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Some more algebra on ultrafilters

in metric spaces

Igor Protasov

Abstract. We continue algebraization of the set of ultra-
filters on a metric spaces initiated in [6]. In particular, we define
and study metric counterparts of prime, strongly prime and right
cancellable ultrafilters from the Stone-Čech compactification of a
discrete group as a right topological semigroup [3]. Our approach
is based on the concept of parallelity introduced in the context of
balleans in [4].

1. Introduction

Let X be a discrete space, and let βX be the Stone-Čech compactifi-
cation of X. We take the point of βX to be the ultrafilters on X, with the
point of X identified with principal ultrafilters, so X∗ = βX \X is the set
of all free ultrafilters. The topology of βX can be defined by stating that
the sets of the form Ā = {p ∈ βX : A ∈ p}, where A is a subset of X, are
base for the open sets. Given a filter ϕ on X, the set ϕ̄ =

⋂

{Ā : A ∈ ϕ} is
closed in βX, and every non-empty closed subset of βX can be obtained
in this way.

If S is a discrete semigroup, the semigroup multiplication has a nat-
ural extension to βS, see [3, Chapter 4]. The compact right topological
semigroup has very rich algebraic structure and a plenty applications to
combinatorics, topological algebra and functional analysis, see [1, 2, 3,
7, 8, 10]. To get the product pq of p, q ∈ βS, one can take an arbitrary
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P ∈ p, and for each x ∈ P , pick Qx ∈ q. The
⋃

x∈P xQx ∈ pq and these
subsets form a basis of pq.

In [6], given a metric space X, we endowed X with the discrete topology,
introduced and characterized the metric counterparts in βX of minimal
left ideals and the closure of the minimal ideal in βS.

In this note, we continue algebraization of βX, define and describe the
metric analogues of prime, strongly prime and right cancellable ultrafilters
from βG, G is a discrete group. We recall that an ultrafilter p ∈ G∗ is
prime if p /∈ G∗G∗, and p is strongly prime if p /∈ clG∗G∗. An ultrafilter
p ∈ G∗ is called right cancellable if, for any q, r ∈ βG, qp = rp implies
q = r.

The key observation: to detect whether p ∈ G∗ is prime or strongly
prime, we do not need to know how to multiply any two individual
ultrafilters but only what is the set G∗q, q ∈ G∗. Indeed, p is prime if
and only if p /∈ G∗q for each q ∈ G∗. If G is countable then p ∈ G∗ is
right cancellable if and only if p /∈ G∗p, see [3, Theorem 8.18]. But the
natural metric counterpart of G∗p in βX can be defined by means of the
parallelity relation on ultrafilters introduced in [4] for the general case of
balleans, and applied for algebraization of βX, X is a metric space, in [6].

2. Ball invariance and parallelity

Let (X, d) be a metric space. For any x ∈ X, A ⊆ X, r ∈ R+,
R+ = {r ∈ R : r > 0}, we denote

B(x, r) = {y ∈ X : d(x, y) 6 r}, B(A, r) =
⋃

a∈A

B(a, r).

Given an ideal I in the Boolean algebra PX of all subsets of X,
(A,B ∈ I, C ⊆ A =⇒ A

⋃

B ∈ I, C ∈ I), we say that I is ball invariant

if, for every A ∈ I and r ∈ R+, we have B(A, r) ∈ I. If I is ball invariant
and I 6= {∅} then I contains the ideal Ib of all bounded subsets of X.
A subset A of X is called bounded if A ⊆ B(x, r) for some x ∈ X and
r ∈ R+.

We say that a filter ϕ on X is ball invariant if, for every A ∈ ϕ and
r ∈ R+, there exists C ∈ ϕ such that B(C, r) ⊆ A.

