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2-groups
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1. Introduction

It is well-known [1] that linear codes over a two-element field are precisely
subgroups of an elementary Abelian 2-group G. It is naturally to consider
subsets in G which are close to subgroups, as codes which are close to
linear ones. In this connection in [3| the notion of a defect of a subset
of a group G has been introduced as a measure of a deviation from a
subgroup (so that a subset has the defect 0 only if it is a subgroup).

The subsets of defect 1 and 2 are described in [3]. In this description
so called standard subsets play a leading role (see definition in section
2): all subsets of defect 1 are standard, and among subsets of defect 2
there is only one non-standard. In this article we show, that all subsets
of defect 3 containing not less than 12 elements, are standard, and we
describe all non-standard ones.

One can suppose that this situation is kept in the general case: large
subsets of the fixed defect are standard. However now we do not know,
whether this assumption is true.

2. Properties of the defect

Everywhere further G denotes a finite elementary Abelian 2-group, T its
subset containing the identity , |T'| number of elements in T', (T') the
subgroup of G, generated by T'. Besides for any element a € T\ 1 we put
T, =T\aT.

A defect of a subset T' is a number def T' = max |T%|.

If H is a subgroup of G and T' C H then def T' < |H\T|. In particular,
putting H = (T'), we get inequality:

|T| + def T < |(T)].
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We call T' standard, if |T'| 4+ def T' = |(T')|.

For example, if F' is a subgroup of G, H is a subgroup of F' and
T = (F\ H)U1 then T is standard and def T = |H| — 1. Subsets of the
form T'= (F'\ H) U1 will be called strictly standard.

Obviously, subsets of defect 0 are exactly subgroups. The following
results for defect 1 and 2 have been obtained in [3]:

Theorem 1. Each subset of defect 1 is of the form T'= H \ a, where H
is a subgroup of G, a € H.

Theorem 2. Let def T = 2. Then either T is standard or || = 4 and
{(T)| =8 (so T'\ 1 is a basis of (T)).

Thus, subsets of defect 1 are strictly standard, and subsets of de-
fect 2, except the single one in essence, are standard (but are not strictly
standard).

In (3| the following result also has been received: if a, b, ¢ are different
non-identity elements of G then G \ {a,b,c} has defect 3. We shall use
this statement below.

It is useful to interpret the notion of defect in terms of graphs [2].
To a subset T" we compare a graph I'(T") in the following way: vertices
of I'(T") are elements of 7'\ 1 and edges are such pairs of vertices (a,b)
that ab ¢ T. Then the degree of the vertex a equals dega = |T,| and
def T' = I;lea%( deg a.

In this section we obtain some general properties of subsets of any
defect.

Theorem 3. Let C1,C5,...,C,. be connected components of the graph
'=I0(T),1<i#j<r. Then

1) There is such k < r that C;C; C Cy,.
2) Ifin 1) k # i then aC; = Cy, for every a € C;.

Proof. 1) It follows from definition of I' that C;C; C T. Let a € C;.
Since aC); is connected, it is contained in some component Cj. Similarly,
if z € C; then C;x C C) for some [ < r. But since ax € aC; N C;x then
k =1 and k does not depend on a choice of a and x. Hence, C;C; C C},.

2) Let a € Cj, aCj C Ck. Then Cj C aCy. As i # k, by the first part
of Theorem aC}, C Cj. Hence, aCy, = Cj. O

We shall call a subset T" homogeneous, if def T' = dega for all a € T'\ 1
(i.e. if I'(T") is homogeneous). Theorem 4 gives more detailed information
about structure of homogeneous subsets. We shall preliminary prove
several assertions.
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Proposition 1. Let T' be a homogeneous subset, C;, Cj, C) such con-
nected components of I' = I'(T'), that C;C; C Cj and i # j. Then
(IC]‘ = ()} for all a € C;.

Proof. Note that the graph aC} is isomorphic to the graph C}, hence the
homogeneous graph C} contains a homogeneous subgraph of the same
degree. From here aC; = C. O

Corollary 1. All connected components of the graph of a homogeneous
subset T are isomorphic.

Proof. Let C;, C; be connected components of I'(T"). According to Theo-
rem 3 and Proposition 1 there is such a component Cj, that C;C; = Cj,.
Moreover components C; and Cj, = aCj (a € C;) are isomorphic. Sim-
ilarly C; and C}, are isomorphic. Therefore C; and C; are isomorphic
too. O

Proposition 2. If the graph I'(T') of a homogeneous subset 7' is not
connected then its components are complete graphs.

