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Basic semigroups: theory and applications

J. S. Ponizovskii

Abstract. A concept of basic matrix semigroups over fields
(with some variations) is introduced and throughly investigated.
Sections 1 and 2 contain main definitions, Section 3 treats some
properties of basic semigroups, Section 4 is devoted to some ap-
plication of basic semigroups: matrix representations (including
faithful representations), finiteness theorems, the problem of Ko-
rjakov (when a matrix semigroup over field K is conjugate to a
matrix semigroup over a proper subfield of K). The paper is a
survey and contains no proofs (which may be found in papers from
References).

1. Notions

In what follows n > 1, K is a fixed field; Mn(K) denotes the multiplica-
tive semigroup of all n × n-matrices over K. If S is a semigroup then
T ≤ S (T E S) means that T is a subsemigroup (an ideal) of S. If
S ≤ Mn(K) then J(S) = {x ∈ Mn(K) | xS ∪ Sx ≤ S} is the idealizer of
S in Mn(K).

Let S ≤ Mn(K). Define H(S) as follows. If S = {0} (0 is the zero
matrix) then H(S) = {0}. If S 6= {0} and r is the least natural such that
r = rank(x) for some x ∈ S, then H(S) = {x ∈ S | rank(x) ≤ r}.

Clearly H(S) E S. H(S) is called the homogeneous ideal of S. A
semigroup T with zero 0 is called 0-prime if and only if the following
holds:

x, y ∈ T, xTy = 0 =⇒ [x = 0 ∨ y = 0].

Let W denote an n-dimensional linear space over K consisting of all
row-vectors of dimension n. Elements from Mn(K) act on W as right
operators. If V is a subspace of W then (V : K) stands for the dimension
of V . If A ⊆ Mn(K) then L(A) is the K-linear envelope of A.
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2. Basic, strongly basic, weakly basic semigroups

Let S ≤ Mn(K). Denote by R(S) (C(S)) the row-space (the column-
space) of S: R(S) is a subspace of W spanned by all the rows of all
matrices from S (C(S) is defined similarly).

Theorem 1. The followings conditions are equivalent for any S ≤ Mn(K):
(i) (R(S) : K) = (C(S) : K) = n;
(ii) W · L(S) = W and if w ∈ W is such that w · S = 0 then w = 0;
(iii) if x ∈ Mn(K) is such that either xS = 0 or Sx = 0 then x = 0.

Definition. Let S ≤ Mn(K). Then:

S is basic ⇐⇒ any of (i), (ii), (iii) from Theorem 1 holds;

S is strongly basic ⇐⇒ H(S) is basic 0−prime;

S is weakly basic ⇐⇒ for any x ∈ Mn(K), xS = Sx = 0 implies x = 0.

The class of all basic (strongly basic, weakly basic) subsemigroups of
Mn(K) is denoted by B(K) (SB(K), WB(K)). The following holds:

SB(K) ⊂ B(K) ⊂ WB(K) (SB(K) 6= B(K) 6= WB(K)).

Examples.

(i) Any irreducible S ≤ Mn(K) is strongly basic.
(ii) Any indecomposable inverse S ≤ Mn(K) is strongly basic.
(iii) Any nonzero indecomposable commutative S = S2 ≤ Mn(K) is

basic but not necessarily strongly basic.
(iv) Let S be a set of all matrices from Mn(K) with nonzero entries

in the last row only. Then S is a weakly basic subsemigroup of Mn(K),
but S is not basic.

(v) Any S ≤ Mn(K) containing the identity matrix is basic but not
necessarily strongly basic.

3. Properties of basic (strongly basic, weakly basic) semi-
groups

3.1. Embedding theorem

For any abstract semigroup T , Ω(T ) denotes the translational hull of T .
Recall that a semigroup T is left weakly reductive if and only if following
holds:

let a, b ∈ T ; if xa = xb for all x ∈ T then a = b.
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Right weakly reductive semigroups are defined similarly. A semigroup
T is weakly reductive if the following holds:

let a, b ∈ T ; if xa = xb and ax = ab for all x ∈ T then a = b.

Clearly left (right) weakly reductive semigroup is weakly reductive
but not vice versa.

It is well known that any weakly reductive semigroup has a standartd
embedding into Ω(T ) as an ideal. So if T is a weakly reductive semigroup
we put T ⊳ Ω(T ).

Theorem 2. Any weakly basic S ≤ Mn(K) is weakly reductive (hence
we may take S E Ω(S)).

Let S ≤ Mn(K) be weakly basic, S E Ω(S) as abstract semigroups.
Define a mapping ω : J(S) → Ω(S) as follows:

if a ∈ J(S) then ω(a) is defined by the rule: ω(a) · x = ax,
x · ω(a) = xa for all x ∈ S.