An ideal I is called proper if I 6= PX . For a proper ideal in PX , we
denote by ϕI the filter {X \A : A ∈ I} and put A∧ = ϕ̄I so

A∧ = {p ∈ βX : X \A ∈ p}.
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We remind the reader that X in βX is endowed with the discrete
topology and use the parallelity equivalence on βX defined in [6] by the
rule: p ‖ q if and only if there exists r ∈ R+ such that B(P, r) ∈ q for
each P ∈ p. A subset S of βX is called invariant (with respect to the
parallelity equivalence) if, for all p, q ∈ βX, p ∈ S and p ‖ q imply q ∈ S.

Proposition 1. For a proper ideal I in βX, the following statements are

equivalent:

(i) I is ball invariant;

(ii) ϕI is ball invariant;

(iii) I∧ is invariant.

Proof. The equivalence (i) ⇐⇒ (ii) is evident. To prove (ii) =⇒ (iii), let
p ∈ I∧ and q ‖ p. We choose r > 0 such that B(P, r) ∈ q for each P ∈ p.
Given an arbitrary Y ∈ ϕI , we choose Z ∈ ϕI such that B(Z, r) ⊆ Y .
Then Z ∈ p and B(Z, r) ∈ q so Y ∈ q and q ∈ I∧.

To see that (iii) =⇒ (i), we assume the contrary and choose Y ∈ ϕI

and r > 0 such that B(Z, r)\Y 6= ∅ for each r > 0. Then we take q ∈ βX
such that B(Z, r)\Y ∈ q for each Z ∈ ϕI . By [6, Lemma 2.1], there exists
p ∈ ϕI such that q ‖ p. Since q /∈ I∧, we get a contradiction.

In what follows, we suppose that every metric space X under consid-
eration is unbounded, put

X♯ = {p ∈ βX : every member P ∈ p is unbounded in X}

and note that X♯ is a closed invariant subset of βX.

We say that a subset A of X is
• large if X = B(A, r) for some r > 0;
• small if L \A is large for every large subset L;
• thick if, for every r > 0, there exists a ∈ A such that B(a, r) ⊆ A;
• prethick if B(A, r) is thick for some r > 0.
The family SmX of all small subsets of X is an ideal in PX , and

a subset A is small if and only if A is not prethick [7, Theorems 11.1
and 11.2].

Proposition 2. For every metric space X, the ideal SmX is ball invariant

and

Sm∧
X = cl

{

⋃

{K : K is a minimal non-empty

closed invariant subset of X♯}
}

.
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Proof. The second statement is the dual form of Theorem 3.2 from [6].
Assume that A is small but B(A, r) is not small for some r > 0. Then
B(A, r) is prethick so there is m > 0 such that B(B(A, r),m) is thick. It
follows that A is prethick and we get a contradiction.

For every metric space X, by [6, Corollary 3.1], the set of all minimal
non-empty closed invariant subset of X has cardinality 22

asdenX

, where
asdenX = min{|Y | : Y is a large subset of X}. Applying Proposition 1,
we get 22

asdenX

maximal proper ball invariant ideals in PX .

Proposition 3. Let I be a ball invariant ideal in PX such that I 6= Ib, Ib
is the ideal of all bounded subsets of X. Then there exists a ball invariant

ideal J such that Ib ⊂ J ⊂ I.

Proof. We take an unbounded subset A ∈ I and choose a sequence (an)n∈ω
in A such that B(an, n)

⋂

B(am,m) = ∅ for all distinct n,m ∈ ω. We
put A0 = {a2n : n ∈ ω}, A1 = {a2n+1 : n ∈ ω} and denote by J the
smallest ball invariant ideal such that A0 ∈ I. Then Y ∈ I if and only if
Z ⊆ B(Y0,m) for some m ∈ ω. By the choice of (an)n∈ω, Y \B(Y0,m) 6= ∅

for each m ∈ ω, so Y1 /∈ J but Y1 ∈ I.

3. Prime and strongly prime ultrafilters

For each q ∈ X♯, we denote q= = {r ∈ X♯ : r ‖ q} and say that
p ∈ X♯ is divisible if there exists q ∈ X♯ such that P̄

⋂

q= is infinite for
each P ∈ p. An ultrafilter p ∈ X♯ is called prime if p is not divisible, and
strongly prime if p is not in the closure of the set of all divisible ultrafilters.

