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Abstract. We consider algorithmics for the jump number
problem, which is to generate a linear extension of a given poset,
minimizing the number of incomparable adjacent pairs. Since this
problem is NP-hard on interval orders and open on two-dimensional
posets, approximation algorithms or fast exact algorithms are in
demand.

In this paper, succeeding from the work of the second named
author on semi-strongly greedy linear extensions, we develop a
metaheuristic algorithm to approximate the jump number with the
tabu search paradigm. To benchmark the proposed procedure, we
infer from the previous work of Mitas [Order 8 (1991), 115–132] a
new fast exact algorithm for the case of interval orders, and from the
results of Ceroi [Order 20 (2003), 1–11] a lower bound for the jump
number of two-dimensional posets. Moreover, by other techniques
we prove an approximation ratio of n/ log log n for 2D orders.

1. Introduction

The jump number problem is to find a linear extension of a given poset
minimizing the number of jumps, that is, incomparable adjacent pairs. It
is best motivated by the following scheduling problem. Suppose a set of
jobs is to be performed by a single machine, one at a time, with respect to
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some technological precedence constraints. Every job processed after one
which is not constrained to precede it requires a warm-up (here, called a
jump), which leads to a fixed unit of additional cost. The objective is to
find a schedule which minimizes the number of warm-ups (jumps).

A purely theoretical interest in this problem is associated with a fact
proved by Habib [8] that posets with isomorphic undirected comparability
graphs have equal jump number. Consequently, the jump number fits the
framework of comparability invariants, together with order dimension,
the number of all linear extensions, the path partition number, and other
properties. This leads to characterisation questions of comparability
graphs satisfying given property and of possible interpretations of these
invariants.

Another related topic is a classification of jump-critical posets. We
recall from [26] that P is jump-critical if for any p ∈ P , P\{p} has less
jumps than P . Some results have been established by El-Zahar et al.
[26–28].

The main results of this work are as follows.

1) We design and benchmark a tabu search algorithm to approximate
the jump number, see Section 3 and 4. It is built upon semi-strongly
greedy linear extensions, defined by the second named author in
terms of arc diagram representations of posets.

2) We give in Section 4.1 a new exact algorithm for the jump number
of interval orders, based on the previous work of Mitas [16].

3) We show in Section 4.3 that the jump number has an (n/ log log n)
approximation ratio on two-dimensional posets.

We now outline the paper structure.
The proposed tabu search algorithm explores semi-strongly greedy

linear extensions, defined by the second named author (see Section 2.2).
After reviewing the respective exact algorithm in Section 2, we verify how
many solutions are generated when it is applied to various posets.

Our adaptation of the tabu search paradigm is proposed in Section 3
and tested in Section 4. In benchmarks we focus on two non-trivial classes
of posets: interval orders and two-dimensional orders. A previous work
of Mitas [16] on interval orders contains a characterization of optimal
solutions in terms of subgraph packings.

In Section 4.1 we explore this idea to obtain a new exact algorithm for
these orders. This allows us to calculate the jump number in reasonable
time for posets having up to several hundred elements. In effect, we obtain
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a testbed to verify the quality of solutions generated with the proposed
tabu search algorithm.

Perhaps even more interesting is the case of two-dimensional orders,
since the complexity status of the jump number problem has remained
open in this class for several years now.

In Section 4.2 we exploit an interpretation given by Ceroi [4]. Chains
to form a linear extension are seen as rectangles in the plane, and the
bump number (see Section 1.1) corresponds to the maximum weight
of an independent set (MWIS in short) of rectangles. Thus, a linear
programming relaxation of the MWIS integer formulation yields a bound
on s(P ). Even though the approximation ratio of our tabu search algorithm
is unknown and only verified experimentally, we prove in Section 4.3
using other techniques that the jump number admits an (n/ log log n)
approximation ratio on two-dimensional posets.

1.1. Preliminaries

We denote by (P, <P ), or simply by P , a finite strict partially ordered
set, in short a poset of cardinality|P | = n. That is, <P is a transitive
and irreflexive relation on P . For any p ∈ P , SuccP (p) = {q ∈ P :
p <P q} is the set of successors of p and PredP (p) = {q ∈ P : q <P

p} is the set of predecessors of p. SP = {SuccP (p) : p ∈ P} is the
family of distinct successor sets and PP = {PredP (p) : p ∈ P} is the
family of distinct predecessor sets of a poset P . We say that p is covered
by q if p <P q and for no r, p <P r <P q.

A linear extension L = p1, p2, . . . , pn is a total ordering of P preserving
the relation, that is, pi <P pj implies i < j. Two adjacent elements pi, pi+1

in L form a jump if pi 6<P pi+1 and otherwise they form a bump. Since
jumps split L into chains of P , we can write L = C0 ⊕ C1 ⊕ . . .⊕ Cm.

Problem 1.1.1. Let sL(P ) denote the number of jumps in a linear
extension L of a poset P . The jump number problem is to find

s(P ) = min{sL(P ) : L is a linear extension of P}.

Problem 1.1.1 is equivalent to maximizing the number of bumps bL(P )
amongst linear extensions of P , as for any L we have sL(P )+bL(P ) = n−1.
We write b(P ) for the maximum number of bumps in a linear extension
of P . If sL(P ) = s(P ) = n− 1− bL(P ) then L is called an optimal linear

extension of P .
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Definition 1.1.2. A poset (P, <P ) is an interval order (or an interval

poset) if there is a bijection between its elements and closed intervals on
the real line, P ←→ {Ip = [l(p), r(p)], l(p) 6 r(p)}p∈P , such that p <P q
if and only if r(p) < l(q). (P, <P ) is two-dimensional (or 2D) if <P is an
intersection of two linear orders {L1, L2}, called a realizer of P .

