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Abstract. Let H be a normal subgroup of a finite group G.

A number of authors have investigated the structure of G under

the assumption that all minimal or maximal subgroups in Sylow

subgroups of H are well-situated in G. A general approach to the

results of that kind is proposed in this article. The author has found

the conditions for p-elements of H under which G-chief p-factors of

H are F-central in G.

1. Introduction

All groups considered in this article will be finite. A number of authors
have investigated the structure of a non-nilpotent group G under the as-
sumption that all minimal or maximal subgroups in Sylow subgroups of
G are well-situated in G. The first result in this direction was obtained by
Ito [1]; he proved that a group G of odd order is nilpotent provided that all
minimal subgroups of G lie in the center of G. This result was developed
by Gaschütz in the following way: if every minimal subgroup of G is nor-
mal in G, then a Sylow 2-subgroup P of G′ is normal and G′/P is nilpo-
tent (see [2], Theorem IV.5.7). Buckley [3] also considered the situation
when minimal subgroups are normal; this means that these subgroups
are U-central normal subgroups where U is the formation of supersoluble
groups. Later, some authors [4], [5], [6], [7] extended the mentioned re-
sults using formation theory; they investigated groups in which minimal
subgroups lie in F-hypercenter of the group. Other generalizations were

2000 Mathematics Subject Classification: 20D10.

Key words and phrases: finite group, Qf-central element, formation.



O. Shemetkova 67

obtained in [8], [9] using the concept of a c-normal subgroup introduced
in [10]. A subgroup H of G is called c-normal if there exists a normal
subgroup N of G such that G = HN and H ∩ N ⊆ HG = CoreG(H). It
is clear that if H = 〈a〉 is a c-normal primary cyclic subgroup of G, then
H/HG is either normal or normally complemented; in this case aB lies in
a cyclic chief factor A/B of G. A more general approach was proposed in
a paper [11] in which a concept of a QF-central element was introduced.
An element a of a group G is called QF-central if there exists a F-central
chief factor A/B of G such that a ∈ A\B. Thus, the general line is to
investigate a group with a system of QF-central elements. It is inter-
esting that groups with given systems of complemented, supplemented
or c-supplemented [12] minimal subgroups actually appear groups with a
system of QF-central elements. We recall that Gorchakov [13] proved that
a group is supersoluble if all its minimal subgroups are complemented.
We also mention articles [14], [15], [16], [17] in which the groups with
a given system of complemented and S-quasinormal minimal subgroups
are investigated.

Analyzing the mentioned papers we can draw a conclusion that they
are connected with the solution of the following question.

Question A. Let F = LF (F ) be a saturated formation, H a normal
subgroup of a group G, p a prime. Assume that all elements of order p
in H are QF-central in G. Assume also that if p = 2, then all elements
of order 4 in H are QF-central in G. Is it true that G/CG(A/B) ∈ F (p)
for every G-chief factor A/B of H whose order |A/B| is divided by p?

Another line of investigations is concerned with maximal subgroups of
Sylow subgroups. So, Srinivasan [18] proved that a group G is supersolu-
ble if maximal subgroups of its Sylow subgroups are normal in G. Clearly,
under assumptions of Srinivasan’s theorem every Sylow subgroup P of G
satisfies the following condition: every element in P\Φ(P ) is QU-central
in G. Srinivasan’s theorem was generalized in [8], [10], [19] by replacing
the normality with the weaker condition of c-normality; besides, in [8] the
condition of c-normality of maximal subgroups of Sylow subgroups in a
normal nilpotent subgroup is considered. We also recall S.N.Chernilov’s
result [20] on supersolubility of a group G with abelian Sylow subgroups
having the following property: every primary cyclic subgroup comple-
mented in a Sylow subgroup of G is complemented in G. Vedernikov
and Kuleshov [21] established that a group G is supersoluble if every its
primary cyclic subgroup having a non-trivial supplement in a Sylow p-
subgroup of G possesses a non-trivial supplement in G. Analyzing this
line of investigations we arrive at the conclusion that they are concerned
with the following question.
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Question B. Let F be a saturated formation, H a normal subgroup of a
group G. Assume that every Sylow subgroup P of H satisfies the following
condition: every element in P\(Φ(P ) ∪ Φ(G)) is QF-central in G. Is it
true that every non-Frattini G-chief factor of H is F-central in G?