A subset A of X is called sparse if Ā
⋂

q= is finite for each q ∈ X♯.
We denote by SpX the family of all sparse subsets of X and observe that
SpX is an ideal in PX .

Proposition 4. An ultrafilter p ∈ X♯ is strongly prime if and only if

there exists A ∈ SpX such that A ∈ p so Sp∧X = clD, where D is the set

of all divisible ultrafilters.

Proof. Assume that each member P ∈ p is not sparse and choose q ∈ X♯

such that P̄
⋂

q= is infinite. We take an arbitrary limit point r of the set
P̄
⋂

q= . Then P ∈ r and r is divisible so p ∈ clD and p is not strongly
prime.

On the other hand, if A is sparse and A ∈ p then Ā
⋂

D = ∅ and
p /∈ clD.
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A subset A of X is called thin if, for every r > 0, there exists a bounded
subset V of X such that B(a, r)

⋂

A = {a} for each a ∈ A \ V .

Proposition 5. If p ∈ X♯ and some member P ∈ p is thin then p is

strongly prime.

Proof. By [6, Theorem 4.3], P is thin if and only if |P̄
⋂

q=| 6 1 for each
q ∈ X♯ so we can apply Proposition 4.

Since every unbounded subset of X contains some unbounded thin
subset, we conclude that the set of all strongly prime ultrafilters is dense
in X♯.

Is the ideal SpX ball invariant? In Proposition 7, we give a negative
example. In Proposition 6, we describe a class of metric spaces for which
the answer is positive.

A metric space X is called uniformly locally finite if, for every r > 0,
there exists m ∈ N such that |B(x, r)| 6 m for each x ∈ X.

Proposition 6. If a metric space X is uniformly locally finite then the

ideal SpX is ball invariant.

Proof. By [5, Theorem 1], there exists a countable group G of permutations
of X such that

(1) for each r > 0, there exists a finite subset F of G such that B(x, r) ⊆
F (x) for each x ∈ X, where F (x) = {g(x) : g ∈ F};

(2) for every finite subset F of G, there exists r > 0 such that F (x) ⊆
B(x, r) for each x ∈ X.

It follows that, for p, q ∈ X♯, p ‖ q if and only if there exists g ∈ G
such that q = g(p), where g(p) = {g(P ) : P ∈ p}.

Now let A be a sparse subset of X and r > 0. We choose F sat-
isfying (2) so B(A, r) ⊆ F (A), where F (A) =

⋃

g∈F g(A). We take an
arbitrary q ∈ X♯. Since A is sparse, q=

⋂

Ā is finite. Then q=
⋂

B(A, r) ⊆
⋃

g∈F (q
=
⋂

g(A)). Since |q=
⋂

g(A)| = |(g−1q)=
⋂

A| and A is sparse,
|q=

⋂

B(A, r)| is finite and B(A, r) is sparse.

Proposition 7. Let Q be the set of rational numbers endowed with the

metric d(x, y) = |x− y|. The ideal SpQ is not ball invariant.

Proof. We put A = {2n : n ∈ N}. By Proposition 5, A is sparse. We take
an arbitrary free ultrafilter q ∈ Ā. Then B(A, 1) ∈ x+ q for each x ∈ [0, 1].
Since x+ q ‖ q, q=

⋂

B(A, 1) is infinite so B(A, 1) is not sparse.
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We say that an ultrafilter p ∈ X♯ is discrete if each q ∈ p= is an isolated
point in the set p=. In view of [3, Theorem 8.18], a discrete ultrafilter can
be considered as a counterpart of a right cancellable ultrafilter. Clearly, if
each q ∈ p= is prime then p is discrete.

Proposition 8. There exist two ultrafilters p, q ∈ Q♯ such that p ‖ q, p
is isolated in p= but q is not isolated in p=.

