principal and the poset J is not.

4. Tables of one-peak principal posets of Coxeter-Euclidean
types Eg, E;, and Eg

In this section we present two tables containing all one-peak principal
posets of Coxeter-Euclidean types Eg and E7, respectlvely A correspond-
ing table containing all one-peak principal posets J{%,..., JE&S of the
Coxeter-Euclidean type Eg can be found in [21].
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Principal one-peak posets of Coxeter-Fuclidean type Eg

TABLE 4.1.
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TABLE 4.2. Principal one-peak posets of Coxeter-Euclidean type E7
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Remark 4.3. The computational technique introduced in this paper is
applied and developed in [22] for non-negative posets of corank two.
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