Algebra and Discrete Mathematics Number 4. **(2004).** pp. 66 – 78 (c) Journal "Algebra and Discrete Mathematics"

Finite groups with a system of generalized central elements

Olga Shemetkova

Communicated by V. M. Usenko

ABSTRACT. Let H be a normal subgroup of a finite group G. A number of authors have investigated the structure of G under the assumption that all minimal or maximal subgroups in Sylow subgroups of H are well-situated in G. A general approach to the results of that kind is proposed in this article. The author has found the conditions for p-elements of H under which G-chief p-factors of H are \mathfrak{F} -central in G.

1. Introduction

All groups considered in this article will be finite. A number of authors have investigated the structure of a non-nilpotent group G under the assumption that all minimal or maximal subgroups in Sylow subgroups of G are well-situated in G. The first result in this direction was obtained by Ito [1]; he proved that a group G of odd order is nilpotent provided that all minimal subgroups of G lie in the center of G. This result was developed by Gaschütz in the following way: if every minimal subgroup of G is normal in G, then a Sylow 2-subgroup P of G' is normal and G'/P is nilpotent (see [2], Theorem IV.5.7). Buckley [3] also considered the situation when minimal subgroups are normal; this means that these subgroups are \mathfrak{U} -central normal subgroups where \mathfrak{U} is the formation of supersoluble groups. Later, some authors [4], [5], [6], [7] extended the mentioned results using formation theory; they investigated groups in which minimal subgroups lie in \mathfrak{F} -hypercenter of the group. Other generalizations were

²⁰⁰⁰ Mathematics Subject Classification: 20D10.

Key words and phrases: finite group, Qf-central element, formation.

obtained in [8], [9] using the concept of a *c*-normal subgroup introduced in [10]. A subgroup H of G is called c-normal if there exists a normal subgroup N of G such that G = HN and $H \cap N \subseteq H_G = \operatorname{Core}_G(H)$. It is clear that if $H = \langle a \rangle$ is a c-normal primary cyclic subgroup of G, then H/H_G is either normal or normally complemented; in this case aB lies in a cyclic chief factor A/B of G. A more general approach was proposed in a paper [11] in which a concept of a $Q\mathfrak{F}$ -central element was introduced. An element a of a group G is called $Q\mathfrak{F}$ -central if there exists a \mathfrak{F} -central chief factor A/B of G such that $a \in A \setminus B$. Thus, the general line is to investigate a group with a system of $Q\mathfrak{F}$ -central elements. It is interesting that groups with given systems of complemented, supplemented or c-supplemented [12] minimal subgroups actually appear groups with a system of $Q_{\mathfrak{F}}$ -central elements. We recall that Gorchakov [13] proved that a group is supersoluble if all its minimal subgroups are complemented. We also mention articles [14], [15], [16], [17] in which the groups with a given system of complemented and S-quasinormal minimal subgroups are investigated.

Analyzing the mentioned papers we can draw a conclusion that they are connected with the solution of the following question.

Question A. Let $\mathfrak{F} = LF(F)$ be a saturated formation, H a normal subgroup of a group G, p a prime. Assume that all elements of order p in H are $Q\mathfrak{F}$ -central in G. Assume also that if p = 2, then all elements of order 4 in H are $Q\mathfrak{F}$ -central in G. Is it true that $G/C_G(A/B) \in F(p)$ for every G-chief factor A/B of H whose order |A/B| is divided by p?

Another line of investigations is concerned with maximal subgroups of Sylow subgroups. So, Srinivasan [18] proved that a group G is supersoluble if maximal subgroups of its Sylow subgroups are normal in G. Clearly, under assumptions of Srinivasan's theorem every Sylow subgroup P of Gsatisfies the following condition: every element in $P \setminus \Phi(P)$ is $Q \mathfrak{U}$ -central in G. Srinivasan's theorem was generalized in [8], [10], [19] by replacing the normality with the weaker condition of *c*-normality; besides, in [8] the condition of *c*-normality of maximal subgroups of Sylow subgroups in a normal nilpotent subgroup is considered. We also recall S.N.Chernilov's result [20] on supersolubility of a group G with abelian Sylow subgroups having the following property: every primary cyclic subgroup complemented in a Sylow subgroup of G is complemented in G. Vedernikov and Kuleshov [21] established that a group G is supersoluble if every its primary cyclic subgroup having a non-trivial supplement in a Sylow psubgroup of G possesses a non-trivial supplement in G. Analyzing this line of investigations we arrive at the conclusion that they are concerned with the following question.

Question B. Let \mathfrak{F} be a saturated formation, H a normal subgroup of a group G. Assume that every Sylow subgroup P of H satisfies the following condition: every element in $P \setminus (\Phi(P) \cup \Phi(G))$ is $Q\mathfrak{F}$ -central in G. Is it true that every non-Frattini G-chief factor of H is \mathfrak{F} -central in G?