The main aim of the present article is to give a positive answer to
Questions A and B. Moreover, we give the answer even in a more general
form fixing our attention to the behaviour of p-elements with a fixed
prime p.

2. Preliminaries

We use the standard notations [22], [23]. For a prime p, Gp denotes a
Sylow p-subgroup of G; π(G) is the set of primes dividing |G|; π(F) =⋃

G∈F π(G); F ∗(G) is the generalized Fitting subgroup of G, i.e. the
quasinilpotent radical of G [24]. A subgroup M is called a minimal sup-
plement to a normal subgroup H of G if MH = G and M1H 6= G for
every proper subgroup M1 of M .

We need some information from the theory of formations. A for-
mation is a class of groups closed under taking homomorphic images
and subdirect products. We denote by GF a F-residual of a group G,
i.e. the smallest normal subgroup with quotient in F. A formation F

is called saturated if G/Φ(G) ∈ F always implies G ∈ F. A function
f : {primes} → {formations} is called a local satellite. A chief factor
H/K of G is called f -central in G if G/CG(H/K) ∈ f(p) for every prime
p dividing |H/K|.

If F is the class of all groups whose chief factors are f -central, then
we say that f is a local satellite of F and write F = LF (f). A local
satellite f of a formation F is called: 1) full if f(p) = Npf(p) for every
prime p (here Np is the class of p-groups); 2) integrated if f(p) ⊆ F for
every prime p; 3) semi-integrated if for every prime p, f(p) is either a
subformation in F or the class E of all groups; 4) canonical if it is full
and integrated; 5) semicanonical if it is full and semi-integrated. The
notation LF (F ) means that F is a canonical local satellite of LF (F ). A
chief factor H/K of G is called F-central in G if it is f -central, where f
is the canonical local satellite of F.

In the proofs of our results we will use the following theorems.

2.1. Every non-empty saturated formation possesses a semicanonical local
satellite and the unique canonical local satellite (see [22], [23], [25]).

2.2. Let f be a local satellite such that f(p) = (1) and f(q) = E for every
prime q 6= p. Then LF (f) is the class of p-nilpotent groups [2].
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2.3.(a) Let f be a satellite such that f(p) is the class of all abelian groups
with exponents dividing p− 1, and f(p) = E for every prime q 6= p. Then
LF (f) is the class p-U of p-supersoluble groups.

(b) Let a prime p divide the order of a chief factor H/K of G. Then
H/K is p-U-central if and only if |H/K| = p ( [2], Kapitel VI).

2.4. Let F be a saturated formation and H a normal subgroup of a group
G such that H/H∩Φ(G) ∈ F. Then H = A×B where A ∈ F, B ⊆ Φ(G),
π(B) ∩ π(F) = ∅ ( [23], Theorem 4.2).

2.5. Let H be a normal subgroup of G such that H/H ∩ Φ(G) is p-
nilpotent. Then H is p-nilpotent [2], [23].

2.6. Let F = LF (f) where f is semi-integrated. Let H/L be a G-chief
factor of GF such that f(p) ⊆ F for some p ∈ π(H/L). Then H/L is
f-eccentric in G if one of the following conditions holds: 1) H/L is non-
Frattini in G; 2) a Sylow p-subgroup in GF is abelian ( [23], Theorems
8.1 and 11.6).

2.7. If G = AB, then for every prime p there exist Sylow p-subgroups
Ap, Bp and Gp in A, B and G such that Gp = ApBp ( [23], p. 134).

2.8. Let H be a normal subgroup of a group G. Let α and β be G-chief
series of H. Then there exists a one-to-one correspondence between the
chief factors of α and those of β such that the corresponding factors are
G-isomorphic and such that the Frattini chief factors of α correspond to
the Frattini chief factors of β ( [22], Theorem A.9.13).