Proof. Let us assume that I' = I'(T') is not connected and that among
its connected components there is a non-complete one. Accordingly to
Corollary 1 all components of I' are isomorphic, so all of them are non-
complete.

Let us consider components C;, C;, Cy, for which ¢ # j and C;C; =
C%. Since C; is a non-complete connected component then |C;| > 3 and
there are such a,b € C; that ab € T. Then ab € C,, for some m. We
shall prove that m = ¢. If it not so, C;Cy,, C C;, since, for example,
b=a-ab e C;Cy,. Then accordingly to Corollary 1 zC,, = C; for all
x € C;. In particular, for x = a we have: aC),, Z a and C; > a; the
contradiction.

Thus ab € C;. Then aC; = bC; = abC; = C}, whence Cj = bC; =
C;Cj = C. So j = k. Similar reasoning for the non-complete component
C; shows, that ¢ = k. We get a contradiction again. O

Theorem 4. If T is homogeneous then either I'(T") is connected or T is
strictly standard.

Proof. Suppose that I'(T") is not connected. Then by Proposition 2 all
its components are complete.

Let C; # Cy are components of I'(T"), x € C;. We denote H = zC
and prove that H is a subgroup.

Let C1Cy C Cs. According to Proposition 1



B. V. Novikov, L. YU. POLYAKOVA 51

xCy = C3 = Cyy for any y € Cy. Then C3 = Hxy, whence Cy =
Csxz = Hy. Therefore for a,b € H we have: ax-by € Cs,i.e. aby € Cy =
Hy. From here ab € H.

Besides, it follows from this reasoning that every component has a
form C; = x;H. Since the product of two various components contains
in some component (Theorem 3), then F' = T'U H is a subgroup, and
T = (F\ H)U1. By the definition T is strict standard. O

We shall prove two more lemmas which will be used below for subsets
of defect 3.

Lemma 1. dega = def T'(mod 2) for every a € T'\ 1.

Proof. Since a(T NaT) = T NaT then T N aT contains, together with
every x, an element az and, hence, |T'NaT| is even. From here |T'| = |T'N
aT |+ |T,| = |Ta|(mod 2) for all @ € T'. In particular, |T'| = def T'(mod 2).
Thus, deg a = def T'(mod 2). O

Lemma 2. If a,b,ab € T then degab < dega + degb.

Proof. Suppose the opposite: let dega = k, degb = m, degab = p >
k + m. Then there are z1,...,z, € T\ 1 for which abxy,...,abzx, ¢ T.
Not less than p — m elements among elements bz; (1 < j < p) are

contained in 7' let, for example, bxy,...,bxp—y, € T. Since p —m > k
by hypothesis, there is such z; (1 < i < p —m) that abx; € T, and we
obtain a contradiction. O

From Lemmas 1 and 2 it follows

Corollary 2. If defT is odd and a,b,ab € T then degab < dega +
degb — 1. O

In particular,

Corollary 3. If a,b,ab € T, and dega = degb = 1 then degab=1. [

3. Non-homogeneous subsets of defect 3

From Lemma 1 it follows that a subset of defect 3 can contain only
elements of the degree 1 and 3. A number of following statements of this
section is right for any subsets of odd defect, containing elements of the
degree 1; therefore we shall assume, that T is just such a subset. If T’
will be a subset of defect 3 we shall stipulate it.

We introduce the following designations: 77 = {a € T|dega = 1},
H = <T1>, S=T1Ul.
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Lemma 3. |H\Ti| <2.

Proof. If aS = S for every a € T7 then S, obviously, coincides with H
and the lemma is proved. Suppose it is not so, i.e. aS \ S # ) for some
a € Th. Let us fix some z € aS\ S. Then x = ab, where b € T7. By
Corollary 3 = ¢ T (otherwise degxz = 1 and x € S), hence z € aT \ T.
In view of the fact that dega = 1, we obtain |aS \ S| =1 and def S = 1.
However, by Theorem 1 S is standard, |[H \ S| =1,s0 |[H\T1|=2. O

Thus, two cases are possible. We shall consider them separately:
1) S=H)\ f, where f is an element from H;
2) S=H.
Proposition 3. If S = H \ f then T'\ S is the join of cosets of H.