The main aim of the present article is to give a positive answer to Questions A and B. Moreover, we give the answer even in a more general form fixing our attention to the behaviour of p-elements with a fixed prime p.

2. Preliminaries

We use the standard notations [22], [23]. For a prime p, G_p denotes a Sylow p-subgroup of G; $\pi(G)$ is the set of primes dividing |G|; $\pi(\mathfrak{F}) = \bigcup_{G \in \mathfrak{F}} \pi(G)$; $F^*(G)$ is the generalized Fitting subgroup of G, i.e. the quasinilpotent radical of G [24]. A subgroup M is called a minimal supplement to a normal subgroup H of G if MH = G and $M_1H \neq G$ for every proper subgroup M_1 of M.

We need some information from the theory of formations. A formation is a class of groups closed under taking homomorphic images and subdirect products. We denote by $G^{\mathfrak{F}}$ a \mathfrak{F} -residual of a group G, i.e. the smallest normal subgroup with quotient in \mathfrak{F} . A formation \mathfrak{F} is called saturated if $G/\Phi(G) \in \mathfrak{F}$ always implies $G \in \mathfrak{F}$. A function $f : \{primes\} \to \{formations\}$ is called a local satellite. A chief factor H/K of G is called f-central in G if $G/C_G(H/K) \in f(p)$ for every prime p dividing |H/K|.

If \mathfrak{F} is the class of all groups whose chief factors are *f*-central, then we say that *f* is a local satellite of \mathfrak{F} and write $\mathfrak{F} = LF(f)$. A local satellite *f* of a formation \mathfrak{F} is called: 1) full if $f(p) = \mathfrak{N}_p f(p)$ for every prime *p* (here \mathfrak{N}_p is the class of *p*-groups); 2) integrated if $f(p) \subseteq \mathfrak{F}$ for every prime *p*; 3) semi-integrated if for every prime *p*, f(p) is either a subformation in \mathfrak{F} or the class \mathfrak{E} of all groups; 4) canonical if it is full and integrated; 5) semicanonical if it is full and semi-integrated. The notation LF(F) means that *F* is a canonical local satellite of LF(F). A chief factor H/K of *G* is called \mathfrak{F} -central in *G* if it is *f*-central, where *f* is the canonical local satellite of \mathfrak{F} .

In the proofs of our results we will use the following theorems.

2.1. Every non-empty saturated formation possesses a semicanonical local satellite and the unique canonical local satellite (see [22], [23], [25]).

2.2. Let f be a local satellite such that f(p) = (1) and $f(q) = \mathfrak{E}$ for every prime $q \neq p$. Then LF(f) is the class of p-nilpotent groups [2].

2.3.(a) Let f be a satellite such that f(p) is the class of all abelian groups with exponents dividing p-1, and $f(p) = \mathfrak{E}$ for every prime $q \neq p$. Then LF(f) is the class p- \mathfrak{U} of p-supersoluble groups.

(b) Let a prime p divide the order of a chief factor H/K of G. Then H/K is p- \mathfrak{U} -central if and only if |H/K| = p ([2], Kapitel VI).

2.4. Let \mathfrak{F} be a saturated formation and H a normal subgroup of a group G such that $H/H \cap \Phi(G) \in \mathfrak{F}$. Then $H = A \times B$ where $A \in \mathfrak{F}$, $B \subseteq \Phi(G)$, $\pi(B) \cap \pi(\mathfrak{F}) = \emptyset$ ([23], Theorem 4.2).

2.5. Let H be a normal subgroup of G such that $H/H \cap \Phi(G)$ is pnilpotent. Then H is p-nilpotent [2], [23].

2.6. Let $\mathfrak{F} = LF(f)$ where f is semi-integrated. Let H/L be a G-chief factor of $G^{\mathfrak{F}}$ such that $f(p) \subseteq \mathfrak{F}$ for some $p \in \pi(H/L)$. Then H/L is f-eccentric in G if one of the following conditions holds: 1) H/L is non-Frattini in G; 2) a Sylow p-subgroup in $G^{\mathfrak{F}}$ is abelian ([23], Theorems 8.1 and 11.6).

2.7. If G = AB, then for every prime p there exist Sylow p-subgroups A_p , B_p and G_p in A, B and G such that $G_p = A_p B_p$ ([23], p. 134).

2.8. Let H be a normal subgroup of a group G. Let α and β be G-chief series of H. Then there exists a one-to-one correspondence between the chief factors of α and those of β such that the corresponding factors are G-isomorphic and such that the Frattini chief factors of α correspond to the Frattini chief factors of β ([22], Theorem A.9.13).

2.9. Let H be a normal subgroup of a group G, and let M be a minimal supplement to H in G. If M contains at least one Sylow p-subgroup of H for some prime p, then H is p-nilpotent ([26]; [23], Theorem 12.4).