2.9. Let H be a normal subgroup of a group G, and let M be a minimal
supplement to H in G. If M contains at least one Sylow p-subgroup of
H for some prime p, then H is p-nilpotent ( [26]; [23], Theorem 12.4).

2.10. Let F be a saturated formation, and H a normal subgroup of a
group G such that every G-chief factor of H is F-central in G. Then
G/CG(H) ∈ F (see [23], Theorem 9.5).

2.11. If G is a group, then CG(F ∗(G)) ⊆ F (G) (see [25], Theorem
15.22).

2.12. (a) Let p be an odd prime. A group G is p-nilpotent if every its
element of order p is Q-central in G.

(b) A group G is 2-nilpotent if every its 2-element of order ≤ 4 is
Q-central in G (see [11], Theorem 2).

2.13. Let F be a saturated formation and H a normal subgroup of a group
G. Let ω be the set of primes p such that HF possesses an abelian Sylow
p-subgroup. Then there exists a subgroup C of G such that G = CHF and
π(C ∩ HF) ∩ ω = ∅ (see [23], Theorem 11.8).
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2.14. If a Sylow p-subgroup of a p-soluble group G is abelian, then
lp(G) ≤ 1 (see [23], Theorem 5.11).

2.15. Let G = 〈a〉B, where 〈a〉 6= 1 is a 2-subgroup and B 6= G. Then
there exists a normal maximal subgroup M of G such that G = 〈a〉M
(see [21], Lemma 1).

2.16. Let G = 〈a〉B = HB, where B 6= G, H E G, 〈a〉 ⊆ H, and 〈a〉 is
a p-subgroup. Assume that Hp is abelian and G is p-soluble. Then a is a
QU-central element of G.

Proof. Let G be a counterexample of minimal order. Then we can assume
that BG = Op′(H) = 1. By 2.14, Hp is normal in G. We have that

G = 〈a〉B = HpB, Hp = 〈a〉(Hp ∩ B).

Evidently, Hp∩B is normal in G. Since BG = 1, it follows that Hp∩B = 1,
and Hp = 〈a〉 is normal in G.

3. Main results

For a prime p and a group H, we use the following conventions:
Wp(H) = {x : x ∈ H, |x| = p} if p is odd,
W2(H) = {x : x ∈ H, |x| ∈ {2, 4}},
W (H) = {x : x ∈ H, |x| is a prime or |x| = 4}.

Definition 3.1 (see [11], Definition 3). Let f be a local satellite. An
element a of a group G is called Qf-central in G if there exists a f-
central chief factor A/B of G such that a ∈ A\B. The identity element
is always regarded as a Qf-central element.

Definition 3.2. Let F = LF (f) be a saturated formation, where f is an
integrated local satellite of F. An element a of G is called QF-central if
it is Qf-central.

It is easy to show that Definition 3.2 does not depend on the choice
of an integrated local satellite.

Definition 3.3. An element a of G is called Q-central if it is QN-central
(this means that there exists a central chief factor A/B of G such that
a ∈ A\B).

Theorem 3.1. Let p be a prime, and F = LF (f) a saturated formation,
where f is a semicanonical local satellite such that f(p) ⊆ F and f(q) = E

for every prime q 6= p. Let H be a normal subgroup of a group G. Assume
that every element in Wp(H) is Qf-central in G. Then every G-chief
factor of H is f-central in G.
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Proof. We will use induction on |G|+|H|. Let W = Wp(H) = {xi : i ∈ I}.
We may assume that W 6= ∅. Assume that there is a normal p′-subgroup
K 6= 1 in G. Consider the natural epimorphism α : G → G/K. Evidently,
Wα = Wp(HK/K). If xi ∈ W , then by assumption,there is a f -central
chief factor A/B of G such that xi ∈ A\B. The factors AK/BK and
A/B(A ∩ K) are G-isomorphic; besides, it follows from xi ∈ A\B that
A 6= B(A ∩ K) because every p-element in B(A ∩ K) is contained in B.
Hence, B = B(A ∩ K). We have that xi ∈ AK\BK, and AK/BK is a
f -central chief factor of G. But then, (AK)α/(BK)α is a f -central chief
factor of Gα. Clearly, xα

i ∈ (AK)α\(BK)α. By the inductive hypothesis,
the theorem is true for G/K. Then it is also true for G. So, we may
assume that Op′(G) = 1.