Interval orders are characterized as posets excluding a subposet consisting
of two independent 2-chains [6]. The recognition of two-dimensional posets
can be accomplished in O(n2) time, see [20] and also [10].

Definition 1.1.3. A chain C in P is greedy if Pred(p)∪ {p} = C, where
p = sup C, and for no element q covering p, the chain C ∪ {q} has this
property. A linear extension L = C0 ⊕ C1 ⊕ . . .⊕ Cm is greedy if Ci is a
greedy chain in P\ ∪j<i Cj .

It is easy to prove that every poset has an optimal linear extension which
is greedy.

1.2. Previous work

It has been proved by Pulleyblank [18] that the jump number problem
is NP-hard on bipartite orders, that is, on posets having only minimal
and maximal elements. Another NP-hardness proof has been given by
Bouchitté and Habib [3]. Moreover, by Mitas [16] the problem remains
NP-hard on interval orders. There are polynomial-time algorithms for
some restricted classes of posets. These include semi-orders (i.e., interval
orders formed by intervals of the same length) [2], and N-free orders (that
is, with the N subposet forbidden) [19, 22]. The problem remains open
on two-dimensional orders. However, Ceroi [4] proved NP-hardness of a
generalized variant in which non-negative weights are associated with
comparabilities and the objective is to maximize their sum on bumps of
a linear extension. Due to high complexity of the problem, approximate
algorithms are in demand. Those have been found only for interval orders
(Sysło [25], Felsner [5], Mitas [16]). An exact algorithm has been designed
by Sysło [24] (it is shortly reviewed in subsequent sections). As far as we
know, the only metaheuristic approach published so far is that of Ngom
[17], who adapted the genetic algorithm to the jump number problem.

2. Semi-strongly greedy linear extensions

In this paper a tabu search procedure is presented to search for valuable
solutions amongst very particular greedy linear extensions, defined by the



P. Krysztowiak, M. M. Sysło 93

second named author. Therefore, we now quickly recall what semi-strongly
greedy linear extensions are and how they are generated. These linear
extensions are formed from special greedy chains, defined by means of a
digraph representation of (P, <P ) explained below.

2.1. Arc diagrams

A digraph is denoted by D = (V, A, t, h), where V is the vertex set, A
is the arc set, and t, h : A→ V are incidence mappings (t for tail, h for
head). Then each arc a ∈ A is of the form a = (t(a), h(a)). A sequence
of arcs π = (a1, a2, . . . , al), l > 1 is a path in D if h(ai) = t(ai+1) for
i = 1, 2, . . . , l − 1. By tc(D) = (V, tc(A), t⋆, h⋆) we denote a transitive

closure of D, where (a1, . . . , al), l > 1 is a path in D if and only if tc(A)
contains an arc b such that t⋆(a1) = t⋆(b) and h⋆(al) = h⋆(b).

Definition 2.1.1. An arc diagram for a poset (P, <P ) is an acyclic
digraph D(P ) = (V, R, t, h) for which there is a mapping φ : P → R such
that for every p, q ∈ P , p 6= q, we have p <P q iff (h⋆(φ(p)), t⋆(φ(q))) ∈ R⋆,
where t⋆, h⋆ are the incidence mappings of tc(D) and R⋆ = tc(R)∪{(v, v) :
v ∈ V }. An arc a ∈ φ(P ) is a poset arc and otherwise a is a dummy arc.

Informally, certain arcs represent the elements of P , and the purpose of
the remaining ones is to preserve the comparabilities along the paths of
D(P ).

An example is shown in Figure 1. Elements 2, 3, 12, 8 form one of the
chains in this poset, so the four corresponding arcs are aligned in one
of the paths leading from the source to the sink of the diagram. In any
linear extension, these (and other) order constraints have to be respected,
e.g., (2, 3, 10)⊕ (7)⊕ (14, 5, 1)⊕ (4, 13)⊕ (6, 12)⊕ (11, 9, 8).

Figure 1. Arc diagram representation of a two-dimensional poset

Figure 2 is another example, whose one of linear extensions is (1, 3)⊕
(2, 7)⊕ (4, 9)⊕ (5, 10)⊕ (6, 11)⊕ (8).
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An algorithm to construct an adequate arc diagram for any finite poset
P was given by Sysło [21]. For the sake of completeness, it is repeated as
Algorithm 1.

Algorithm 1 Arc diagram for a poset P (see [21])

Input: A finite poset (P, <P ).
Output: D(P ), an arc diagram for P .
Step 1. Let PP = {Pred1, . . . , P redk}, SP = {Succ1, . . . , Succl}.

For each Predi let Ui =
⋂

p∈P redi
SuccP (p).

Step 2. {The vertices:}
Let x1, x2, . . . , xh correspond to those Predi, for which there exists

Succj = Ui.
Let yh+1, yh+2, . . . , yk correspond to remaining Predi.
Let zh+1, zh+2, . . . , zl correspond to remaining Succj .
Let yi = zi = xi for i = 1, 2, . . . , h.

Step 3. {The arcs:}
For each p ∈ P add a poset arc (yi, zj), where

Pi = PredP (p), Succj = SuccP (p).
For every p, q ∈ P , p 6= q,

if p is covered by q, and zj 6= yi, where
Succj = SuccP (p) and Predi = PredP (q),

then add a dummy arc (zj , yi).
Finally, remove transitive arcs provided that they are not poset arcs.