2.10. Let \mathfrak{F} be a saturated formation, and H a normal subgroup of a group G such that every G-chief factor of H is \mathfrak{F} -central in G. Then $G/C_G(H) \in \mathfrak{F}$ (see [23], Theorem 9.5).

2.11. If G is a group, then $C_G(F^*(G)) \subseteq F(G)$ (see [25], Theorem 15.22).

2.12. (a) Let p be an odd prime. A group G is p-nilpotent if every its element of order p is Q-central in G.

(b) A group G is 2-nilpotent if every its 2-element of order ≤ 4 is Q-central in G (see [11], Theorem 2).

2.13. Let \mathfrak{F} be a saturated formation and H a normal subgroup of a group G. Let ω be the set of primes p such that $H^{\mathfrak{F}}$ possesses an abelian Sylow p-subgroup. Then there exists a subgroup C of G such that $G = CH^{\mathfrak{F}}$ and $\pi(C \cap H^{\mathfrak{F}}) \cap \omega = \emptyset$ (see [23], Theorem 11.8).

2.14. If a Sylow p-subgroup of a p-soluble group G is abelian, then $l_p(G) \leq 1$ (see [23], Theorem 5.11).

2.15. Let $G = \langle a \rangle B$, where $\langle a \rangle \neq 1$ is a 2-subgroup and $B \neq G$. Then there exists a normal maximal subgroup M of G such that $G = \langle a \rangle M$ (see [21], Lemma 1).

2.16. Let $G = \langle a \rangle B = HB$, where $B \neq G$, $H \trianglelefteq G$, $\langle a \rangle \subseteq H$, and $\langle a \rangle$ is a p-subgroup. Assume that H_p is abelian and G is p-soluble. Then a is a $Q\mathfrak{U}$ -central element of G.

Proof. Let G be a counterexample of minimal order. Then we can assume that $B_G = O_{p'}(H) = 1$. By 2.14, H_p is normal in G. We have that

$$G = \langle a \rangle B = H_p B, H_p = \langle a \rangle (H_p \cap B).$$

Evidently, $H_p \cap B$ is normal in G. Since $B_G = 1$, it follows that $H_p \cap B = 1$, and $H_p = \langle a \rangle$ is normal in G.

3. Main results

For a prime p and a group H, we use the following conventions:

 $W_p(H) = \{x : x \in H, |x| = p\} \text{ if } p \text{ is odd}, \\ W_2(H) = \{x : x \in H, |x| \in \{2, 4\}\}, \\ W(H) = \{x : x \in H, |x| \text{ is a prime or } |x| = 4\}.$

Definition 3.1 (see [11], Definition 3). Let f be a local satellite. An element a of a group G is called Qf-central in G if there exists a f-central chief factor A/B of G such that $a \in A \setminus B$. The identity element is always regarded as a Qf-central element.

Definition 3.2. Let $\mathfrak{F} = LF(f)$ be a saturated formation, where f is an integrated local satellite of \mathfrak{F} . An element a of G is called $Q\mathfrak{F}$ -central if it is Qf-central.

It is easy to show that Definition 3.2 does not depend on the choice of an integrated local satellite.

Definition 3.3. An element a of G is called Q-central if it is $Q\mathfrak{N}$ -central (this means that there exists a central chief factor A/B of G such that $a \in A \setminus B$).

Theorem 3.1. Let p be a prime, and $\mathfrak{F} = LF(f)$ a saturated formation, where f is a semicanonical local satellite such that $f(p) \subseteq \mathfrak{F}$ and $f(q) = \mathfrak{E}$ for every prime $q \neq p$. Let H be a normal subgroup of a group G. Assume that every element in $W_p(H)$ is Qf-central in G. Then every G-chief factor of H is f-central in G. Proof. We will use induction on |G|+|H|. Let $W = W_p(H) = \{x_i : i \in I\}$. We may assume that $W \neq \emptyset$. Assume that there is a normal p'-subgroup $K \neq 1$ in G. Consider the natural epimorphism $\alpha : G \to G/K$. Evidently, $W^{\alpha} = W_p(HK/K)$. If $x_i \in W$, then by assumption, there is a f-central chief factor A/B of G such that $x_i \in A \setminus B$. The factors AK/BK and $A/B(A \cap K)$ are G-isomorphic; besides, it follows from $x_i \in A \setminus B$ that $A \neq B(A \cap K)$ because every p-element in $B(A \cap K)$ is contained in B. Hence, $B = B(A \cap K)$. We have that $x_i \in AK \setminus BK$, and AK/BK is a f-central chief factor of G. But then, $(AK)^{\alpha}/(BK)^{\alpha}$ is a f-central chief factor of G/K. Then it is also true for G. So, we may assume that $O_{p'}(G) = 1$.