Proof. We shall prove that the equality A(T'\ S) = T \ S is right for
every h € H. Notice that for any a € T} the degree of af also is equal
1. Therefore f ¢ T (otherwise f € Ty by Corollary 3), so T, = {af}.
Hence, a(T'\ S) C T. Besides a(T'\ S) NS = 0. Really, if it is not so,
there is such t € T'\ S, that at € T1, but this contradicts Corollary 3.
Thus a(T'\S) =T\ S for all @ € T;. Since af € T} then f(T'\ S) =
fa-a(T\S)=fa(T\S)=T\S. O

Corollary 4. If S= H \ f and def T" > 3 then def T' > |T1| + 3.

Proof. T UH = T U{f} is not a subgroup, otherwise def7" = 1 by
Theorem 1. It follows out of Corollary 3 that there are x,y € T'\ H such
that xy ¢ T U H. But then xyH N (T U H) = ), so T, D yH. Besides
the element fxr ¢ yH also is contained in T,. Hence, degx > |H|+ 1 >
Ty + 3. O

>From here we obtain immediately that if defT" = 3 then the case
1) is impossible, so, H = S = T7 U 1. In this situation (the case 2)) for
every a € Tj there is an unique = € T\ T} such that w = za ¢ T. Fix
the elements a and =x.

Proposition 4. Let def T > 3, T3 U1 = H. Then one of the following
statements takes place:

1) T CT,.

2) Ifbe T,y e T and by ¢ T then by = w. Besides T'U w is the join of
cosets of H.
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Proof. Assume that 1) is not executed and b € T7 \ T}, such that b # a
and b € T, for some y # x. Since dega = degb = 1 then zb,ya € T
As Ty U 1 is a subgroup, ab € T7 and by Corollary 3 degab = 1. But
xb-ab,ya-ab & T, so xb = ya, whence yb = w. From here it follows also,
that T'U w is the join of cosets of H. O

Corollary 5. If the condition 2) of Proposition 4 is executed then

Proof. Since def T' # 1, Theorem 1 implies that T'Uw is not a subgroup.
Therefore such u,v € T exist that uv € T'U w, and at the same time at
least one of these elements, for example u, is not contained in H. Then
uH -vNT = (), whence degv > |H|. As |H| is even, we get from here
defT > |H|+ 1 = |T1| + 2. O

Corollary 6. If def "= 3 and T} C T} then either |T1| =3 or |T1| < 1.

Proof. According to the condition 7, D Ti, therefore |Th1| < 3. Since
T1 U1 is a subgroup for a subset 1" of defect 3, |17| # 2. O

Proposition 5. If def T'= 3, T} C T, and |T1| = 3 then T is standard.

Proof. Tt is enough to show, that (') = T'UzT). Indeed, T'T C T UxT}.
Besides, since T, D T and |T1| = 3 then T,, = Ty. Hence, zy € T for
every y € T\ T1. Consider an arbitrary element a € Tj. Notice that
axy € T, otherwise zy € T, = {z}. So zyTy C T and T, = xyT;. But
then yI' C T U 2T7. 0

Corollary 7. If def T' = 3 and T is non-standard then |77| < 1. O

The next theorem is applicable both to homogeneous and to non-
homogeneous subsets of defect 3 and essentially confines a class of graphs
which can correspond to these subsets.

Theorem 5. If T is non-standard and def T = 3 then diameters of
connected components of I'(T") do not exceed 2.

Proof. We shall prove by contradiction, using an induction on |T'|. Let
a,beT and

a x y b

KURIF RN (1)
is the shortest way from a to b in the graph I'. Then ax,xy,yb € T,
ay,xb,ab e T.
Let H be a subgroup generated by elements a, z,y,b. We shall prove
some auxiliary statements (Lemmas 4 — 7).
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Lemma 4. Elements a, x,y,b form a basis in H.

Proof. If in the subgroup H it holds w = 1 for some word w in the alpha-
bet {a,x,y,b}, then the length of w should be not less than 3 because
all elements a, x, y, b are different. Therefore w coincides with one of the
words axyb, ary, axb, ayb, xyb. If axyb = 1, then ab = xy, but ab € T,
and xy & T'; the contradiction. If axy = 1 then y = ax ¢ T. The other
variants are similarly impossible. O

Lemma 5. T ¢ H.

Proof. Assume that T C H. Since T is non-standard, it is contained in
H\ T (in addition to azx,xy,yb) even one of elements axyb, axy, axb,
ayb, xyb. Consider the possible cases.