2.2. Greedy paths

Definition 2.2.1. In an arc diagram D(P ), a natural counterpart of a
greedy chain C (see Section 1.1) is a greedy path π(C) = (a1, a2, . . . , al),
l > 1, i.e., a path satisfying the following conditions:

• No vertex of π(C) except h(al) is a head of any arc other than aj ,
j = 0, 1, . . . , l − 1.

• aj is a poset arc, j = 1 . . . l.

• π(C) cannot be extended to a longer path satisfying the above two
conditions.

In the reverse direction, any greedy path π induces a greedy chain Cπ in
D(P ). Thus, an algorithm to generate a greedy linear extension can be
formulated in terms of an arc diagram for P , see Algorithm 2.
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Algorithm 2 Greedy linear extension

Input: D(P ), an arc diagram for P .
Output: L = C0 ⊕ C1 ⊕ . . .⊕ Cm, a linear extension of P .
Step 1. { Initialization }

D := D(P )
L := ∅

Step 2. while D 6= ∅

(⋆) find a greedy path π in D
L := L⊕ Cπ

D := D(P\L), an arc diagram for the remaining poset
Step 3. return L

It is easy to design an analogous procedure to enumerate all greedy
linear extensions, but initial experiments reveal quickly that it is a very
time-consuming and hence inefficient process.

However, it was proved in a series of papers [21–25], that the search
space can be significantly reduced, since for every poset the class of greedy
linear extensions can be further restricted to the class of very particular
greedy linear extensions which contains an optimal solution. These linear
extensions are composed from two special types of greedy chains, as
described below.

Definition 2.2.2. A strongly greedy path π is a greedy path satisfying:
• either h(π) is the sink of D(P ), or

• h(π) is the head of a poset arc b 6= al such that no path terminating
with b has a vertex incident with a dummy arc.

If D(P ) contains at least one strongly-greedy path π then there always
exists an optimal linear extension beginning with Cπ. If there are no
strongly-greedy paths in D(P ) then there is at least one semi-strongly

greedy path, i.e., a greedy path π such that
• π has a vertex which is a tail of a dummy arc but not a head of a

dummy arc.

In such case, when searching for an optimal linear extension, we have to
consider all semi-strongly greedy paths. It should be noted however that
not every greedy path is semi-strongly greedy, so all in all, the search
space is greatly reduced in comparison with an enumeration of all greedy
linear extensions.

The arc diagram in Figure 2 has three semi-strongly greedy paths
(1, 3), (1, 4) and (1, 5). The path (2) is greedy, but it is neither strongly
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Figure 2. Arc diagram representation of an interval order

greedy, nor semi-strongly greedy. But the diagram in Figure 1 has two
strongly greedy paths. The path (2, 3, 10) passes through a tail of a dummy
arc, so it would classify as semi-strongly greedy, but it also terminates
in the sink, so it is strongly greedy. In addition, the vertex terminating
(14, 5) terminates also (7), which has no vertex incident with a dummy
arc. So (14, 5) is strongly greedy.

In conclusion, we have the following Theorem 2.2.3.

Theorem 2.2.3 (Sysło [23]). Every poset has an optimal linear extension

L = C0⊕C1⊕. . .⊕Cm, called semi-strongly greedy, such that each chain Ci

is strongly greedy in Pi = P\
⋃

j<iCj or semi-strongly greedy in Pi if Pi

has no strongly gredy chains.

To design an algorithm generating one semi-strongly greedy linear
extension, we simply replace Step 2. (⋆) of Algorithm 2 with

(⋆) find a strongly greedy path π in D; if no such path has been

found then set π to any semi-strongly greedy path in D.

It is now also easy to devise an exact algorithm for the jump number
problem, which searches for optimal solution amongst all semi-strongly
greedy linear extensions via backtracking. For this purpose, in Step 2. (⋆)
of Algorithm 2, if there are no strongly greedy paths, then instead of
choosing an arbitrary semi-strongly greedy path we verify every one of
them, and apply the procedure recursively on every respective subposet.
We refer to this algorithm as OptLinExt [24] in subsequent sections, where
a new tabu search algorithm is proposed, based on these special linear
extensions. For a more in-depth treatment of the topic we refer the reader
to the articles of Sysło [21–25].
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2.3. The running time of OptLinExt

Let k denote the number of dummy arcs in D(P ). It was concluded
in [24] that the pessimistic time complexity of OptLinExt is of order
O(k! · poly(n, k)), since there are always at most k! semi-strongly greedy
linear extensions. That is, k is an important factor contributing to the
complexity of the problem.

We have performed an experiment to learn how many solutions are
generated in reality on posets for varying number of dummy arcs. For
a fixed poset size (n = 120 in the case of interval orders and n = 30
in the case of two-dimensional orders), and for each number of dummy
arcs k ∈ {5, 10, . . .}, a hundred of posets were randomized, having these
requested properties. To obtain posets with a given number of dummy
arcs in their arc diagrams, we use a genetic algorithm, with distance
from k in question being the optimality factor. The maximum number of
generated solutions amongst a group of posets with k dummy arcs was
recorded. This is plotted in Figure 3.

Figure 3. Total number of semi-strongly greedy linear extensions in sample
posets containing increasing number of dummy arcs

This series of trials helps to asses the magnitude of the search space,
browsed through by the tabu search algorithm described in Section 3.
Interestingly, it shows that the search space is typically greater in the
case of two-dimensional posets.