Consider an arbitrary element x_i in W. By assumption, there is a f-central chief factor A/B of G such that $x_i \in A \setminus B$. We have

$$AH/BH \simeq A/A \cap BH = A/B(A \cap H).$$

Since $x_i \in A \setminus B$, the equality $B = B(A \cap H)$ is impossible. Therefore, $A = B(A \cap H)$, and we have that A/B and $A \cap H/B \cap H$ are *G*-isomorphic *G*-chief factors. So, we showed that for each $x_i \in W$, there is a *G*-chief factor X_i/Y_i of *H* such that $x_i \in X_i \setminus Y_i$ and X_i/Y_i is *f*-central in *G*. Set

$$C = \bigcap_{i \in I} C_G(X_i/Y_i).$$

Clearly, $G/C \in f(p) \in \mathfrak{F}$. Therefore, every *G*-chief factor of HC/C is f-central. If $H \cap C \neq H$, then, by the inductive hypothesis, every *G*-chief factor of $H \cap C$ is f-central in G, and the theorem is proved. So, we may assume that $H \subseteq C$. This means that every element in W is Q-central in C. By 2.12, H is p-nilpotent. Since $O_{p'}(G) = 1$, we have that H is a p-group. Let Q be a Sylow q-subgroup in C, $q \neq p$. Then we have that every element in W is Q-central in QH. By 2.12, QH is p-nilpotent. Since $G/C \in f(p) = \mathfrak{N}_p f(p)$ and C_q centralizes every G-chief p-factor of H for every prime $q \neq p$, it follows that every G-chief p-factor of H is f-central in G. The theorem is proved.

Corollary 3.1.1. Let \mathfrak{F} be a saturated formation, and G a group such that every element in W(G) is $Q\mathfrak{F}$ -central in G. Then $G \in \mathfrak{F}$.

Proof. Applying Theorem 1 for the case H = G and for the arbitrary prime p, we obtain that every chief factor of G is \mathfrak{F} -central. So, $G \in \mathfrak{F}$, and the result is true.

Corollary 3.1.2. Let \mathfrak{F} be a saturated formation, and H a normal subgroup of a group G such that $G/H \in \mathfrak{F}$ and every element in $W(F^*(H))$ is $Q\mathfrak{F}$ -central in G. Then $G \in \mathfrak{F}$.

Proof. By Theorem 3.1, every G-chief factor of $F^*(H)$ is \mathfrak{F} -central in G. By 2.10, $G/C_G(F^*(H))$ belongs to \mathfrak{F} . From this and from $G/H \in \mathfrak{F}$ it follows that $G/C_H(F^*(H)) \in \mathfrak{F}$. By 2.11, $C_H(F^*(H))$ is contained in $F^*(H)$. Therefore $G/F^*(H)$ belongs to \mathfrak{F} , and we have that $G \in \mathfrak{F}$.

Corollary 3.1.3. Let p be a prime, and H a normal subgroup of a group G. If every element in $W_p(H)$ is Q-central in G, then H is p-nilpotent, and $H/O_{p'}(H)$ lies in the hypercenter of $G/O_{p'}(H)$.

Corollary 3.1.4. Let p be a prime, and H a normal subgroup of a group G. Assume that every element in $W_p(H)$ is QU-central in G. Then H is p-supersoluble, and every G-chief p-factor of H is cyclic.

We introduce the subgroup $O_{p',\Phi}(G)$ as follows:

$$O_{p',\Phi}(G)/O_{p'}(G) = \Phi(G/O_{p'}(G)).$$

Theorem 3.2. Let p be a prime, and $\mathfrak{F} = LF(f)$ a saturated formation, where f is a semicanonical local satellite such that $f(p) \subseteq \mathfrak{F}$ and $f(q) = \mathfrak{E}$ for every prime $q \neq p$. Let H be a normal subgroup of a group G. Assume that every element in $H_p \setminus (\Phi(H_p) \cup \Phi(G))$ is Qf-central in G. Then every G-chief factor of $H/H \cap O_{p',\Phi}(G)$ is f-central in $G/H \cap O_{p',\Phi}(G)$.

Proof. We will prove this theorem using induction on |H| + |G|. Assume that there is a normal p'-subgroup $K \neq 1$ in G such that $K \subseteq H$. Consider the natural epimorphism $\alpha : G \to G/K$. If $a \in H_p$, then a^{α} belongs to a Sylow p-subgroup H_p^{α} of HK/K. Assume that a^{α} is not contained in $\Phi(H_p^{\alpha}) \cup \Phi(G^{\alpha})$. Since $H_pK/K \simeq H_p$, it follows that a is not contained in $\Phi(H_p)$. Furthermore, it follows from $(\Phi(G))^{\alpha} \subseteq \Phi(G^{\alpha})$ that a is not contained in $\Phi(G)$. By assumption, there is a f-central chief factor A/B of G such that $a \in A \setminus B$. The factors AK/BK and $A/B(A \cap K)$ are G-isomorphic; besides, it follows from $a \in A \setminus B$ that $A \neq B(A \cap K)$ because every p-element in $B(A \cap K)$ is contained in B. Hence, $B = B(A \cap K)$. We have that $a \in AK \setminus BK$, and AK/BK is a f-central chief factor of G. But then, $(AK)^{\alpha}/(BK)^{\alpha}$ is a f-central chief factor of G^{α} . Clearly, $a^{\alpha} \in (AK)^{\alpha} \setminus (BK)^{\alpha}$. By the inductive hypothesis, the theorem is true for G/K. Then it is also true for G.

