
Algebra and Discrete Mathematics RESEARCH ARTICLE

Number 4. (2004). pp. 106 – 118

c© Journal “Algebra and Discrete Mathematics”

Correct classes of modules

Robert Wisbauer

Abstract. For a ring R, call a class C of R-modules (pure-)
mono-correct if for any M,N ∈ C the existence of (pure) monomor-
phisms M → N and N → M implies M ≃ N . Extending results
and ideas of Rososhek from rings to modules, it is shown that, for
an R-module M , the class σ[M ] of all M -subgenerated modules
is mono-correct if and only if M is semisimple, and the class of
all weakly M -injective modules is mono-correct if and only if M is
locally noetherian. Applying this to the functor ring of R-Mod pro-
vides a new proof that R is left pure semisimple if and only if R-Mod
is pure-mono-correct. Furthermore, the class of pure-injective R-
modules is always pure-mono-correct, and it is mono-correct if and
only if R is von Neumann regular. The dual notion epi-correctness
is also considered and it is shown that a ring R is left perfect if
and only if the class of all flat R-modules is epi-correct. At the end
some open problems are stated.

1. Introduction

Consider the following definitions in any category A.

1.1. Mono- and epi-equivalent objects. Two objects A, B in A are
called

mono-equivalent if there are monomorphisms A → B and B → A,
epi-equivalent if there are epimorphisms A → B and B → A.

We denote the first case by A
m
≃B and the second case by A

e
≃B.

1.2. Correct objects and classes. An object A in A is said to be
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mono-correct if, for every object B ∈ A, A
m
≃B implies A ≃ B,

epi-correct if, for every B ∈ A, A
e
≃B implies A ≃ B.

We call a class C of objects in A

mono-correct if, for any objects A, B ∈ C, A
m
≃B implies A ≃ B,

epi-correct if, for any objects A, B ∈ C, A
e
≃B implies A ≃ B.

Notice that any subclass of a mono-correct (epi-correct) class of ob-
jects trivially is again a mono-correct (epi-correct) class. The reader
should be aware of the difference between a correct class of objects and a
class of correct objects.

The motivation for our investigation is the well-known property of the
category Set of sets with maps as morphisms.

1.3. Cantor-Bernstein Theorem.

The class of all objects in Set is mono-correct and epi-correct.

Proof. The classical Cantor-Bernstein (or Schröder-Bernstein) Theorem
says: if for two sets A, B there are injective maps A → B and B → A,
then there exists a bijection between A and B. In our terminology this
means that every object in Set is mono-correct.

To prove epi-correctness assume that, for any sets A, B, there exist
surjective maps f : A → B and g : B → A. Then, by the Axiom of
Choice, f and g are retractions, that is, there exist maps f ′ : B → A and
g′ : A → B such that f ◦ f ′ = idB and g′ ◦ g = idB (e.g., [18, Satz 3.8]).
Clearly f ′ and g′ are injective and hence A ≃ B.

For a discussion and history of the Cantor-Bernstein Theorem the
reader is referred to [1], [2] and [9]. The fact that the class of all ob-
jects in Set is epi-correct is also called the dual Cantor-Bernstein The-
orem. As stated in [1, Corollary 5.3], in Zermelo-Frankel set theory this
is equivalent to the Axiom of Choice. There are several papers studying
Cantor-Bernstein theorems for various algebraic situations, e.g., [4], [5]
and [16].

The purpose of this note is to consider such properties for classes
of modules. In particular we will see that the class of all modules sub-
generated by a module M is mono- (or epi-)correct if and only if M is
semisimple. Further results are: the class of weakly M -injective modules
is mono-correct if and only if M is locally noetherian; the class of all flat
R-modules is epi-correct if and only if R is left perfect; the class of all
pure-injective modules is mono-correct if and only if R is von Neumann
regular.
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Restricting to the classes of pure morphisms, we obtain that the class
of pure-injective modules is pure-mono-correct, and the class of all left R-
modules is pure-mono-correct (or pure-epi-correct) if and only if R is left
pure semisimple. This reproves and extends results in Rososhek [13, 14].

