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Serial group rings of finite groups.

General linear and close groups
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Abstract. For a given p, we determine when the p-modular
group ring of a group from GL(n, q), SL(n, q) and PSL(n, q)-series
is serial.

Introduction

There is a recent progress in classifying finite groups G whose group
ring FG over a modular field F is serial. It is shown in [15] that the
crucial point in this description is making a list of simple finite groups
(and fields of finite characteristics) with this property.

For instance in [14] such a classification is given for symmetric and
alternating groups; and [15] provides a list of sporadic simple groups and
simple Suzuki groups with this property. Furthermore the first author
described in [12] groups in the PSL(2, q)-series whose modular group rings
are serial.

In this paper we will continue this line of research by including into
considerations all projective special linear groups PSL(n, q). Despite these
groups are the main target of this paper, we have to make a bypass
by considering general linear groups GL(n, q), and also special linear
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groups SL(n, q). The reason for such a detour is that for general linear
groups the structure of Brauer trees of blocks is best known, due to results
of Fong and Srinivasan [8,9]. Namely it is shown there that the Brauer
tree of any block of GL(n, q) is an interval whose exceptional vertex is
located at its end.

From general theory it is known (see [1, Sect. 5]) that a block B
of a group algebra is serial if and only if its Brauer tree is a star with
the exceptional vertex at the center. Thus in the case of the serial p-
modular group ring of GL(n, q) we obtain that all Brauer trees of blocks
are intervals with at most two edges and, if a tree has two edges, then the
exceptional vertex should have multiplicity one. Furthermore the number
of edges in a particular block can be calculated using centralizers and
normalizers of defect subgroups. There are rather few cases which are left
to analyze, which is achieved in this paper without difficulty.

In most cases descending from GL(n, q) to SL(n, q) and then to
PSL(n, q) is a straightforward normal subgroup business, the only diffi-
culty is when p divides q − 1. In this case more groups with serial group
rings occur, and our analysis is based on [12] or directly by looking at
character tables.

There is no doubt that a similar approach applies to all classical groups
but, because a myriad of details should be taken into account, we will
postpone this to a future paper.

1. Preliminaries

Recall that a module M over a ring R is said to be uniserial, if all
submodules of M are linearly ordered by inclusion; and M is serial if
it is a direct sum of uniserial modules. Furthermore R is called a serial
ring, if R is serial as a right and left module over itself. It is known
(see [2, Sect. 32]) that R is serial if and only if there exists a collection
e1, . . . , en of orthogonal idempotents such that each right module eiR
is serial, and the same is true for each left module Rej . For a general
theory of serial rings the reader is referred to [19] or recent [4]. Within
the class of artinian algebras over a field, the serial rings are also known
as Nakayma algebras - see [3, Sect. 4.2].

Let G be a finite group and let F be a field of finite characteristic
p. If p does not divide the order of G then, by Maschke’s theorem, the
ring FG is semisimple artinian, hence serial. In this paper we will always
assume that p divides |G|.
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Let P denote a p-Sylow subgroup of G. Since (see [2, Theorem 32.3])
artinian serial rings are of finite representation type, it follows from
Higman [10] that, if FG is serial, then P is a cyclic group. This gives a
necessary condition for seriality, which is not always sufficient: for instance
(see [1, p. 123]) the group SL(2, 5) for p = 5 gives a counterexample.

Furthermore, the seriality of the group ring FG depends on charac-
teristic of F only [6,16]. Thus in this paper (to ease references) we will
always assume that F is algebraically closed. For instance, it is known
(see [18,20] or [13]) that a p-modular group ring of a p-solvable group is
serial.

We say that the Brauer tree of a block is a star if it has no path of
length more than 2. Here is a typical shape of a star with the exceptional
vertex in the center:

◦ ◦

◦ • ◦

◦ ◦

A useful criterion for checking seriality is given by the following.