So, we may assume that $O_{p'}(H) = 1$. Consider $H \cap G^{\mathfrak{F}}$. We may assume that $H \cap G^{\mathfrak{F}}$ has non-Frattini *G*-chief factors. We call a normal subgroup *L* of *G f*-limit if $L/L \cap \Phi(G)$ is a *f*-eccentric *G*-chief factor. The set Σ of *f*-limit subgroups contained in $H \cap G^{\mathfrak{F}}$ is not empty. Really, if $L/(\Phi(G) \cap H \cap G^{\mathfrak{F}})$ is a minimal normal subgroup in $G/(\Phi(G) \cap H \cap G^{\mathfrak{F}})$, where $L \subseteq H \cap G^{\mathfrak{F}}$, then *L* is *f*-limit by 2.6. So, let *L* be a subgroup of minimal order in Σ . Set $\Phi = L \cap \Phi(G)$. It follows from $O_{p'}(H) = 1$ and 2.5 that p divides $|L/\Phi|$. Let M/Φ be a minimal supplement for L/Φ in G/Φ . Then by 2.7 we have $G_p = M_p L_p$. By 2.9, M_p/Φ does not contain L_p/Φ ; hence, $M \neq G$. From $G_p = M_p L_p$ it follows that $H_p = G_p \cap H = (H_p \cap M_p)L_p$, where $H_p \cap M_p$ does not contain L_p . Hence, there is an element a in $L_p \setminus (H_p \cap M_p)$ such that $a \notin \Phi(H_p)$. Since $H_p \cap M_p \supseteq \Phi = L \cap \Phi(G)$, we have that $a \notin \Phi(G)$. So, we get

$$a \in H_p \setminus (\Phi(H_p) \cup \Phi(G)).$$

By assumption, G possesses a f-central chief factor A/B such that $a \in A \setminus B$. Consider $AL/BL \simeq A/B(A \cap L)$. Since A/B is a chief factor, $B(A \cap L)$ is either equal B or else A. Since a belongs to $A \cap L$ and does not belong to B, we have that $B \neq B(A \cap L)$. Hence, $A = B(A \cap L)$. So, we have G-isomorphic G-chief factors A/B and $A \cap L/B \cap L$; besides, $a \in (A \cap L) \setminus (B \cap L)$.

Suppose that $A \cap L/B \cap L$ is a non-Frattini chief factor of G. Then, by 2.8, $A \cap L/B \cap L$ is G-isomorphic with L/Φ . In this case, L/Φ is f-central in G. This contradicts 2.6. So, we obtained that $A \cap L/B \cap L$ is a Frattini chief factor of G. If $B \cap L$ is not contained in $\Phi(G)$, we have that $B \cap L$ possesses a f-limit normal subgroup of G; this contradicts the minimality of |L|. Therefore, $B \cap L \subseteq \Phi(G)$. We get $A \cap L \subseteq \Phi(G)$. Hence, $a \in A \cap L \subseteq \Phi(G)$. We arrive at a contradiction, because $a \notin \Phi(G)$. The theorem is proved.

Corollary 3.2.1. Let \mathfrak{F} be a saturated formation, H a normal subgroup of a group G such that $G/H \in \mathfrak{F}$ and for every prime p the following condition holds: each element in $H_p \setminus (\Phi(H_p) \cup \Phi(G))$ is $Q\mathfrak{F}$ -central in G. Then $G \in \mathfrak{F}$.

Corollary 3.2.2. Let \mathfrak{F} be a saturated formation, H a normal soluble subgroup of a group G such that $G/H \in \mathfrak{F}$ and the following condition holds: if P is a Sylow subgroup of F(H), then each element in $P \setminus (\Phi(P) \cup \Phi(G))$ is $Q\mathfrak{F}$ -central in G. Then $G \in \mathfrak{F}$.