In the group of interval orders on 120 elements, containing 45 dummy
arcs, a poset was spotted having 6 510 338 semi-strongly greedy linear ex-
tensions, and the exact algorithm took over 5 hours to list them. Typically,
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the total number of solutions is lower. On the other hand, a 30-element
two-dimensional poset was found, with 45 dummy arcs in its diagram,
for which the search space contains 8 857 068 semi-strongly greedy linear
extensions. In this case, the execution of OptLinExt took 3 445 seconds,
benefitting from shorter time required to rebuild arc diagrams for no more
than 30 elements.

We note that the number of dummy arcs is lesser than n on interval
orders. This is not the case on two-dimensional posets. Thus, it is common
for two-dimensional orders to have a significantly greater search space of
semi-strongly greedy linear extensions than interval orders.

3. A tabu search algorithm to approximate

the jump number

Tabu search is a famous algorithmic technique of moving stepwise
towards an optimal solution of a computational problem. Its characteristic
feature is maintaining a list of moves not allowed at given iteration, called
a tabu list. The purpose of this list is the avoidance of repeatedly visiting
the same solutions. In recent years, tabu search has become a major
metaheuristic paradigm to approximate hard optimization problems. The
rationale behind this method can be found in the monograph of Glover
and Laguna [7].

In a tabu search algorithm, every solution is treated as a point in the
search space. Initially, there is some solution sol, and in each step we
move to another solution sol′ selected from a neighbourhood of sol. That
is, a fixed number of solutions is generated from sol, and the algorithm
follows to the best of them, provided it is not a tabu move. We now turn
to a description of our adaptation for the jump number problem.

3.1. An adaptation for the jump number problem

In our approach, every solution is some semi-strongly greedy linear
extension L of P . A neighbour solution is generated from L by splitting
it between some consecutive chains, and completing it according to the
semi-strongly greedy algorithm (see Section 2.2). A linear extension L is
represented as a list of chains, which in turn are lists of poset elements. So
if we decide to split L after kc chains, then L[0]⊕ . . .⊕L[kc− 1] becomes
the initial part of a neighbour L′. Our adaptation is shown as Algorithms
3 and 4.
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Algorithm 3 TS-CompleteLinExt

Input: A poset P , initial chains of some greedy linear extension
partialL = C0 ⊕ . . . ⊕ Cc−1, and the minimum number of jumps s⋆

found so far.
Output: L = C0 ⊕ . . .⊕ Cc−1 ⊕ Cc ⊕ . . .⊕ Cm, a linear extension of P .
Step 1. { Initialization }

D := D(P\partialL), an arc diagram for P\partialL
c := the number of chains in partialL
e := the number of poset elements in partialL
sLB := s(partialL) + 1 + sLB(D)
{ sLB(D) is the lower bound on s(P\partialL), Thm. 3.1.1 }

Step 2. if sLB > s⋆ then add (c, e) to TabuPositions, return ∅

else go to 3

Step 3. if D has no more dummies than MaxDummies then

remainingL := OptLinExt(P\partialL)
add (c, e) to TabuPositions
if s(partialL) + 1 + s(remainingL) > s⋆ then return ∅

else return partialL⊕ remainingL
else go to 4

Step 4. remainingL := ∅

{ complete the linear extension with s.-s.-greedy chains }
while D 6= ∅

S := strongly greedy paths in D
W := semi-strongly greedy paths in D
if |S| > 0 then

π := any path from S
remainingL := remainingL⊕ Cπ

if Cπ is the first chain in remainingL then

add (c, e) to TabuPositions
else { no strongly greedy paths }

if |W | = 1 then

π := the path from W , remainingL := remainingL⊕ Cπ

if Cπ is the first chain in remainingL then

add (c, e) to TabuPositions
else { several semi-strongly greedy paths }

if remainingL = ∅ {i.e, first choice after split} then

π := a random path from W\TabuPaths;
if not found then add (c, e) to TabuPositions, return ∅

{ π added to TabuPaths in Alg. 4}
else { not first chain after split } π := a random path from W
remainingL := remainingL⊕ Cπ

D := D(P\(partialL⊕ remainingL))
Step 5. return partialL⊕ remainingL
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Algorithm 4 TS-OptimizeJumpNumber

Input: A poset P , the number of iterations T .
Output: L = C0 ⊕ . . .⊕ Cm, a semi-strongly greedy linear extension of
P .
Step 1. { Initialization }

TabuPositions := ∅

TabuPaths := ∅

currentL := TS-CompleteLinExt(P,∅, |P |)
bestL := currentL
t := 0 {current iteration}

Step 2. while t 6 T
bestNeighbour = ∅

{ the split position for the best neighbour }
bestKC = 0, bestKE = 0
t := t + 1

Step 3. { select the best neighbour solution }
for n = 1 to CheckedNeighbours

kc := a random number less than |currentL|
ke := |L[0]|+ . . . + |L[kc− 1]|

{ such that (kc, ke) /∈ TabuPositions }
partialL := first kc chains of currentL
neighbourL := TS-CompleteLinExt(P, partialL,

s(bestLinExt))
if s(neighbourL) < s(bestNeighbour) then

bestNeighbour := neighbourL
bestKC := kc, bestKE := |neighbourL[0..bestKC − 1]| { = ke }

n := n + 1
Step 4. { move to the neighbour, update the result }

if bestNeighbour 6= ∅ then

currentL := bestNeighbour
update TabuPaths with (bestKC, bestKE,

currentL[bestKC − 1], currentL[bestKC])
if s(currentL) < s(bestL) then bestL := currentL