Fact 1 (see [1, Sect. 5] or [7, Corollary VII.2.22]). A modular group ring
R = FG is serial if and only if for each block B of R its Brauer tree is a
star whose exceptional vertex (if any) is located in the center.

Thus a satisfactory description of groups with serial group rings
depends on the supply of information on Brauer trees of blocks, which is
not always readily available.

In some cases the seriality can be lifted from normal subgroups.
Suppose that B is a block of the group algebra FG; H is a normal
subgroup of G and b is a block of FH. A definition of the notion that B
covers b can be found in [1, Sect. 14]. For instance if H contains a p-Sylow
subgroup of B, then the principal block B0 of G covers the principal block
b0 of H.

Fact 2 (see [7, Theorem 6.2.7]). 1) Suppose that a block B of G covers
a block b of H where H contains a defect group of B. Then B is serial if
and only if b is serial.

2) Suppose that F is a field of characteristic p and let H be a normal
subgroup of G whose index |G/H| is coprime to p. Then the ring FG is
serial if and only if FH is serial.
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Suppose that B is a block of a modular group ring FG with a cyclic
defect group D and let e denote the number of edges in the Brauer tree of
B. For instance the defect group of the principal block B0 equals P . By
CG(D) we denote the centralizer of D in G; and NG(D) is the normalizer
of D.

Fact 3 (see [1, Sect. 5, Theorem 1]). The number of edges e in the Brauer
tree of a block B divides the order of the factor group NG(D)/CG(D),
hence divides p−1. Furthermore the multiplicity of the exceptional vertex
equals (|D| − 1)/e.

For the principal block B0 the number of edges e equals to the order
|NG(P )/CG(P )|.

We will need one more technical result. Recall that Op′ denotes the
largest normal subgroup ofG consisting of elements whose order is coprime
to p. We say that an element g ∈ G is in the kernel of a block B if g acts
trivially on every indecomposable projective module in B.

Fact 4 (see [7, Lemma IV.4.12]). The kernel of the principal block of G
equals Op′ .

2. General linear group

In this section we will describe serial rings of general linear groups
GL(n, q) over finite fields with q elements.

Theorem 1. Let G = GL(n, q), n > 2 and let F be a field of characteristic
p dividing the order of G. Then the group ring FG is serial if and only if
one of the following holds.

1) n = 2 and p = q equal 2 or 3.
2) n = 2, 3, p = 3 and q ≡ 2, 5 (mod 9).

For instance GL(3, 2) ∼= PSL(2, 7) and, for any field of characteristic
3, the group ring of this group is serial.

Recall that the order of GL(n, q) equals qn(n−1)/2 · (q−1) · . . . · (qn −1).
Thus if p divides the order of G, then either p | q or p divides qk − 1 for
some k = 1, . . . , n.

We will divide the proof of Theorem 1 in two parts. The case of the
defining characteristic p | q is easy.

Lemma 1. Let q = pr, G = GL(n, q) and F is a field of characteristic p.
The group ring FG is serial if and only if n = 2, r = 1 and p equals 2 or 3.
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Proof. If n = 3 then the matrices
(

1 1 0
0 1 0
0 0 1

)

and
(

1 0 0
0 1 0
0 1 1

)

generate a subgroup

Cp × Cp, hence P is not cyclic; and we argue similarly for n > 4.

Thus it remains to consider the case n = 2.

If r > 2, it is easily checked that P is not cyclic, hence we may assume
that p = q. Because p− 1, the index of SL(2, p) in GL(2, p), is coprime to
p, it follows from Fact 2 that the seriality of group rings of GL(2, p) and
SL(2, p) is equivalent.

If p > 5 we conclude from [1, p. 124] that the Brauer tree of the
principal block B0 of the group H = SL(2, p) is an interval with at least
3 edges, hence the ring FH (and then FG) is not serial. It remains to
consider the case p = 2, 3.

If p = 2, then G = GL(2, 2) ∼= S3 is 2-nilpotent, hence the ring FG is
serial.