Proof. Let $\Phi = \Phi(G) \cap F(H)$. By Theorem 3.2, every *G*-chief factor of $F(H)/\Phi$ is \mathfrak{F} -central in *G*. By 2.5, $F(H)/\Phi = F(H/\Phi)$. By 2.10, $G/\Phi/C_{G/\Phi}(F(H/\Phi)) \in \mathfrak{F}$. Therefore, $G/C_G(F(H)/\Phi) \in \mathfrak{F}$. From this and from $G/H \in \mathfrak{F}$ it follows that $G/C_H(F(H)/\Phi) \in \mathfrak{F}$. But $C_H(F(H)/\Phi) \subseteq F(H)$. Hence, $G/\Phi \in \mathfrak{F}$. Since \mathfrak{F} is saturated, we have that $G \in \mathfrak{F}$.

Corollary 3.2.3. Let p be a prime, and H be a normal subgroup of a group G. Assume that every element in $H_p \setminus (\Phi(H_p) \cup \Phi(G))$ is Q-central

in G. Then H is p-nilpotent, and every its non-Frattini G-chief p-factor is central in G.

Corollary 3.2.4. Let p be a prime, and H be a normal subgroup of a group G. Assume that every element in $H_p \setminus (\Phi(H_p) \cup \Phi(G))$ is $Q\mathfrak{U}$ -central in G. Then H is p-supersoluble, and every its non-Frattini G-chief p-factor is cyclic.

Corollary 3.2.5. A group G is supersoluble if for every non-cyclic Sylow subgroup P of G the following condition holds: every element in $P \setminus (\Phi(P) \cup \Phi(G))$ is QU-central in G.

Proof. If G_2 is non-cyclic, then by Theorem 3.2, G is 2-supersoluble. If G_2 is cyclic, then G is 2-nilpotent. Thus, G is soluble, and by Theorem 3.2, G is p-supersoluble for all prime p such that G_p is non-cyclic.

Definition 3.4. An element $a \neq 1$ of an abelian group P is called basic if there exists a subgroup B in P such that $P = \langle a \rangle \times B$. We denote by $\mathcal{B}(P)$ the set of all basic elements in P.

The following theorem generalizes S.N.Chernikov's result [20] on a finite group with a system of complemented subgroups.

Theorem 3.3. Let p be a prime, and $\mathfrak{F} = LF(f)$ a saturated formation of p-soluble groups, where f is a semicanonical local satellite such that $f(p) \subseteq \mathfrak{F}$ and $f(q) = \mathfrak{E}$ for every prime $q \neq p$. Let H be a normal subgroup of a group G. Assume that H_p is abelian and every element in $\mathcal{B}(H_p)$ is Qf-central in G. Then every G-chief factor of H is f-central in G.

Proof. We will use induction on |H| + |G|. As well as in the proof of Theorem 3.2, it is easy to show that the assumption of the theorem is valid for $G/O_{p'}(H)$ and $H/O_{p'}(H)$. So, we may assume that $O_{p'}(H) = 1$. We will consider two cases: H = G and $H \neq G$.

Case 1. Assume that H = G. Consider the \mathfrak{F} -residual R of G. By 2.13, there exists a subgroup C such that G = CR and p does not divide $|C \cap R|$. By 2.7, $G_p = C_p R_p$ and $C_p \cap R_p \subseteq C \cap R$. So, $G_p = C_p \times R_p$. It follows from this that $\mathcal{B}(R_p) \subseteq \mathcal{B}(G_p)$.

It is clear that $\mathcal{B}(R_p) \setminus \Phi(G) \neq \emptyset$. Consider $a \in \mathcal{B}(R_p) \setminus \Phi(G)$. By assumption, there is a *f*-central chief factor A/B of *G* such that $a \in A \setminus B$. We have that AR/BR is *G*-isomorphic with $A/B(A \cap R)$. Since $a \in A \setminus B$, it follows that $A = B(A \cap R)$. Thus, A/B and $A \cap R/B \cap R$ are *G*-isomorphic *f*-central *G*-chief factors. This contradicts 2.6. So, the theorem is true for the case H = G.

Case 2. Now we assume that $H \neq G$. Let \mathfrak{H} be the formation of psoluble groups. By 2.13, there exists a subgroup C such that $G = CH^{\mathfrak{H}}$ and p does not divide $|C \cap H^{\mathfrak{H}}|$. By 2.7, $G_p = C_p H_p^{\mathfrak{H}}$, where G_p , C_p and $H_p^{\mathfrak{H}}$ are Sylow p-subgroups in G, C and $H^{\mathfrak{H}}$. Evidently, $G_p \cap H = H_p$ is a Sylow p-subgroup of H. Furthermore, $G_p \cap H^{\mathfrak{H}} = H_p^{\mathfrak{H}} = H_p \cap H^{\mathfrak{H}}$. We have $H_p = (C_p \cap H_p) \times H_p^{\mathfrak{H}}$. It follows from this that $\mathcal{B}(H_p^{\mathfrak{H}}) \subseteq \mathcal{B}(H_p)$.