Restricting further to the class of splitting morphisms the resulting
notions still make sense and some thoughts on this are mentioned at
the end of the paper. Notice that the Cantor-Bernstein Theorem could
be stated as the class of all sets being split-mono-correct and split-epi-
correct.

2. Preliminaries

For convenience we recall some basic notions from module theory which
will be used in the sequel. Let R be any associative ring with identity
and let R-Mod denote the category of left R-modules.

2.1. The category σ[M ]. For any R-module M , by σ[M ] we denote the
full subcategory of R-Mod whose objects are M -subgenerated modules,
that is, modules that are submodules of M -generated modules. σ[M ] is
the smallest full Grothendieck subcategory of R-Mod containing M (see
[17]). For any family {Nλ}Λ of modules in σ[M ] the coproduct in σ[M ]
is the same as the coproduct in R-Mod, and the product in σ[M ] is the
trace of σ[M ] in the product formed in R-Mod, i.e., Tr(σ[M ],

∏
Λ Nλ).

Any module N ∈ σ[M ] has an injective cover in σ[M ], the M -injective

cover of N , which is usually denoted by N̂ . In particular, M̂ is the self-
injective cover of M .

A module N is called weakly M -injective if Hom(−, N) transforms any
monomorphism K → Mn into an epimorphism, whenever K is finitely
generated and n ∈ N. Clearly the direct sum of weakly M -injective
modules is again weakly M -injective. Furthermore, every weakly M -
injective module is M -injective if and only if M is locally noetherian
(e.g., [17, 16.9,27.3]). Notice that for M = R the weakly R-injective
modules are just the FP-injective modules.

2.2. Purity in R-Mod. An exact sequence of left R-modules

(∗) 0 // K
f

// L
g

// N // 0

is said to be pure provided Hom(P,−) transforms (∗) to an exact sequence
of abelian groups, for any finitely presented R-module P . In this case f
is called a pure monomorphism and g is a pure epimorphism. Notice that
the purity of (∗) can also be characterized by the fact that it remains exact
under the functors F⊗R−, for any (finitely presented) right R-module F .
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A module Q ∈ σ[M ] is called pure injective if Hom(−, Q) is exact
on all pure exact sequences (∗), and a module P is pure projective if
Hom(P,−) is exact on all such sequences. Pure projective modules are
precisely direct summands of direct sums of finitely presented modules.
For any right R-module X, HomZ(X, Q/Z) is a pure injective left R-
module and (∗) is pure if and only if Hom(−, Q) is exact on (∗) for any
pure injective left R-module Q.

2.3. Left functor ring. Let U =
⊕

A Uα be the direct sum of a rep-
resenting set {Uα}A of the finitely presented left R-modules. Then the
functor Ĥom(U,−) is defined, for any left R-module N , by

Ĥom(U, N) = {f ∈ Hom(U, N) | (Uα)f = 0 for almost all α ∈ A}

and T = Ĥom(U, U) is called the left functor ring (of R-Mod). T is a
ring with enough idempotents and by T -Mod we denote the category of
all T -modules X with TX = X. The functor

Ĥom(U,−) : R-Mod → T -Mod

is fully faithful and, for any module N , Ĥom(U, N) is a flat T -module
and every flat module in T -Mod is of this form ([17, Section 52]).

2.4. Right functor ring. Let V =
⊕

A Vα be the direct sum of a
representing set {Vα}A of the finitely presented right R-modules. Then
the functor Ĥom(V,−) is defined as above and S = Ĥom(V, V ) is the right
functor ring (of Mod-R). Of course, S also has enough idempotents and
by S-Mod we denote the category of all left S-modules Y with SY = Y .
The functor

V ⊗R − : R-Mod → S-Mod

is fully faithful and, for any left module N , V ⊗R N is an FP-injective
S-module and every FP-injective module in S-Mod is of this form ([17,
52.3]).