Similarly for p = 3 the group GL(2, 3) has order 48 and is 3-solvable,
hence FG is serial.

Thus we may assume that p does not divide q. Let d be the order of
q modulo p, i.e. the least d such that p | qd − 1. By the assumption we
have 1 6 d 6 n, and clearly d | p− 1.

We will show that d cannot be very small (otherwise the p-Sylow
subgroup P of G is not cyclic) and cannot be very large (otherwise the
Brauer tree of the principal block has too many edges).

The description of normalizers and centralizers of p-Sylow subgroups
of GL(n, q) is well known (see [21,22]). We will add some explanations to
ease reader’s task.

Lemma 2. 1) P is cyclic if and only if n < 2d.

2) If n < 2d then the factor group NG(P )/CG(P ) has order d.

Proof. Consider the Galois field Fqd as a vector space (of dimension d)
over Fq with a basis v1, . . . , vd. Let z be nonzero element of Fqd . Then
zvi =

∑

j zijvj for some zij ∈ Fq. The mapping z 7→ (zij) defines an
embedding of the multiplicative group of Fqd into GL(d, q). The image of

a generator of F∗
qd gives us a matrix x ∈ GL(d, q) of order qd − 1.

Write qd − 1 = pa · s such that p and s are coprime, hence y = xs

generates the p-Sylow subgroup P of order pa.

1) If n > 2d, then one could insert in GL(n, q) two copies of GL(d, q)
as 1 through d, and d + 1 through 2d diagonal blocks. It follows easily
that P is not cyclic.
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On the other hand, if n < 2d then, comparing the sizes, we see that
P can be chosen inside GL(d, q) embedded in the upper left 1 through d
corner of GL(n, q), and therefore is generated by y.

2) It is known (see [22]) that the centralizer of P is generated by x,
hence has order qd − 1. Furthermore (see [21, Lemma 4.6]) the normalizer
of P is generated over CG(P ) by an element of order d.

For our purposes it suffices to find an element which normalizes P
and has order d modulo the centralizer. This can be achieved as follows.

Suppose that the action of x on the basis is given by a matrix A = (aij),
aij ∈ Fq: xvi =

∑

j aijvj . Applying the Frobenius morphism x 7→ xq on
Fqd we obtain xqvq

i =
∑

j aijv
q
j . It follows that the action of xq in the

basis vq
i is given by the same matrix A.

Because in the original basis this action is given by Aq, we conclude
that UAU−1 = Aq, where U is the transition (from vq

i to vi) matrix. Then
the conjugation by U defines an automorphism of order d on the subgroup
generated by x. It follows that this action induces on P an automorphism
ψ of the same order.

Namely, let ψ(y) = yq and suppose that yqk

= y for some k. Plugging

y = xs we obtain x(qk−1)s = 1, therefore qd −1 = pa ·s divides (qk −1)s. It
follows that pa divides qk −1, and hence d divides k, by the choice of d.

Now we complete the proof of Theorem 1 by showing the following.

Proposition 1. Let G = GL(n, q) and F is a field of characteristic p
dividing the order of G but not dividing q. Then the group ring FG is
serial if and only if n = 2, 3, p = 3 and q ≡ 2, 5 (mod 9).

Proof. We may assume that the p-Sylow subgroup P of G is cyclic. By
the item 1) of Lemma 2 it follows that n/2 < d 6 n, where d is the order
of q modulo p.

Suppose first that d > 2. If p = 2 it follows (since p does not divide q)
that q is odd, therefore p divides q − 1 and d = 1, a contradiction. Thus
we may assume that p > 2.

By Fact 3 and the item 2) of Lemma 2 the Brauer tree of the principal
block B0 of G has e = d edges. Furthermore [8, Prop. 4] implies that this
tree is an interval. Since d > 2, this block is not serial.