Suppose that $\mathcal{B}(H_p^{\mathfrak{H}})$ is non-empty. If $a \in \mathcal{B}(H_p^{\mathfrak{H}})$ then by the assumption of the theorem there exists a *f*-central chief factor A/B of *G* such that $a \in A \setminus B$. Since all groups in f(p) are *p*-soluble, A/B is a *p*-group. Consider

$$AH^{\mathfrak{H}}/BH^{\mathfrak{H}} \simeq A/A \cap BH^{\mathfrak{H}} = A/B(A \cap H^{\mathfrak{H}}).$$

Since $a \in (A \cap H^{\mathfrak{H}}) \setminus B$, we have that $B \neq B(A \cap H^{\mathfrak{H}})$. Therefore, $A = B(A \cap H^{\mathfrak{H}})$. We have that A/B and $A \cap H^{\mathfrak{H}}/B \cap H^{\mathfrak{H}}$ are *G*-isomorphic *G*-chief factors. Since H_p is contained in $C_H(A \cap H^{\mathfrak{H}}/B \cap H^{\mathfrak{H}})$ we have that

$$H/C_H(A \cap H^{\mathfrak{H}}/B \cap H^{\mathfrak{H}}) \in \mathfrak{H}.$$

Thus, there is a \mathfrak{H} -central chief *p*-factor D_1/D_2 of *H* such that

$$A \cap H^{\mathfrak{H}} \supseteq D_1 \supset D_2 \supseteq B \cap H^{\mathfrak{H}}.$$

This contradicts 2.6.

So, we assume that $\mathcal{B}(H_p^{\mathfrak{H}})$ is empty and H is p-soluble. Since $O_{p'}(H) = 1$ and H_p is abelian, it follows by 2.14 that H_p is normal. Clearly, we can assume that H is a p-group. Let $\mathcal{B}(H) = \{x_i : i \in I\}$. By assumption, for every $i \in I$ there exists a f-central G-chief factor A_i/B_i such that $x_i \in A_i \setminus B_i$. We set

$$X_i = A_i \cap H, Y_i = B_i \cap H.$$

Then factors A_iH/B_iH and A_i/B_iX_i are *G*-isomorphic. Since $x_i \in X_i \setminus B$, we have that $B_i \neq B_iX_i$. Thus, $A_i = B_iX_i$. So, A_i/B_i and X_i/Y_i are *G*-isomorphic *f*-central chief factors of *G*. It follows from this that $G/C_G(X_i/Y_i) \in f(p)$. We have that

 $G/C \in f(p)$, where $C = \bigcap_{i \in I} C_G(X_i/Y_i) \supseteq H$.

It follows from this that every element x_i in $\mathcal{B}(H)$ is Q-central in HC_q for every prime $q \neq p$. For HC_q the theorem is true (we note that by Case 1, the theorem is true if a considered normal subgroup coincides with the whole group). Applying the proved part of the theorem to HC_q and the formation of p-nilpotent groups we have that HC_q is p-nilpotent. Therefore, $C_C(X/Y)$ is a p-group for every G-chief factor X/Y of H. But $G/C \in f(p)$. We see that $G/C_G(X/Y)$ belongs to $\mathfrak{N}_p f(p) = f(p)$, that is X/Y is f-central in G. The theorem is proved. **Corollary 3.3.1.** Let p be a prime. Assume that a normal subgroup H of a group G possesses an abelian Sylow p-subgroup P. Assume also that every element in $\mathcal{B}(P)$ is $Q\mathfrak{U}$ -central in G. Then H is p-supersoluble, and every G-chief p-factor of H is cyclic.

Corollary 3.3.2. Let p be a prime. Assume that a normal subgroup H of a group G possesses an abelian Sylow p-subgroup P. Assume also that every element in $\mathcal{B}(P)$ is Q-central in G. Then H is p-nilpotent, and every G-chief p-factor of H is central in G.

Corollary 3.3.3. Let H be a normal subgroup of a group G. Assume that a Sylow 2-subgroup P of H is abelian and has the following property: $\langle a \rangle$ is complemented in G for every $a \in \mathcal{B}(P)$. Then H is 2-nilpotent, and every its G-chief 2-factor is central in G.

Proof. By 2.15, every element in $\mathcal{B}(P)$ is *Q*-central in *G*. Now we apply Corollary 3.3.2.

Corollary 3.3.4. Let H be a normal subgroup of a group G. Assume that for every Sylow subgroup P of G the following condition holds: P is abelian, and $\langle a \rangle$ is complemented in G for every $a \in \mathcal{B}(P)$. Then H is supersoluble, and every its G-chief factor is cyclic.

Proof. By Corollary 3.3.3, H is 2-nilpotent. So, H is soluble. Let P be a Sylow p-subgroup of H, $p \in \pi(H)$. By assumption, for every $a \in \mathcal{B}(P)$ we have that

$$\langle a \rangle M = G, \langle a \rangle \cap M = 1.$$

By 2.16, a is $Q\mathfrak{U}$ -central in G. Now we apply Corollary 3.3.1.