Step 5. return bestL
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We keep two tabu lists. TabuPositions is a cyclic list containing
TabuSize recent split positions. More precisely, if L is split after kc
chains, then the pair (kc, ke) may be added to TabuPositions, where
ke = |L[0]|+ . . . + |L[kc−1]| is the total number of poset elements in kept
chains. The second tabu list, TabuPaths, contains the greedy paths before
and after split positions. That is, whenever L is split after kc chains and
completed, we add to TabuPaths the quadruple (kc, ke, L[kc− 1], L[kc]).
This is motivated by fact that there are two major decision points when
generating a neighbour: firstly, L is split at some position kc; secondly,
one of available greedy paths in D(P\(L[0]⊕ . . .⊕ L[kc− 1])) is selected.
TabuPositions is a cyclic list, so after adding a new entry, the oldest one
is removed. On the other hand, TabuPaths is a static list, from which no
entry is removed in the process of the algorithm.

When generating or completing a linear extension, an obvious change
is made with respect to the original semi-strongly greedy algorithm:
a greedy path is not allowed to be selected, if it is contained in the
tabu list TabuPaths associated with current split position (Step 4 of
Algorithm 3). Further, while OptLinExt proceeds with greedy paths in
systematic manner, here we always select one at random. Obviously, the
implementation is also augmented to update both tabu lists in each
iteration.

A split position (kc, ke) is added to TabuPositions when the remain-
ing subposet has either a strongly greedy path, or only one semi-strongly
greedy path, or when its jump number is assessed as non-promising in
Step 2, or has been completed exactly in Step 3 (Algorithm 3). In other
words, (kc, ke) is not tabu, if there are still some unexplored choices of
greedy paths in the remaining subposet. Each choice of a greedy path is
recorded in TabuPaths.

The most time-consuming subprocedure is the construction of an arc
diagram for the remaining subposet whenever a greedy path is selected
and added to L. Therefore, it is important to quickly reject those solutions
whose number of jumps will not improve over the best one found in the
preceding course of the algorithm. Thus, when a split point is selected and
the diagram is reconstructed, we asses this choice by calculating the lower
bound for the jump number of the remaining poset. It may immediately
turn out that another split position should be randomized. We use a lower
bound given by the following theorem.
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Theorem 3.1.1 (Sysło [24]). If D(P ) is an arc diagram of a poset P
then

∑
v∈V max{0, indegP (v)−1} 6 s(P ), where indegP (v) is the number

of poset arcs coming into v.

If the number of dummy arcs in the diagram is less than some fixed
number MaxDummies, we apply OptLinExt to the remaining poset.

4. Benchmarks

In this section we benchmark the proposed tabu search algorithm on
two non-trivial classes of posets.

4.1. Interval orders

In the case of interval orders, we first run TS-OptimizeJumpNumber

and compare the quality of its solutions with optimal ones, obtained via
a reduction to the subgraph packing problem. We now explain how these
optimal values are computed.

The jump number of interval orders

Interval orders have a well-known characterization (see Fishburn [6])
which includes their canonical representation, that is, Algorithm 5.

Algorithm 5 Canonical representation of an interval order (see [16])

Input: (P, <P ), an interval order.
Output: {Ip = [l(p), r(p)]}p∈P , a compact family of intervals representing
(P, <P ).
Step 1. Sort (SP ,⊆): Succ1 ⊇ Succ2 ⊇ . . . ⊇ Succe = ∅.
Step 2. Sort (PP ,⊆): ∅ = Pred1 ⊆ Pred2 ⊆ . . . ⊆ Prede.
Step 3. Assign to each p ∈ P its left endpoint l(p) = i− 1 such that

Predi = PredP (p) and its right endpoint r(p) = j − 1
such that Succj = SuccP (p).

The obtained canonical intervals are then written into a table of size
e × e, where e = |PP | = |SP | (see Figure 4). For an interval [l(p), r(p)]
its corresponding element p is put in the cell in row l(p), column r(p).
Then, successive bumps of a linear extension may be read from the table
along a sequence of ordered pairs of the form T = {ti = (tcol, trow)}i=1,...,b,
called a bump sequence, where b 6 e− 1 is its length. Every bump t in T
satisfies tcol < trow and for every two consecutive bumps (s, t), srow 6 tcol.
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We say that the columns and rows outside T are omitted. The problem
is to generate a bump sequence of maximum cardinality, i.e., to decide,
which rows and columns should be omitted so as to obtain a realizable

bump sequence (so some L can be read along it). Given a realizable bump
sequence of length bT one applies a quick procedure (see [16]) to obtain a
linear extension with at least bT bumps.

Definition 4.1.1. Graph of intervals GI(P ) takes non-empty table cells
as vertices. Edges are added for vertices positioned consecutively in a
column or in a row (see Example 4.1.6 and Figure 4). A component C of
this graph is unsaturated if none of its vertices is situated on the boundary
of the table (i.e., in the lowest row or in the rightmost column, or on
the diagonal), nor any cell of C contains a multiple element, nor C itself
contains a cycle.

The number of unsaturated components is denoted by u and is typically
much smaller than e 6 n.

In [16], Mitas characterizes realizable bump sequences as follows.

Theorem 4.1.2. For a bump sequence T to be realizable it suffices that

each unsaturated component C satisfies one of two properties:

1) (P 1) C contains a vertex in a column or in a row which is omitted

by T .