Consider an arbitrary element xi in W . By assumption, there is a
f -central chief factor A/B of G such that xi ∈ A\B. We have

AH/BH ≃ A/A ∩ BH = A/B(A ∩ H).

Since xi ∈ A\B, the equality B = B(A∩H) is impossible. Therefore,
A = B(A∩H), and we have that A/B and A∩H/B∩H are G-isomorphic
G-chief factors. So, we showed that for each xi ∈ W , there is a G-chief
factor Xi/Yi of H such that xi ∈ Xi\Yi and Xi/Yi is f -central in G. Set

C =
⋂

i∈I

CG(Xi/Yi).

Clearly, G/C ∈ f(p) ∈ F. Therefore, every G-chief factor of HC/C is
f -central. If H∩C 6= H, then, by the inductive hypothesis, every G-chief
factor of H ∩C is f -central in G, and the theorem is proved. So, we may
assume that H ⊆ C. This means that every element in W is Q-central
in C. By 2.12, H is p-nilpotent. Since Op′(G) = 1, we have that H is
a p-group. Let Q be a Sylow q-subgroup in C, q 6= p. Then we have
that every element in W is Q-central in QH. By 2.12, QH is p-nilpotent.
Since G/C ∈ f(p) = Npf(p) and Cq centralizes every G-chief p-factor of
H for every prime q 6= p, it follows that every G-chief p-factor of H is
f -central in G. The theorem is proved.

Corollary 3.1.1. Let F be a saturated formation, and G a group such
that every element in W (G) is QF-central in G. Then G ∈ F.

Proof. Applying Theorem 1 for the case H = G and for the arbitrary
prime p, we obtain that every chief factor of G is F-central. So, G ∈ F,
and the result is true.

Corollary 3.1.2. Let F be a saturated formation, and H a normal sub-
group of a group G such that G/H ∈ F and every element in W (F ∗(H))
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is QF-central in G. Then G ∈ F.

Proof. By Theorem 3.1, every G-chief factor of F ∗(H) is F-central in G.
By 2.10, G/CG(F ∗(H)) belongs to F. From this and from G/H ∈ F it
follows that G/CH(F ∗(H)) ∈ F. By 2.11, CH(F ∗(H)) is contained in
F ∗(H). Therefore G/F ∗(H) belongs to F, and we have that G ∈ F.

Corollary 3.1.3. Let p be a prime, and H a normal subgroup of a group
G. If every element in Wp(H) is Q-central in G, then H is p-nilpotent,
and H/Op′(H) lies in the hypercenter of G/Op′(H).

Corollary 3.1.4. Let p be a prime, and H a normal subgroup of a group
G. Assume that every element in Wp(H) is QU-central in G. Then H is
p-supersoluble, and every G-chief p-factor of H is cyclic.

We introduce the subgroup Op′,Φ(G) as follows:

Op′,Φ(G)/Op′(G) = Φ(G/Op′(G)).

Theorem 3.2. Let p be a prime, and F = LF (f) a saturated formation,
where f is a semicanonical local satellite such that f(p) ⊆ F and f(q) = E

for every prime q 6= p. Let H be a normal subgroup of a group G. Assume
that every element in Hp\(Φ(Hp)∪Φ(G)) is Qf-central in G. Then every
G-chief factor of H/H ∩ Op′,Φ(G) is f-central in G/H ∩ Op′,Φ(G).