1) azb ¢ T. Then zb € T, and ab € T,. Hence T, = {a,y,ab} and
therefore ary € T. Similarly from Ty, = {x,zb,ay} it follows ayb €
T. But then z,xb,ayb,axy € T,. By Lemma 4 all these elements are
different, so |T,| > 4, that is impossible. Hence axb € T and similarly
aybe T.

2) axy € T,axb,ayb € T. Then T,{a,y,ay}. Therefore ayb & T, i.e.
axyb € T. If zyb € T there would be a way of length 2:

a azxyb b

contrary to the assumption. Hence zyb € T'. But then T}, D {a, y, ay, zyb}.
The contradiction. Therefore axy € T and similarly zyb € T

3) axyb & T, axy,axb,ayb,xyb € T. Then T, D {a,y,ayb, xyb}, that
is impossible. O

Remark. Proving in Lemma 5 the inequality |T;| > 4 for some
t € T, we base each time on Lemma 4. Further we shall use this lemma
without the reference to it.

Denote T = HNT, T =T'(T).

Lemma 6. def T = 3 and T is standard.
Proof. For any t € T we have:
T\tT: (TNH)\(T'NH)=(TNH)\1T,

whence |T\tT| < |T\tT'| < 3. Suppose that def T = 2. From T, = {a,y}
and ay € T it follows azy € T. But then Ty D {z,b,azy} and def T > 3.

Thus def T = 3. Since |T| < |T| (Lemma 5) and the way (1) is
contained in T, then by the assumption of induction T is standard. [J
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Evidently, T = H \ {ax,zy,yb} and T has the form
a

ay ab b

axyb

xyb
Denote these components by C7 and Cs.

Lemma 7. zH C T for every z € T\ T.

Proof. Since all vertices of C1 have the degree 3, z is not connected with
any of them by an edge, i.e. zCy; C T, and for the same reason abz € T
If 2T ¢ T, let, for example, ayz ¢ T. Then az € T, = {z,b,axy} C H
contrary to z € H. Therefore 2T C T.

It remains to show that z(H \T) C T. If zax € T then za € T, =
{a,z,zyb}. The contradiction. Hence, zax € T and similarly zzy, zyb €
T. O

Returning to the proof of the theorem, we note, that in each coset
zH C T there is an element u, such that |T,| = 3 (e.g., Ty, = {zz, azryz,
aybz} for u = az).

Denote by K the join of all cosets of H which have nonempty inter-
section with T' (in fact, by Lemma 7 all of them, except H, are contained
in T'). We shall prove, that K is a subgroup. Indeed, let wH and vH
be two different cosets, such that uH # H # vH, uH UvH C T. Be-
sides, let their representatives u and v be chosen in such a way that
|Tu| = |Ty| = 3. If uv € T then v € T, = {azu,zuy,ybu}. This is
impossible, since uH # vH. Hence uv € T and uwwH C T.

But then T'= K \ {az, xy, yb} is standard. O

Now we can prove the main result of this section:
Theorem 6. If def T' = 3 and T is non-homogeneous then 7' is standard.

Proof. Assume the opposite. Let T # (). Then according to Corollary 7
T) = {a} for some a € T. Let z € T\ T} and ax ¢ T. Since degz = 3,
there is such an element u € T'\ T} that zu ¢ T'. Furthermore, there are
such vy,vy € T'\ T} that v; # x, viu € T (i = 1,2). We obtain a way

a T U U]




56 SUBSETS OF DEFECT 3 IN ELEMENTARY ABELIAN 2-GROUPS

By Theorem 5 az,zvy ¢ T for some z € T. Since dega = 1 then
z =z and zv; € T. Similarly zve ¢ T. But then degx > 4. This is
impossible. O

4. Homogeneous subsets of defect 3

In this section we shall assume, that T is a non-standard homogeneous
subset of defect 3. In this case its graph I'(T) is connected by Theorem
4. We shall find out, how I'(T) looks and show that there are only 3
non-standard homogeneous subsets.

We need the following lemma:

Lemma 8. Let a € T and T, = {b,¢,d}. Then either be,bd,cd & T or
be,bd,cd € T.