2) (P 2) C contains an element [j, j +q] such that the columns j, . . . , j +
q − 1 and the rows j + 1, . . . , j + q are omitted by T .

Theorem 4.1.2 motivates the following definition.

Definition 4.1.3. In the graph of unsaturated components GU (P ) vertices
correspond to unsaturated components of GI(P ). An edge joins vC and vD

if component C contains a vertex in column i and component D contains
a vertex in row i or row i + 1.

Then, the properties P 1 and P 2 of bump sequences are mapped to edges
and certain odd cycles (called valid cycles) of GU (P ). With each edge
and with each valid cycle there is an associated set of pairs (coli, rowi) or
(coli, rowi+1), which when removed from a bump sequence result in (P1)
or (P2) being satisfied by the corresponding unsaturated components.
In this way the jump number problem is reduced to a subgraph packing
problem which is to find an optimal packing of vertex-disjoint edges and
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valid cycles. A packing involving v vertices and c cycles yields a bump
sequence with u− v+c

2 lost bumps, so v + c is to be maximized. We refer
the reader to the article of Mitas [16] and to a recent work of the first
named author [13,14] for a detailed explanation of this reduction.

The following result is a corollary from the previous work of Mitas
concerning approximation of the jump number.

Corollary 4.1.4. The jump number of an interval order P can be com-

puted in time O(2n · poly(n)).

Proof. By Mitas, for an optimal bump sequence there is an optimal
packing with respect to v+c

2 . It can be seen that the number of valid
cycles is bounded by e 6 n. Hence, it suffices to enumerate all packings of
vertex-disjoint valid cycles, and supplement each such packing H with a
maximum matching M on GU (P )\H. From all candidate packings H +M
we choose the one maximizing v+c

2 .

Remark 4.1.5. Corollary 4.1.4 is an alternative proof of a more general
fact, that the jump number can be computed in time dominated by 2n for
an arbitrary poset. Indeed, with any P one associates an instance of the
Traveling Salesman Problem, in which vertices correspond to the points
of P , and the distances (travel costs) are as follows:

• if p <P q then cpq = 0,

• if p 6<P q then cpq = 1,

• otherwise cpq =∞.

One more vertex d is added such that distances from d to the minimal
elements are 0 and distances from the maximal elements to d are 0.
Then, for every linear extension L there is a corresponding Hamiltonian
cycle from d to d. Total cost of each such cycle is equal to sL(P ) and
other permutations contain a connection of cost ∞. Hence, a dynamic
programming algorithm of Held and Karp [9] for TSP can be used to
compute s(P ) in time complexity O(2n · poly(n)).

Nonetheless, in our experiments it is beneficial to apply the algorithm
described in the proof of Corollary 4.1.4. In practice, due to typical struc-
ture of arising graphs, by incorporating simple heuristics, this algorithm
is of satisfactory speed. There is often a limited number of valid cycles
in GU (P ). Moreover, they usually overlap, so that an exhaustive search
algorithm may avoid many subsets of cycles, which have at least one
common vertex. Thus, the jump number can be computed in reasonable
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Figure 4. An interval order in canonical representation

time even for interval orders P having several hundred elements (i.e.,
within 10 seconds).

Example 4.1.6. An interval order in Figure 4 consists of 32 elements,
with graph of intervals forming 10 components, of which 8 are unsaturated.
Hence, its graph of unsaturated components (defined above) has 8 vertices,
and there are three valid cycles: one pentagon, and two triangles. An
optimal packing is composed of the triangle {{9, 22, 27}, {13, 21, 28},
{19, 20, 23, 24, 26}} and edges {{12}, {15, 16}}, {{10, 11}, {5, 6, 7, 8}}.
Corresponding bump sequence is visualised by arrows above the table,
denoting successive bumps of the optimal linear extension.

Random interval orders

Our first experiment was to verify the quality of solutions generated by
the proposed tabu search procedure on random interval orders. For each
pair (n, k), n ∈ {100, 150, 200}, k ∈ {10, 20, . . . , n

2 } a hundred of interval
orders were randomized, consisting of n elements and containing k dummy
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arcs in their arc diagrams. TS-OptimizeJumpNumber was started for every
such instance, with a limit of iterations equal to n. The algorithm was
aborted upon finding an optimal solution (known a priori by Corollary
4.1.4). Every time, an optimal linear extension has been found. Amongst
100-element posets it took at worst 45 iterations (10 seconds) for an
instance containing 40 dummies. Amongst 200-element posets the worst
found case required 42 iterations (47 seconds) and contained 60 dummies.
On average, optimum was found after 20 iterations.

Hard interval orders

In our previous research concerning approximation of the jump number
on interval orders [12], a vast amount of posets were recognized, which re-
sult in suboptimality of solutions generated by formerly known algorithms.
We use them to benchmark approximation algorithms of Felsner [5], Sysło
[25], and Mitas [16]. Consequently, we use them now to benchmark the
tabu search procedure proposed in Section 3. For example, the poset in
Figure 2 contains three semi-strongly greedy paths. It is unknown which
of them should be chosen in order to reach an optimal linear extension.
If many similar posets are joined by series compositions, then there are
very many decision points in a process of a greedy algorithm.

In our second experiment those hard interval orders were taken on
100, 150 and 200 elements. Samples of 10 results for each cardinality n are
reported in Tables 1, 2, 3. Each entry corresponds to one input instance P ,
and contains: the number of dummy arcs in P , its jump number s(P ), the
sequence of approximate solutions generated by TS-OptimizeJumpNumber,
the number of iterations, the running time in seconds, and the error
sAP X(P )−s(P )

s(P ) of the best found linear extension. If n iterations did not
suffice to find the optimum, the time of last improvement in the tabu
search process is also reported.