Proof. We will prove this theorem using induction on |H|+ |G|. Assume
that there is a normal p′-subgroup K 6= 1 in G such that K ⊆ H.
Consider the natural epimorphism α : G → G/K. If a ∈ Hp, then
aα belongs to a Sylow p-subgroup Hα

p of HK/K. Assume that aα is not
contained in Φ(Hα

p ) ∪ Φ(Gα). Since HpK/K ≃ Hp, it follows that a is
not contained in Φ(Hp). Furthermore, it follows from (Φ(G))α ⊆ Φ(Gα)
that a is not contained in Φ(G). By assumption, there is a f -central
chief factor A/B of G such that a ∈ A\B. The factors AK/BK and
A/B(A ∩ K) are G-isomorphic; besides, it follows from a ∈ A\B that
A 6= B(A ∩ K) because every p-element in B(A ∩ K) is contained in B.
Hence, B = B(A ∩ K). We have that a ∈ AK\BK, and AK/BK is a
f -central chief factor of G. But then, (AK)α/(BK)α is a f -central chief
factor of Gα. Clearly, aα ∈ (AK)α\(BK)α. By the inductive hypothesis,
the theorem is true for G/K. Then it is also true for G.

So, we may assume that Op′(H) = 1. Consider H ∩ GF. We may
assume that H ∩ GF has non-Frattini G-chief factors. We call a normal
subgroup L of G f -limit if L/L∩Φ(G) is a f -eccentric G-chief factor. The
set Σ of f -limit subgroups contained in H ∩ GF is not empty. Really, if
L/(Φ(G)∩H ∩GF) is a minimal normal subgroup in G/(Φ(G)∩H ∩GF),
where L ⊆ H ∩ GF, then L is f -limit by 2.6. So, let L be a subgroup
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of minimal order in Σ. Set Φ = L ∩ Φ(G). It follows from Op′(H) = 1
and 2.5 that p divides |L/Φ|. Let M/Φ be a minimal supplement for
L/Φ in G/Φ. Then by 2.7 we have Gp = MpLp. By 2.9, Mp/Φ does
not contain Lp/Φ; hence, M 6= G. From Gp = MpLp it follows that
Hp = Gp ∩ H = (Hp ∩ Mp)Lp, where Hp ∩ Mp does not contain Lp.
Hence, there is an element a in Lp\(Hp ∩ Mp) such that a 6∈ Φ(Hp).
Since Hp ∩ Mp ⊇ Φ = L ∩ Φ(G), we have that a 6∈ Φ(G). So, we get

a ∈ Hp\(Φ(Hp) ∪ Φ(G)).

By assumption, G possesses a f -central chief factor A/B such that
a ∈ A\B. Consider AL/BL ≃ A/B(A ∩ L). Since A/B is a chief factor,
B(A ∩ L) is either equal B or else A. Since a belongs to A ∩ L and does
not belong to B, we have that B 6= B(A ∩ L). Hence, A = B(A ∩ L).
So, we have G-isomorphic G-chief factors A/B and A∩L/B∩L; besides,
a ∈ (A ∩ L)\(B ∩ L).

Suppose that A∩L/B∩L is a non-Frattini chief factor of G. Then, by
2.8, A∩L/B∩L is G-isomorphic with L/Φ. In this case, L/Φ is f -central
in G. This contradicts 2.6. So, we obtained that A∩L/B∩L is a Frattini
chief factor of G. If B ∩ L is not contained in Φ(G), we have that B ∩ L
possesses a f -limit normal subgroup of G; this contradicts the minimality
of |L|. Therefore, B ∩ L ⊆ Φ(G). We get A ∩ L ⊆ Φ(G). Hence,
a ∈ A∩L ⊆ Φ(G). We arrive at a contradiction, because a 6∈ Φ(G). The
theorem is proved.

Corollary 3.2.1. Let F be a saturated formation, H a normal subgroup
of a group G such that G/H ∈ F and for every prime p the following
condition holds: each element in Hp\(Φ(Hp)∪Φ(G)) is QF-central in G.
Then G ∈ F.

Corollary 3.2.2. Let F be a saturated formation, H a normal soluble
subgroup of a group G such that G/H ∈ F and the following condition
holds: if P is a Sylow subgroup of F (H), then each element in P\(Φ(P )∪
Φ(G)) is QF-central in G. Then G ∈ F.