Corollary 3.3.5 (see [20]). Assume that every Sylow p-subgroup P of G is abelian and satisfies the following condition: if $a \in \mathcal{B}(P)$, then $\langle a \rangle$ is complemented in G. Then G is supersoluble.

References

- N. Ito, Über eine zur Frattini-Gruppe duale Bildung, Nagoya Math. J., 9, 1955, pp. 123-127.
- [2] B. Huppert, Endliche Gruppen I, Springer-Verlag, Berlin-Heidelberg-New York, 1967.
- [3] J. Buckley, Finite groups whose minimal subgroups are normal, Math. Z., 116, 1970, pp. 15-17.
- [4] A. Yokoyama, Finite solvable groups whose \$-hypercenter containes all minimal subgroups, Arch. Math., 26, 1970, pp. 123-130.
- [5] A. Yokoyama, Finite solvable groups whose F-hypercenter containes all minimal subgroups II, Arch. Math., 27, 1976, pp. 572-575.

- [6] R. Laue, Dualization of saturation for locally defined formations, J. Algebra, 52, 1978, pp. 347-353.
- [7] J. B. Derr, W. E. Deskins, N. R. Mukherjee, *The influence of minimal p-subgroups on the structure of finite groups*, Arch. Math., 45, 1985, pp. 1-4.
- [8] Wei Huaquan, On c-normal maximal and minimal subgroups of Sylow subgroups of finite groups, Comm. Algebra, 29, 5, 2001, pp. 2193-2200.
- [9] Miao Long, Guo Wenbin, The influence of c-normality of subgroups on the structure of finite groups, Proc. F.Scorina Gomel Univ., 3(16), 2000, pp.101-106.
- [10] Y. Wang, c-Normality of groups and its properties, J. Algebra, 180, 1996, pp. 954-965.
- [11] Kh. A. Al-Sharo, L. A. Shemetkov, On subgroups of prime order in a finite group, Ukrainian Math. J., 54, 2002, pp. 915-923 (translated from Ukr. Mat. Zh., 54, 2002, pp. 745-752).
- Y. Wang, Finite groups with some subgroups of Sylow subgroups c-supplemented, J. Algebra, 224, 2000, pp. 467-478.
- [13] Yu.M.Gorchakov, *Primitively factorizable groups*, Proc. Perm Univ., 17, 1960, pp. 15-31.
- [14] A. Ballester-Bolinches, Guo Xiuyun, On complemented subgroups of finite groups, Arch. Math., 72, 1999, pp. 161-166.
- [15] Guo Xiuyun, K. P. Shum, A. Ballester-Bolinches, On complemented minimal subgroups in finite groups, J. Group theory, 6, 2003, pp. 159-167.
- [16] M. Asaad, A. Ballester-Bolinches, M. C. Pedraza Aguilera, A note on minimal subgroups of finite groups, Comm. Algebra, 24(8), 1996, pp. 2771-2776.
- [17] M. Asaad, P. Csörgö, The influence of minimal subgroups on the structure of finite groups, Arch. Math., 72, 1999, pp. 401-404.
- S. Srinivasan, Two sufficient conditions for supersolvability of finite groups, Isr. J. Math., 35, 1980, 210-214.
- [19] Li Deyu, Guo Xiuyun, The influence of c-normality of subgroups on the structure of finite groups II, Comm. Algebra, 26, 1998, pp. 1913-1922.
- [20] S. N. Chernikov, Finite supersoluble groups with abelian Sylow subgroups, in the book: Groups defined by the properties of systems of subgroups, Math. Inst. Akad. Nauk USSR, Kiev, 1979, pp. 3-15.
- [21] V. A. Vedernikov, N. I. Kuleshov, A characterization of finite supersoluble groups, Problems in Algebra, 9, 1996, pp. 107-113.
- [22] K. Doerk, T. Hawkes, *Finite soluble groups*, Walter de Gruyter, Berlin–New York, 1992.
- [23] L. A. Shemetkov, Formations of finite groups, Nauka, Moscow, 1978.
- [24] M. Suzuki, Group theory II, Springer-Verlag, New York-Berlin-Heidelberg-Tokyo, 1986.
- [25] L. A. Shemetkov, A. N. Skiba, Formations of algebraic systems, Nauka, Moscow, 1989.
- [26] L. A. Shemetkov, Complements and supplements to normal subgroups of finite groups, Ukr. Mat. Zh., 23, 1971, pp. 678-689.

CONTACT INFORMATION

O. Shemetkova Russian Economic Academy named after G. V. Plekhanov, Stremyanny per. 36, 113054 Moscow, Russia *E-Mail:* protechpro@mtu.ru

Received by the editors: 12.04.2004 and final form in 06.12.2004.