It is easy to show that ω is a homomorphism of semigroups. The
following fact is very important:

Theorem 3 (Embedding Theorem). If S ≤ Mn(K) is weakly basic then
ω is a monomorphism. If S ≤ Mn(K) is basic then ω is an isomorphism.

Remark. Theorem 3 shows that, for S basic, the pair S ⊂ Ω(S) may be
included into Mn(K). More exactly: there exists a commutative diagram

S
f

−→ Ω(S)
ε ↑ ↑ ω

S
g

−→ J(S)

where ε is an identity mapping, f and g are inclusions.

3.2. Closure theorem

Let S ≤ Mn(K) be homogeneous (i.e. S = H(S)). A semigroup S ≤
Mn(K) is called the closure of S if the following holds:

(i) S is completely 0-simple,

(ii) S ⊆ S,

(iii) if U ≤ Mn(K) is completely 0-simple such that S ⊆ U then
S ≤ U .
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Theorem 4 (Closure Theorem). For any strongly basic S ≤ Mn(K)
there exists a closure S; moreover S is unigue and S meets all H-classes
of S.

Examples show that the condition "S is basic" cannot be omitted.
The meaning of closure is rather evident: it is a sort of completely 0-
simple approximation of a homogeneous semigroup.

3.3. Heritability properties

Theorem 5 (Heritability Theorem). Let S ≤ Mn(K) be strongly basic,
and let T, U be such that T E S E U ≤ Mn(K). Then T, U are strongly
basic.

The following theorem shows that an extension of a field K does not
change the idealizer of a basic semigroup.

Theorem 6. Let K ⊆ F be fields, and let S ≤ Mn(K) be basic. Then
the idealizer of S in Mn(K) is equal to the idealizer of S in Mn(F ).

4. Applications

4.1. Matrix representations of semigroups

See [1].

4.2. Finiteness theorems

Let S ≤ Mn(K) be strongly basic. Since H(S) E S, then H(S) is
strongly basic by Theorem 5. Now we formulate

Theorem 7. Let S ≤ Mn(K) be strongly basic. If a maximal nonzero
subgroup of H(S) is finite then S is finite (note that H(S) exists by The-
orem 3).

Theorem 8. Let S ≤ Mn(K) be periodic of bounded period. Assume
that there exists a set of strongly basic representations of S (over some
field F ) which separates points of S. Then S is finite (a representation
f : S → M(F ) is strongly basic if f(S) is strongly basic).

This is a generalization of theorem of Y. Zalcstein [7].

Theorem 9. Let S ≤ Mn(K) be regular irreducible with finite subgroups.
Then S is finite.

Applying the well known theorem by Shur we get
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Theorem 10. Let S ≤ Mn(K) be irreducible, periodic and regular. Then
S is finite.

Theorem 8 is in [3]. Theorem 9 is published in [2].

4.3. Reduction to smaller fields

Results concern the problem:
Let F ⊂ K be a field extension, and let S ≤ Mn(K); when S is

conjugate to a subsemigroup of Mn(F )?
Some sufficient conditions are given in the following

Theorem 11. Let F ⊂ K be fields. Let S ≤ Mn(K) be strongly basic
and G be a maximal nonzero subgroup of H(S). Then S is conjugate to
a subsemigroup of Mn(F ) provided G has this property.

This theorem is a generalization of a result from [4].
Theorem 11 gives a positive answer to the question 3.39 of Kor-

jakov [6].

5. Faithful matrix representations of semigroups

Let S be a semigroup having a faithful matrix representation f : S →
Mn(K). Assume that T is a semigroup such that S E T ≤ Ω(S). When
f may be extended to a faithful representation F : S → Mn(K)?

It is always possible if f(S) is basic since then one can take F = ω (see
Theorem 3). But it is not so in general if f(S) is only weakly basic because
in this case ω maps J(S) into Mn(K) (more exactly into J(f(S))), a part
of Ω(S) only. The following theorem shows that sometimes such F may
be constructed in parts.

Theorem 12 ([5]). Let S be a weakly reductive semigroup (so that we
put S ⊳Ω(S)). Let {Si | i ∈ I} be a family of subsemigroups of Ω(S) such
that the following holds:

(i) S is an ideal of Si for all i ∈ I;
(ii) there exists a faithful representation f : S → Mn(K) such that

f(S) is weakly basic;
(iii) for any i ∈ I, there exists a faithful representation fi : Si →

Mn(K) such that
x ∈ S =⇒ fi(x) = f(x),

x ∈ S, y ∈ Si =⇒ f(xy) = f(x)fi(y), f(yx) = fi(y)f(x).

Let T be a subsemigroup of Ω(S) generated by all Si (i ∈ I). Then there
exists a faithful representation F : T → Mn(K) such that F extends f

and all fi (i ∈ I), i.e.
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F (x) = f(x) for all x ∈ S,
F (y) = fi(y) for arbitrary i ∈ I and for all y ∈ Si.
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