Proof. Let Φ = Φ(G) ∩ F (H). By Theorem 3.2, every G-chief fac-
tor of F (H)/Φ is F-central in G. By 2.5, F (H)/Φ = F (H/Φ). By
2.10, G/Φ/CG/Φ(F (H/Φ)) ∈ F. Therefore, G/CG(F (H)/Φ) ∈ F. From
this and from G/H ∈ F it follows that G/CH(F (H)/Φ) ∈ F. But
CH(F (H)/Φ) ⊆ F (H). Hence, G/Φ ∈ F. Since F is saturated, we
have that G ∈ F.

Corollary 3.2.3. Let p be a prime, and H be a normal subgroup of a
group G. Assume that every element in Hp\(Φ(Hp)∪Φ(G)) is Q-central
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in G. Then H is p-nilpotent, and every its non-Frattini G-chief p-factor
is central in G.

Corollary 3.2.4. Let p be a prime, and H be a normal subgroup of a
group G. Assume that every element in Hp\(Φ(Hp)∪Φ(G)) is QU-central
in G. Then H is p-supersoluble, and every its non-Frattini G-chief p-
factor is cyclic.

Corollary 3.2.5. A group G is supersoluble if for every non-cyclic Sy-
low subgroup P of G the following condition holds: every element in
P\(Φ(P ) ∪ Φ(G)) is QU-central in G.

Proof. If G2 is non-cyclic, then by Theorem 3.2, G is 2-supersoluble. If
G2 is cyclic, then G is 2-nilpotent. Thus, G is soluble, and by Theorem
3.2, G is p-supersoluble for all prime p such that Gp is non-cyclic.

Definition 3.4. An element a 6= 1 of an abelian group P is called basic
if there exists a subgroup B in P such that P = 〈a〉 × B. We denote by
B(P ) the set of all basic elements in P.

The following theorem generalizes S.N.Chernikov’s result [20] on a
finite group with a system of complemented subgroups.

Theorem 3.3. Let p be a prime, and F = LF (f) a saturated formation
of p-soluble groups, where f is a semicanonical local satellite such that
f(p) ⊆ F and f(q) = E for every prime q 6= p. Let H be a normal
subgroup of a group G. Assume that Hp is abelian and every element in
B(Hp) is Qf-central in G. Then every G-chief factor of H is f-central
in G.

Proof. We will use induction on |H| + |G|. As well as in the proof
of Theorem 3.2, it is easy to show that the assumption of the theorem is
valid for G/Op′(H) and H/Op′(H). So, we may assume that Op′(H) = 1.
We will consider two cases: H = G and H 6= G.

Case 1. Assume that H = G. Consider the F-residual R of G. By
2.13, there exists a subgroup C such that G = CR and p does not divide
|C ∩ R|. By 2.7, Gp = CpRp and Cp ∩ Rp ⊆ C ∩ R. So, Gp = Cp × Rp.
It follows from this that B(Rp) ⊆ B(Gp).

It is clear that B(Rp)\Φ(G) 6= ∅. Consider a ∈ B(Rp)\Φ(G). By
assumption, there is a f -central chief factor A/B of G such that a ∈
A\B. We have that AR/BR is G-isomorphic with A/B(A ∩ R). Since
a ∈ A\B, it follows that A = B(A ∩ R). Thus, A/B and A ∩ R/B ∩ R
are G-isomorphic f -central G-chief factors. This contradicts 2.6. So, the
theorem is true for the case H = G.

Case 2. Now we assume that H 6= G. Let H be the formation of p-
soluble groups. By 2.13, there exists a subgroup C such that G = CHH
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and p does not divide |C ∩ HH|. By 2.7, Gp = CpH
H
p , where Gp, Cp and

HH
p are Sylow p-subgroups in G, C and HH. Evidently, Gp ∩ H = Hp is

a Sylow p-subgroup of H. Furthermore, Gp ∩HH = HH
p = Hp ∩HH. We

have Hp = (Cp ∩ Hp) × HH
p . It follows from this that B(HH

p ) ⊆ B(Hp).