Observation 4.1.7. The proposed tabu search algorithm, applied to
n-element interval orders, generates linear extensions with no more jumps
than 105% of optimum, in n iterations.

4.2. Two-dimensional posets

The complexity status of the jump number problem on 2D posets
is unsettled. Even though it has not been classified as NP-hard, we are
attempting to solve the following Problem 4.2.1.
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d.a. s(P ) sAP X(P ) iterations time error

P1 28 22 30 . . . 22 32 7 s 0.0000

P2 32 30 39 . . . 30 48 24 s 0.0000

P3 29 24 29 . . . 24 89 25 s 0.0000

P4 32 26 33 . . . 26 75 19 s 0.0000

P5 28 21 25 . . . 21 18 7 s 0.0000

P6 26 22 26 . . . 22 20 6 s 0.0000

P7 31 28 32 . . . 28 26 10 s 0.0000

P8 32 26 34 . . . 26 17 8 s 0.0000

P9 35 29 35 . . . 30 100 (36) 17 s (8 s) 0.0345

P10 37 31 36 . . . 31 59 38 s 0.0000

Table 1. Performance of tabu search on 100-element interval orders

d.a. s(P ) sAP X(P ) iterations time error

P1 34 30 36 . . . 30 47 19 s 0.0000

P2 46 32 39 . . . 32 14 19 s 0.0000

P3 45 34 42 . . . 35 150 (26) 81 s (18 s) 0.0294

P4 50 44 55 . . . 46 150 (90) 123 s (85 s) 0.0455

P5 37 32 39 . . . 32 36 17 s 0.0000

P6 51 42 52 . . . 43 150 (27) 35 s 0.0238

P7 38 36 45 . . . 36 36 52 s 0.0000

P8 42 37 45 . . . 37 52 66 s 0.0000

P9 45 35 42 . . . 35 39 20 s 0.0000

P10 43 37 42 . . . 38 150 (29) 143 s (31 s) 0.0270

Table 2. Performance of tabu search on 150-element interval orders

d.a. s(P ) sAP X(P ) iterations time (s) error

P1 50 45 52 . . . 46 200 (164) 380 (336) 0.0222

P2 54 50 61 . . . 52 200 (36) 352 (101) 0.0400

P3 57 49 61 . . . 51 200 (13) 258 (40) 0.0408

P4 54 49 62 . . . 51 200 (158) 415 (362) 0.0408

P5 56 50 62 . . . 52 200 (16) 306 (43) 0.0400

P6 56 48 57 . . . 49 200 (126) 328 (228) 0.0208

P7 63 49 57 . . . 50 200 (66) 327 (132) 0.0204

P8 54 48 54 . . . 50 200 (6) 160 (10) 0.0417

P9 54 49 59 . . . 50 200 (73) 235 (109) 0.0204

P10 65 53 64 . . . 54 200 (50) 413 (144) 0.0189

Table 3. Performance of tabu search on 200-element interval orders
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Problem 4.2.1. Give an approximation algorithm for the jump number
problem on two-dimensional posets.

For this purpose it is useful to analyze the performance of general-
purpose algorithms on 2D orders. For n > 50 we usually fail to compute
s(P ) exactly in reasonable time. Hence, we compare each tabu search
result with a lower bound on the s(P ), inferred from the results of Ceroi.

The bump number of two-dimensional posets

As observed by Ceroi [4], for two-dimensional posets the jump number
can be interpreted as the problem of finding a maximum weight indepen-
dent set of a family of axis-parallel rectangles corresponding to certain
chains of P . Let P be a two-dimensional poset with realizer {L1, L2}.
With p ∈ P we associate a point (x, y) ∈ R

2 such that x is the position
of p in L1 and y is the position of p in L2. Then, each chain of P is
easily seen as a rectangle in R

2. Linear extensions are formed only from
chains C which are convex, i.e., ∀p <P q <P r ∈ P , if p ∈ C and r ∈ C
then q ∈ C. If by R(P ) = (VR, ER) we denote the graph of rectangle
intersections, in which a weight for each vertex v ↔ Cv is equal to its
bumps, i.e., w(v) = |Cv| − 1, then we have the following result.

Lemma 4.2.2 (Ceroi [4]). The maximum bump number b(P ) is equal to

the maximum weight of an independent set in R(P ).

Hence, to calculate b(P ) it suffices to solve an integer linear program
for maximum weight independent set (MWIS), max

∑
v w(v) · x(v) s.t.

x(v) ∈ {0, 1} for each v ∈ VR, and x(u) + x(v) 6 1 for each (u, v) ∈
ER. However, |VR| is usually greater than |P | and exact computation of
MWIS quickly becomes infeasible. Therefore, we only get an upper bound
bUB(P ) > b(P ) by solving an LP-relaxation of this formulation, i.e., with
0 6 x(v) 6 1 (and so a lower bound sLB(P ) = ⌈n− 1− bUB(P )⌉ for the
jump number).

Random two-dimensional posets

In the first experiment concerning two-dimensional posets n was set to
30. For 30-element posets optimal solution can be computed by OptLinExt.
On larger instances we have to resort to the LP-relaxation which provides
an upper bound for b(P ).