Proof. Obviously, if bed = 1, the lemma is right. Let bed # 1. Assume
opposite, let, e.g., bc € T, bd ¢ T. Since bed # 1 then be € T,,. Therefore
abe € T, whence abc € T, N T,.. Consider the shortest way from b to be (it
exists because I'(T') is connected). By Theorem 5 it contains not more
than two edges. As be & Ty, U Ty U Ty, this way consists of edges (b, d)
and (d,bc), so bed ¢ T (see fig.).

abe be
b d
Since abc &€ Ty = {a,b,bc}, abed € T, but then abed € T, = {b,c,d},
what leads to the contradiction. O

Consider two cases for the graph I'(T).
1) Let such a vertex a exist in I', that T, = {b,c,d} and bed # 1. If
be,bd, cd € T then by Lemma 8 we get that I is the complete graph Ky

with four vertices:
c

b d
On the other hand, if be,bd,cd € T we get abe,abd,acd € T (be-
cause bc,bd, cd ¢ Ty). From here T, = {a,abc,abd}, T, = {a,abc, acd},
Ty = {a,abd,acd}. We note also that bed € T, otherwise cd € T =
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{a, abc, abd}, what is impossible. Therefore the graph I' in this case
should look so:

b @ :

abc

However, diameter of this graph equals 3, what contradicts Theorem
5. Thus, this case is impossible.

2) Consider now the case when for all t € T', from T;{x, y, z} it follows
xyz = 1. Let a € T. Then T, has a form T, = {b, ¢, bc} for some b,c € T
Besides Ty, = {a,d, ad} for some d € T. From here it follows

ab, ac, abe, bd, abd & T. (2)

We shall consider several subcases:

a) Suppose that ¢d € T. Then cd € Tp. N Tyq. Since T.q O {ad,bc}
then Tpqy = {ad, be, abed}, and similarly Ty = {a, cd, acd}, Tyq = {b, cd, bed}.
It follows from (2) that T,eq = {d,bc,bed}, Theq = {c,acd, ad}, Topeq =
{¢,d,cd}, Ty = {acd,b,abed}, T, = {a,bcd,abed}. Therefore the graph
looks so:

cd

bc “' ad
L

a b
It is so-called Petersen graph [2].

b) Analogously, if abed € T', we obtain the same graph.
c)If ed,abed ¢ T, T'(T) = K33, a complete bipartite graph:
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a ad d

b be c
Thus, we proved

Theorem 7. If T is a non-standard homogeneous subset of defect 3,
then I'(7T') is either the complete graph Ky, or the Petersen graph, or the
complete bipartite graph K3 3. O

To formulate the main result of this section, we need the next defini-
tion.

Let T, U are subsets of the group GG. We say that T is isomorphic
to U if there exists such a bijection f : 7" — U that f(ab) = f(a)f(b),
as soon as a,b,ab € T (this definition means that I'(T") and I'(U) are
isomorphic).

Theorem 8. Each homogeneous subset T" of defect 3 is either standard,
or isomorphic to one of the following subsets

1) {1l,z,y,z,w},

2) {1,z,y,z,w,zw,yz},

3) {1,z,y,z,w,xy, xz, zw, yz, yw, 2w},

where x,y, z, w are linearly independent elements of the group G.

Proof. Let T be non-standard. By Theorem 7 its graph I'(T) is:

either the complete graph K4, and then T' = {1, a,b,c,d};

or the complete bipartite graph K33 3, and then T' = {1, a, b, ¢, d, ad, bc};

or the Petersen graph, and then T = {1, a, b, ¢, d, ad, be, cd, acd, bed, abed} .
The last subset is isomorphic to the subset 3) from the condition of the

theorem. Indeed, isomorphism between them is realized by function f,
for which

fla) =z, f(b) =yz, f(c) =yw, f(d)=w.
U

From the description of subsets of defect 3, and also from Theorems
1 and 2, we obtain the following

Corollary 8. Let a,b, ¢, d be different elements from G'\ 1. Then for the
set T'= G\ {a,b,c,d} the following statements are fulfilled:

If |G| = 8 then T is either a subgroup of order 4 or a non-standard
subset of defect 2.

If |G| > 8 then T is a (standard) subset of defect 4.
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Proof. Evidently, def T' < 4. Let |G| = 8. Then T contains, besides 1,
three more elements. If they are linearly dependent, T' is a subgroup if
not then 7" is a subset of defect 2 by Theorem 2.

Let |G| > 8. Note that T' cannot be a standard subset of defect,
smaller than 4. Then by Theorem 1 defT # 1. Non-standard subsets
of defect 2 contain 4 elements, and non-standard ones of defect 3 can
contain only 5, 7 or 11 elements. Since |T| = 2¥ — 4 for some natural
k > 4 then def T' # 2 and def T # 3. O
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