2.5. Remarks. The notion of purity can also be defined in the category
σ[M ], for any module M , based on the finitely presented modules in σ[M ].
However, there may be such categories that do not contain any non-zero
finitely presented objects as shown by Example 1.7 in [12]. To get the
expected results around purity in such categories one has to require that
σ[M ] is locally finitely presented, that is, there is a generating set of
finitely presented modules in σ[M ] (e.g., M is locally noetherian). In
this case also the functor ring of σ[M ] can be defined and many results
from R-Mod hold in this context (see [17]). For purity in more general
Grothendieck categories and pure semisimplicity of these categories we
refer to Simson [15].
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3. Correct classes of modules

The definitions from Section 1 take the following form in module cate-
gories.

3.1. Mono- and epi-equivalent modules. Two modules M and N
are called

mono-equivalent if there are monomorphisms M → N and N → M ,
epi-equivalent if there are epimorphisms M → N and N → M .

We denote the first case by M
m
≃N and the second case by M

e
≃N .

These relationships between two modules generalize the notion of iso-

morphisms. In the terminology of Facchini (e.g. [7, 8]), M
m
≃N if the

modules M, N belong to the same monogeny class and M
e
≃N if they

belong to the same epigeny class. In his work these notions play an
important part in the study of uniqueness of decompositions.

Notice that a module M is compressible if it is mono-equivalent to
each of its submodules. If M and N are mono-equivalent then the class of
M -cogenerated modules is equal to the class of N -cogenerated modules.
Dually, for epi-equivalent modules M ,N , the class of M -generated mod-
ules coincides with the class of N -generated modules. In both cases the
categories subgenerated by M and N are the same, that is, σ[M ] is equal
to σ[N ]. As a consequence, any self-injective (self-projective) module M

is also N -injective (N -projective) for any N
m
≃M or N

e
≃M .

3.2. Correct modules. An R-module M is said to be

mono-correct if for any module N , M
m
≃N implies M ≃ N ,

epi-correct if for any module N , M
e
≃N implies M ≃ N .

In these definitions the choice of N can be restricted to modules in
σ[M ] since modules which are mono-equivalent or epi-equivalent to M
always belong to σ[M ].

3.3. Correct modules in R-Mod.

(1) M is mono-correct in case

(i) M is artinian;

(ii) M is uniserial and injective endomorphisms are epimorph.

(2) M is epi-correct in case

(i) M is noetherian;

(ii) M is uniserial and surjective endomorphisms are monomorph.
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(3) M is mono- and epi-correct in case

(i) M is noetherian and self-injective;

(ii) M is artinian and self-projective;

(iii) M has finite length;

(iv) M is semisimple.

Proof. (compare [13, Proposition 1])
(1)(i) Let f : M → N and g : N → M be monomorphisms. Then fg

is an injective endomorphism of M and hence is an automorphism (e.g.,
[17, 31.13]). Then g is surjective and hence an isomorphism.

(ii) Consider f, g as in (1). Then fg is an isomorphism. Since N is
isomorphic to a submodule of M it is hollow and this implies that f is
an isomorphism.

(2)(i) This is shown dually to (1)(i) since surjective endomorphisms
of noetherian modules are automorphisms (e.g., [17, 31.13]).

(ii) The proof is dual to that of (1)(ii).
(3)(i) Let M be self-injective and noetherian. Since M has finite

uniform dimension every injective endomorphism is an automorphism
and hence the assertion is obvious.

(ii) This can be shown with a proof dual to (i).
(iii) just combines (1)(i) and (2)(i).
(iv) If M is finitely generated and semisimple then it has finite length

and (iii) applies. For an arbitrary semisimple M , any module N with

N
m
≃M is semisimple and hence the assertion will be a byproduct of

3.5

3.4. Correct classes of modules. A class C of R-modules is said to
be

mono-correct if for any N, M ∈ C, M
m
≃N implies M ≃ N ,

epi-correct if for any N, M ∈ C, M
e
≃N implies M ≃ N .