Suppose that B(HH
p ) is non-empty. If a ∈ B(HH

p ) then by the assump-
tion of the theorem there exists a f -central chief factor A/B of G such
that a ∈ A\B. Since all groups in f(p) are p-soluble, A/B is a p-group.
Consider

AHH/BHH ≃ A/A ∩ BHH = A/B(A ∩ HH).

Since a ∈ (A ∩ HH)\B, we have that B 6= B(A ∩ HH). Therefore,
A = B(A∩HH). We have that A/B and A∩HH/B∩HH are G-isomorphic
G-chief factors. Since Hp is contained in CH(A ∩ HH/B ∩ HH) we have
that

H/CH(A ∩ HH/B ∩ HH) ∈ H.

Thus, there is a H-central chief p-factor D1/D2 of H such that

A ∩ HH ⊇ D1 ⊃ D2 ⊇ B ∩ HH.

This contradicts 2.6.
So, we assume that B(HH

p ) is empty and H is p-soluble. Since Op′(H) =
1 and Hp is abelian, it follows by 2.14 that Hp is normal. Clearly, we can
assume that H is a p-group. Let B(H) = {xi : i ∈ I}. By assumption,
for every i ∈ I there exists a f -central G-chief factor Ai/Bi such that
xi ∈ Ai\Bi. We set

Xi = Ai ∩ H, Yi = Bi ∩ H.

Then factors AiH/BiH and Ai/BiXi are G-isomorphic. Since xi ∈ Xi\B,
we have that Bi 6= BiXi. Thus, Ai = BiXi. So, Ai/Bi and Xi/Yi

are G-isomorphic f -central chief factors of G. It follows from this that
G/CG(Xi/Yi) ∈ f(p). We have that

G/C ∈ f(p), where C =
⋂

i∈I CG(Xi/Yi) ⊇ H.
It follows from this that every element xi in B(H) is Q-central in HCq

for every prime q 6= p. For HCq the theorem is true (we note that by
Case 1, the theorem is true if a considered normal subgroup coincides
with the whole group). Applying the proved part of the theorem to HCq

and the formation of p-nilpotent groups we have that HCq is p-nilpotent.
Therefore, CC(X/Y ) is a p-group for every G-chief factor X/Y of H. But
G/C ∈ f(p). We see that G/CG(X/Y ) belongs to Npf(p) = f(p), that
is X/Y is f -central in G. The theorem is proved.
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Corollary 3.3.1. Let p be a prime. Assume that a normal subgroup H
of a group G possesses an abelian Sylow p-subgroup P . Assume also that
every element in B(P ) is QU-central in G. Then H is p-supersoluble, and
every G-chief p-factor of H is cyclic.

Corollary 3.3.2. Let p be a prime. Assume that a normal subgroup H
of a group G possesses an abelian Sylow p-subgroup P . Assume also that
every element in B(P ) is Q-central in G. Then H is p-nilpotent, and
every G-chief p-factor of H is central in G.

Corollary 3.3.3. Let H be a normal subgroup of a group G. Assume
that a Sylow 2-subgroup P of H is abelian and has the following property:
〈a〉 is complemented in G for every a ∈ B(P ). Then H is 2-nilpotent,
and every its G-chief 2-factor is central in G.

Proof. By 2.15, every element in B(P ) is Q-central in G. Now we apply
Corollary 3.3.2.

Corollary 3.3.4. Let H be a normal subgroup of a group G. Assume
that for every Sylow subgroup P of G the following condition holds: P is
abelian, and 〈a〉 is complemented in G for every a ∈ B(P ). Then H is
supersoluble, and every its G-chief factor is cyclic.

Proof. By Corollary 3.3.3, H is 2-nilpotent. So, H is soluble. Let P be
a Sylow p-subgroup of H, p ∈ π(H). By assumption, for every a ∈ B(P )
we have that

〈a〉M = G, 〈a〉 ∩ M = 1.

By 2.16, a is QU-central in G. Now we apply Corollary 3.3.1.

Corollary 3.3.5 (see [20]). Assume that every Sylow p-subgroup P of G
is abelian and satisfies the following condition: if a ∈ B(P ), then 〈a〉 is
complemented in G. Then G is supersoluble.
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