Proof. For each n ∈ N, we put An =
⋃

m>n[2
m,2m+1] and take a maximal

filter q such that An ∈ q, n ∈ N and each member A ∈ q is somewhere
dense, i.e. the closure of A in Q has non-empty interior. It is easy to see that
q is an ultrafilter and q has a basis consisting of subsets without isolated
points. We consider the mapping f : Q −→ Q defined by f(x) = ⌊x⌋, where
⌊x⌋ is the nearest from the left integer to x. The set {f(U) : U ∈ q} is a
basis for some uniquely determined ultrafilter p such that {2n : n ∈ N} ∈ p.
Clearly p ‖ q and, by Proposition 5, p is isolated in p=.

We show that q is not isolated in p=. We take an arbitrary Q ∈ q
such that Q has no isolated points, f(Q) ⊆ {2n : n ∈ N} and choose an
arbitrary mapping h : f(Q) −→ Q such that h(2n) ∈ [2n, 2n + 1] for each
2n ∈ f(Q). We denote by qh the ultrafilter with the basis {h(V) : V ∈ p}.
Then Q ∈ qh and qh ‖ p. Since Q has no isolated points, we have countably
many ways to choose h and get countably many distinct ultrafilters from
p=

⋂

Q̄.

A subset A of X is called disparse if Ā
⋂

p= is discrete for each p ∈ X♯.
The family dSpX of all disparse subsets of X is an ideal in PX and we
get the following evident

Proposition 9. For every metric space X, dSp∧X is the of all ultrafilters

p ∈ X♯ such that p= has no isolated points.

Proposition 10. For every p ∈ X♯, the set p= is nowhere dense in X♯.

Proof. We take an arbitrary A ∈ p and coming back to the proof of
Proposition 3, consider the subsets A0, A1 of A. If A0 ∈ q, A1 ∈ r then q
and r are not parallel. Then either A0

⋂

p= or Ā1

⋂

p= = ∅.

4. Ballean context

Following [7, 8], we say that a ball structure is a triple B = (X,P,B),
where X,P are non-empty sets and, for every x ∈ X and α ∈ P , B(x, α)
is a subset of X which is called a ball of radius α around x. It is supposed
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that x ∈ B(x, α) for all x ∈ X and α ∈ P . The set X is called the support

of B, P is called the set of radii.

Given any x ∈ X, A ⊆ X, α ∈ P , we set

B∗(x, α) = {y ∈ X : x ∈ B(y, α)}, B(A,α) =
⋃

a∈A

B(a, α).

A ball structure B = (XP,B) is called a ballean if
• for any α, β ∈ P , there exist α′, β′ ∈ P such that, for every x ∈ X,

B(x, α) ⊆ B∗(x, α′), B∗(x, β) ⊆ B(x, β′);

• for any α, β ∈ P , there exists γ ∈ P such that, for every x ∈ X,

B(B(x, α), β) ⊆ B(x, γ);

• for any x, y ∈ X, there is α ∈ P such that y ∈ B(x, α).
A ballean B on X can also be determined in terms of entourages of the

diagonal △X in X ×X (in this case it is called a coarse structure [9]) and
can be considered as an asymptotic counterpart of a uniform topological
space.

Every metric space (X, d) defines the ballean (X,R+, Bd), where
Bd(x, r) = {y ∈ X : d(x, y) 6 r}. For criterion of metrizability of balleans
see [8, Theorem 2.1.1].

We observe that all definitions in this paper do not use the metric
on X directly but only balls so can be literally rewritten for any ballean
in place of metric space. Moreover, a routine verification ensures that
Propositions 1, 2, 4, 5, 9 remain true for any balleans.

Let G be a group with the identity e. We denote by FG the fam-
ily of all finite subsets of G containing e and get the group ballean
B(G) = (G,FG, B), where B(g, F ) = Fg for all g ∈ G, F ∈ FG. We
note that G♯ = G∗ and, for p, q ∈ G∗, p ‖ q if and only if q = gp for
some g ∈ G. Hence, p= = Gp, cl p= = (βG)p and the minimal non-empty
closed invariant subsets in G♯ are precisely the minimal left ideals of the
semigroup βG. The ballean and semigroup notions of divisible, prime and
strongly prime ultrafilters coincide.
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