To describe correct classes of modules we recall some definitions. A
module M is said to be π-injective if, for any submodules K, L ⊂ M with
K ∩L = 0, the canonical monomorphism M → M/K ⊕M/L splits (e.g.,
[17, 41.20]). Furthermore, M is called direct injective if for any direct
summand K ⊂ M , any monomorphism K → M splits. The module
M is continuous if it is π-injective and direct injective. Notice that any
self-injective module M has these properties (e.g., [6], [11]).

The module M is called Σ-self-projective provided it is M (Λ)-projective
for any index set Λ. This is equivalent to M being projective in the cate-
gory σ[M ] (e.g., [17, 18.3]). Notice that it is equivalent to self-projectivity
of M provided M is a direct sum of finitely generated modules.
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3.5. Correct module classes in R-Mod.

(1) The following classes are mono-correct:

(i) the class of artinian modules;

(ii) the class of self-injective modules;

(iii) the class of continuous modules;

(iv) the class of semisimple modules.

(2) The following classes are epi-correct:

(i) the class of noetherian modules;

(ii) the class of Σ-self-projective supplemented modules;

(iii) the class of semisimple modules.

Proof. (1)(i) and (2)(i) are clear by 3.3(1),(2).
(1)(ii) is shown in [3] and it was observed in [11, Corollary 3.18] that

the assertion can be extended to (iii).
(iv) Since semisimple modules are self-injective the assertion follows

from (iii).

(2)(ii) Let M, N be Σ-self-projective supplemented modules. Then
M/ Rad (M) and N/ Rad (N) are semisimple and epi-equivalent. Since
epimorphisms of semisimple modules split they are also mono-equivalent
and hence isomorphic by (1)(iv).

Moreover, the projectivity condition implies that M and N have
small radicals (see [17, 42.3]). Therefore the isomorphism M/ Rad (M) ≃
N/ Rad (N) can be lifted to an isomorphism M ≃ N .

(iii) follows from (ii) since any semisimple module is Σ-self-projective.

3.6. Class σ[M ] mono-correct. For a module M the following are
equivalent:

(a) The class of all modules in σ[M ] is mono-correct (epi-correct);

(b) every (injective) module in σ[M ] is mono-correct;

(c) every module in σ[M ] is epi-correct;

(d) M is semisimple.

Proof. (a)⇒(b) resp. (c) is trivial.
(b)⇒(d) Assume M not to be semisimple. Then there exists some

module N ∈ σ[M ] which is not M -injective. Denote by N̂ the M -injective
hull of N and put L = Tr(σ[M ], N̂N), the countable product of N̂ in σ[M ]
(see 2.1). Then L is M -injective and it is mono-equivalent to N⊕L which
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is not M -injective. So L and N ⊕ L are not isomorphic contradicting
condition (a).

(d)⇒(a),(c) If M is semisimple then all modules in σ[M ] are semi-
simple and the assertion follows by 3.5.

(c)⇒(d) Assume M not to be semisimple. Then there exists a simple
module E ∈ σ[M ] which is not M -projective, that is, there exists an
epimorphism p : N → E in σ[M ] which does not split. Assume N has
a semisimple direct summand K. If (K)p = E, then the restriction
p : K → E splits, contradicting the choice of p. So we may assume that
N has no simple direct summand. Put L = N (N). Then L and E ⊕L are
epi-equivalent. By an exchange property (e.g., [10, 18.17]), this implies
that E is isomorphic to a direct summand of N , contradicting the choice
of N . This shows that every simple module in σ[M ] is M -projective, that
is, M is semisimple (e.g., [17, 20.3]).

As a special case we have a corollary which is partly proved in [13,
Theorem 1].

3.7. All R-modules mono-correct. For R the following are equivalent:

(a) The class of all left R-modules is mono-correct (epi-correct);

(b) every (injective) left R-module is mono-correct;

(c) every (projective) left R-module is epi-correct;

(d) R is left semisimple (= right semisimple).

Now we consider correctness of some smaller classes of modules.

3.8. Class of weakly M-injectives mono-correct. For M the fol-
lowing are equivalent:

(a) The class of weakly M -injective modules in σ[M ] is mono-correct;

(b) M is locally noetherian.