Thus we are left with the case d = 2, in particular p divides q2 −1. The
definition of d yields that p does not divide q − 1 and hence divides q + 1.
Again the Brauer tree of the principal block of G is an interval with
e = 2 edges, whose exceptional vertex is located at its end. By Fact 3 the
multiplicity of this vertex is (|P | − 1)/2. If |P | > 3 this bock is not serial.



A. Kukharev, G. Puninski 121

Thus we may assume that |P | = 3, which clearly yields p = 3 and
q ≡ 2, 5 (mod 9) (otherwise 9 divides the order of P ). It follows that the
principal block is serial.

We prove that, in this case, any non-principal block B of G is also
serial. Namely, by Fact 3 the number of edges, e, of this block divides
p − 1 = 2. If e = 1 then this block contains only one Brauer character,
hence serial. If e = 2 then the multiplicity of the exceptional vertex equals
(3 − 1)/2 = 1, hence this block is also serial.

Note that in the proof of the implication ⇒ in Theorem 1 we used
only that the principal block B0 of GL(n, q) is serial.

3. Special linear and projective special linear groups

In this section we will consider the seriality of group rings of special
linear groups SL(n, q) and projective special linear groups PSL(n, q). The
answer turns out to be the same for both series; and the proofs go in
parallel.

Recall that SL(n, q) is a normal subgroup of GL(n, q) of index q − 1.
Furthermore PSL(n, q) is obtained from SL(n, q) by factoring out the
center Z whose order equals (n, q− 1). Note also that, except of PSL(2, 2)
and PSL(2, 3), PSL(n, q) is a simple group.

To avoid long sentences we will divide the classification theorem in
two cases: when p divides q − 1 and when it is not. In the former case
the answer is the same as in Theorem 1.

Proposition 2. Let G is one of the groups SL(n, q) or PSL(n, q), n > 2.
Let F be a field of characteristic p such that p does not divide q− 1. Then
the ring FG is serial if and only if one of the following holds.

1) n = 2 and p = q equal 2 or 3.
2) n = 2, 3, p = 3 and q ≡ 2, 5 (mod 9).

Proof. Since p does not divide q − 1, by Fact 2, we conclude that the
seriality of group rings of SL(n, q) and GL(n, q) is equivalent. Applying
Theorem 1 we obtain the desired conclusion for SL(n, q).

Thus we may assume that G = PSL(n, q). If 1) or 2) holds true then
the group ring R of SL(n, q) is serial. Since G is a factor group of this
group, it follows that the group ring of G is a factor ring of R, therefore
is also serial.

Thus we may assume that the group ring of PSL(n, q) is serial and
we need to show that either 1) or 2) holds true.
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By Fact 4 the principal block b0 of SL(n, q) has Z in its kernel, and
therefore coincides with the principal block of PSL(n, q). Furthermore,
because SL(n, q) contains the p-Sylow subgroup of GL(n, q) it follows by
Fact 2 that the principal block B0 of GL(n, q) is serial.

Now the result follows from the proof of Theorem 1 (see a remark at
the end of Section 2).

Now we consider the remaining case p | q − 1. In this case serial rings
occur more often than in the GL-case (cp. Theorem 1).

Proposition 3. Let G be one of the group SL(n, q) or PSL(n, q), n > 2
and let F be a field of characteristic p dividing q − 1. The group ring FG
is serial if and only if n = 2 and p 6= 2.

Proof. If n > 3 then it is easily seen that p-Sylow subgroups of G are not
cyclic. Thus we may assume that n = 2.

If G = PSL(2, q) then FG is serial if and only if p 6= 2 [12].

Thus we may assume that G = SL(2, q). If p = 2 then the group ring
FG is not serial. Indeed, otherwise, being a factor ring of FG, the group
ring of PSL(2, q) would be serial, a contradiction.