Proof. (b)⇒(a) If M is locally noetherian, then each weakly M -injective
module is M -injective and the class of these modules in σ[M ] is mono-
correct (see 3.5).

(a)⇒(b) We follow the pattern of the proof of 3.6(b)⇒(d). Assume M
not to be locally noetherian. Then there exists some weakly M -injective
module N ∈ σ[M ] which is not M -injective. Denote by N̂ the M -injective
hull of N and put L = Tr(σ[M ], N̂N). Then L is M -injective and it is
mono-equivalent to N ⊕L which is not M -injective. So L and N ⊕L are
not isomorphic contradicting condition (a).
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Recalling that weakly R-injective is the same as FP-injective we have:

3.9. Class of FP -injectives mono-correct. For a ring R the following
are equivalent:

(a) The class of FP-injective left R-modules is mono-correct;

(b) R is left noetherian.

Dually we get a characterization of left perfect rings. For this we do
not need an identity element in the ring - it suffices to have a ring T with
enough idempotents. Recall that such a ring T is left perfect if and only
if all flat left T -modules are projective (e.g., [17, 49.9]).

3.10. Class of flat modules epi-correct. For a ring T with enough
idempotents, the following are equivalent:

(a) The class of flat left T -modules is epi-correct;

(b) T is left perfect.

Proof. (a)⇒(b) We slightly modify the proof of 3.6,(c)⇒(d). Assume
there exists a flat T -module which is not projective and let P → F be
an epimorphism where P is a projective T -module. Put L = P (N). Then
L and F ⊕ L are epi-equivalent. Since one of them is projective and the
other is not they cannot be isomorphic, contradicting (a). Hence all flat
modules are projective and so T is left perfect.

(b)⇒(a) If T is left perfect, then every projective module is supple-
mented and hence the class of projectives is epi-correct by 3.5.

The proof of the following observation is similar to the proof of 3.8.

3.11. Pure-injectives mono-correct. For a ring R the following are
equivalent:

(a) The class of pure-injective left R-modules is mono-correct;

(b) every pure-injective left R-module is injective;

(c) every short exact sequence of left R-modules is pure;

(d) R is a von Neumann regular ring.

Proof. (c)⇔(d) A well-known characterization of von Neumann regular
rings.

(a)⇒(b) Let N be a pure-injective left R-module and denote its in-
jectve hull by E(N). Then (as in the proof (b)⇒(d) in 3.6) L = E(N)N
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is mono-equivalent to the pure-injective module N ⊕L and so L ≃ N ⊕L.
This implies that N is injective.

(b)⇒(d) This is obvious by the fact that an exact sequence is pure
provided Hom(−, Q) is exact on it for any pure-injective module Q (see
2.2).

4. Pure-correct classes of modules

Replacing in Section 3 the morphisms by pure morphisms leads to the
notion of pure-correct classes of modules.

4.1. Pure-isomorphic modules. Two modules M and N are called

pure-mono-equivalent if there are pure monomorphisms
M → N and N → M ,

pure-epi-equivalent if there are pure epimorphisms
M → N and N → M .

We denote the first case by M
m
≃
p

N and the second case by M
e
≃
p

N .

4.2. Pure-correct modules. An R-module M is said to be

pure-mono-correct if for any module N , M
m
≃
p

N implies M ≃ N ,

pure-epi-correct if for any module N , M
e
≃
p

N implies M ≃ N .

Notice that for classes of FP-injective (absolutely pure) modules the
condition pure-mono-correct is equivalent to mono-correct. Similarly, for
classes of flat modules the property pure-epi-correct is the same as epi-
correct. In particular, over a von Neumann regular ring R, for any class
of modules any correctness condition is equivalent to the corresponding
pure version.

Applying the right functor ring we can show the following.