It remains to consider the case p > 2 and we have to prove that the
group ring of FG is serial. Observe that, if q is even, then SL(2, q) ∼=
PSL(2, q), hence the ring is serial. Thus we assume that q is odd. In this
case the center Z of SL(2, q) consists of matrices ±I, where I = ( 1 0

0 1 ).

For the remaining part of the proof we need the character table of
G = SL(2, q) — see Table 1.

In the table, 1 6 l 6 (q − 3)/2, 1 6 m 6 (q − 1)/2, ε = (−1)(q−1)/2, ρ
is a primitive (q− 1)-th root of 1, and σ is a primitive (q+ 1)-th root of 1.

Let ν be a generator of the group F
∗
q . Denote γ = ( 1 0

1 1 ), δ = ( 1 0
ν 1 ),

α =
(

ν 0
0 ν−1

)

. So, the order of α is q − 1. The group G contains also

an element β of order q + 1. Moreover, two columns for the classes of
γ′ = −I · γ and δ′ = −I · δ are omitted (to save space in the table). The
values of any irreducible character χ of G on these classes are obtained
by the formulas χ(γ′) = χ(γ)χ(−I)/χ(I) and χ(δ′) = χ(δ)χ(−I)/χ(I).
Since p | q − 1, only the sixth column of the table contain p-singular
elements.

In particular, the cyclic group 〈α〉 contains a generator y of a p-Sylow
subgroup P of G.

It is easy to show (see [5, p. 230]) that CG(y) = 〈α〉 and NG(y) =
〈α,

(

0 1
−1 0

)

〉. Hence |NG(P )/CG(P )| = 2 . In particular, the number of
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Classes I −I γ δ αl βm

Number
of classes

1 1 1 1 q−3
2

q−1
2

Size
of classes

1 1 q2−1
2

q2−1
2 q(q+1) q(q − 1)

1G 1 1 1 1 1 1

ψ q q 0 0 1 −1

χi (i =
1, . . . , q−3

2 )
q+ 1 (−1)i ×

×(q+1)
1 1 ρil +

ρ−il
0

θj(j =
1, . . . , q−1

2 )
q− 1 (−1)j ×

×(q−1)
−1 −1 0 −(σjm +

σjm)

ξ1, ξ2
q+1

2
ε(q+1)

2
1±√

εq
2

1∓√
εq

2 (−1)l 0

η1, η2
q−1

2 − ε(q−1)
2

−1±√
εq

2
−1∓√

εq
2 0 (−1)m+1

Table 1. The character table of SL(2, q), q is odd [5, p. 228]

edges in the principal block B0 of G equals 2, furthermore the number of
edges in any block of G divides 2.

Observe that θj , η1 and η2 have value 0 on the class of α. By [17,
Theorem 4.4.14], these characters belong to blocks of defect zero. It follows
that these blocks contain only one irreducible ordinary character, hence
is serial.

Furthermore it is easily checked (using [11, Theorem 2.1.8]) that the
Steinberg character ψ belongs to the principal block B0. Looking at the
values on p-singular elements (and using cross-naught business — see
[11, Chap. 2]) we see that the Brauer tree of B0 is an interval with 2 edges
having 1G and ψ at its ends. Thus if there is an exceptional vertex it
should be located at the center of this interval (in fact certain characters
χi will occupy the center making an exceptional vertex there).

Because each character χi has the largest possible degree, it follows
from [11, Lemma 2.1.22] that such a character cannot occur at the end of
an interval of length 2. Thus the only possibility for such an interval is to
have ξ1 at one end, ξ2 at another end, and some characters χi in between.
But this block is clearly serial.

In fact such a block exists if q ≡ 1 (mod 4); otherwise each non-
principal block contains at most one modular character (i.e. its Brauer
tree has at most one edge).

By this we have established that the group ring of SL(2, q) is serial if
2 6= p | q − 1, hence finished the proof of the proposition.
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Prepositions 2 and 3 completely describe groups of SL(n, q) and
PSL(n, q)-series whose p-modular group rings are serial.
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