4.3. Pure-injectives are pure-mono-correct. For any ring R the
class of pure-injective modules is pure-mono-correct.

Proof. We refer to the notions in 2.4. The functor V ⊗R − : R-Mod →
S-Mod takes pure injectives to injective S-modules (see [17, 52.3]) and

takes pure-mono-equivalent pure injective R-modules M
m
≃
p

N to mono-

equivalent injective S-modules V ⊗R M
m
≃V ⊗R N . This implies that

V ⊗R M ≃ V ⊗R N (by 3.5) and we conclude M ≃ N .

Recall that R is left pure semisimple if every left R-module is a direct
sum of finitely generated modules. The equivalence (c)⇔(e) in the next
theorem was proved in [13, Theorem 3].
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4.4. Left pure semisimple rings. For a ring R the following are
equivalent:

(a) The class of all left R-modules is pure-epi-correct;

(b) the left functor ring T (of R-Mod) is left perfect;

(c) the class of all left R-modules is pure-mono-correct;

(d) the right functor ring S (of Mod-R) is left locally noetherian;

(e) R is left pure semisimple.

Proof. (b)⇔(d)⇔(e) are well known (e.g., [17, 53.6, 53.7]).
(a)⇔(b) Apply the notions from 2.3. Obviously Ĥom(U,−) respects

pure epi-morphisms and hence any pair of pure-epi-equivalent modules

M
e
≃
p

N yields an epi-equivalent pair Ĥom(U, M)
e
≃ Ĥom(U, N) of flat T -

modules. Also, every pair of flat T -modules can be obtained by a pair
of pure-epi-equivalent left R-modules. Hence all R-modules are pure-epi-
correct if and only if the class of flat T -modules is epi-correct. By 3.10
this is equivalent to T being left perfect.

(c)⇔(d) We refer to the notions from 2.4. The functor V ⊗R − re-
spects pure monomorphisms and relates the pure-mono-equivalent left
R-modules to the mono-equivalent FP-injective left S-modules. Hence
all R-modules are pure-mono-correct if and only if the class of all FP-
injective S-modules is mono-correct. By 3.8 this is equivalent to SS being
locally noetherian.

We finish the paper with some questions and suggestions.

4.5. π-injective modules mono-correct? As mentioned in 3.5, it is
shown in [11, Corollary 3.18] that the class of continuous modules is mono-
correct. It is also pointed out there - and an example is given - that this
does not hold for the class of π-injective (quasi-continuous) modules in
general: Take a commutative domain R which is not a principal domain
and consider any ideal I ⊂ R which is not principal. Then R and I are
(trivially) π-injective and mono-equivalent but not isomorphic.

Under which conditions on the ring R (besides semisimplicity) is the
class of π-injective modules mono-correct?

4.6. Discrete modules epi-correct? The mono-correctness of the class
of continuous modules generalizes the mono-correctness of the class of
self-injective modules. Dually, in 3.5(2) we have shown the epi-correct-
ness of the class of Σ-self-projective supplemented modules. Can this
be extended to the (some) class of discrete modules, i.e., supplemented
modules which are direct projective and π-projective?
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4.7. Projective modules epi-correct? We have seen that for left
perfect rings the class of projectives (and flats) is epi-correct. Is there
another condition which makes this happen?

It is easy to see that the epi-correctness of the class of pure-projectives
implies that R is von Neumann regular. Is the class of projective modules
epi-correct in this case?

4.8. Split-correctness. Splitting exact sequences are special cases of
pure exact sequences. In an obvious way the notions of split-mono-
equivalent and split-epi-equivalent modules can be introduced and ap-
plied to define split-mono-correct and split-epi-correct classes of modules.
Clearly, for classes of injective modules split-mono-correctness is equiva-
lent to mono-correctness, and for classes of projective modules split-epi-
correctness is the same as epi-correctness. Notice that in the category
Set every mono-morphism splits (is a coretraction) and (with the Ax-
iom of Choice) every epimorphism splits. Hence the Cantor-Bernstein
Theorem could be also phrased as: The class of all objects in Set is
split-mono-correct and split-epi-correct.

Here the question arises, which rings can be characterized by the split-
epi-correctness or the split-mono-correctness of some classes of modules?
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