Tens of random 30-element two-dimensional orders were generated
containing a varied number of dummy arcs (from 10 to 50). First, s(P )
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b(P ) 16 17 18 17 16

bUB(P ) 17.25 18.66 19.0 17.5 17.5

b(P ) 17 19 18 16 17

bUB(P ) 18.33 19.75 19.88 17.33 18.11

Table 4. Discrepancy between the bump number and its LP relaxation, n = 30

d.a. |VR| bUB(P ) sLB(P ) sAP X(P ) error

P1 84 341 41.5 18 23 . . . 19 0.0556

P2 81 339 39.5 20 25 . . . 22 0.1000

P3 74 375 38.5 21 24 . . . 22 0.0476

P4 66 349 41.5 18 23 . . . 20 0.1111

P5 100 337 40.75 19 22 . . . 19 0.0000

P6 90 297 39.125 20 26 . . . 23 0.1500

Table 5. Performance of tabu search on 60-element 2D posets

was computed. Then, the tabu search procedure was started with a limit
of n iterations. Optimum was found by TS-OptimizeJumpNumber in all
cases beside one poset with 50 dummies, for which a linear extension was
generated having 12 jumps instead of 11. On all inputs, the algorithm
required at most 21 iterations and no more than 2 seconds.

By this occasion, b(P ) was additionally compared with the linear
programming relaxation bUB(P ) of the equivalent MWIS problem. Some
typical discrepancies between these values are shown in Table 4.2. The
number of vertices in R(P ), i.e., the number of convex chains in P , varied
from 96 to 138.

In the next experiment, 150 posets were generated with n = 60. This
time, the approximated number of jumps was compared only with the
lower bound obtained via an LP relaxation of MWIS on R(P ), that is,
sLB(P ) = ⌈n− 1− bUB(P )⌉ . The results for a sample of 6 posets are
reported in Table 5.

An average error of sAP X(P ), when compared against sLB(P ), was
0.12. In the worst spotted case, it was 0.29. The number of dummy arcs
in these posets ranged from 60 to 100. The number of vertices in R(P )
ranged from 290 to 403. The running time was always below 12 seconds.

Finally, 30 two-dimensional posets with n = 90 were taken. The error
of sAP X obtained with n iterations of our algorithm was on average 0.15
and at most 0.29. The time of optimization was always below 45 seconds
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d.a. |VR| bUB(P ) sLB(P ) sAP X(P ) error

P1 166 593 63.57 26 35 . . . 29 0.1154

P2 150 566 62.44 27 33 . . . 30 0.1111

P3 158 570 60.96 29 38 . . . 31 0.0690

P4 167 599 61.58 28 39 . . . 36 0.2857

P5 163 631 63.00 26 33 . . . 29 0.1154

P6 173 557 60.17 29 39 . . . 34 0.1724

Table 6. Performance of tabu search on 90-element 2D posets

(it took much longer to compute the lower bound sLB(P ) with linear
programming). 6 representative cases are reported in Table 6.

Observation 4.2.3. The proposed tabu search algorithm, applied to
n-element 2D posets, generates linear extensions with no more jumps
than 130% of optimum, in n iterations.

The parameters of the tabu search in all the benchmarks were set as
follows: TabuSize = 10, CheckedNeighbours = 7, MaxDummies = 15.
These values have been established experimentally as a good compromise
between the running time and convergence of the algorithm.

The running time of our tabu search algorithm could be improved by
incorporating more involved methods to rebuild an arc diagram in every
step. For instance, it was observed in [25] that in the case of interval
orders, an arc diagram can be generated with Algorithm 5. This is much
faster than Algorithm 1. We have tried this construction and it turned
out that the running times reported in Section 4.1 would decrease by a
factor of 3.

All the experiments have been performed on a 64-bit computer with
Intel® Core™ i5-2500K CPU clocked at 3.30 GHz, and 24 GB of RAM.
The algorithms have been implemented in the C# language for the .NET
Framework 4. For linear programming, the LPSolve function from the
Optimization package of Maple™ was employed.

4.3. An approximation ratio for two-dimensional posets

A way to measure the quality of approximation algorithms is to assess
their approximation ratio.

Definition 4.3.1. An algorithm A is an ǫ-approximation algorithm
(with ǫ > 1) for a problem P if it runs in time polynomial in the input
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size and always generates a solution of value APX >
OPT

ǫ
when P is a

maximization problem, or of cost APX 6 ǫOPT when P is a minimization
problem.

We now look again at the jump number problem on 2D orders via
the Ceroi reduction, described in Lemma 4.2.2 of Section 4.2. The bump
maximization problem can be solved by computing a maximum weight
independent set of rectangles in R(P ) = (VR, ER). Some approximation
algorithms are known for this problem.

Theorem 4.3.2 (Agarwal, van Kreveld, Suri [1]). There exists a log |V |-
approximation algorithm for the maximum weight independent set problem

on intersection graphs of rectangles.

The original paper of Agarwal et al. focuses on maximum independent
set problem, but their algorithm extends to the weighted variant in a
straightforward way, see [11, pp. 136–140]. All logarithms are in base 2.

So this implies an approximation of the bump number. Can this result
be used to approximate the jump number, too? We claim that the answer
is positive.

Theorem 4.3.3. There exists an (n/ log log n)-approximation algorithm

for the jump number of two-dimensional posets.

In the proof, we use the following result.

Theorem 4.3.4 (McCartin [15]). There exists an algorithm to decide

for any poset P whether s(P ) 6 h, running in time O(h2h!n).

Proof of Theorem 4.3.3. The algorithm computes an approximate bump
number bA(P ) > b(P )

log |V | , where |V | is the number of vertices in G(R). We

obtain an approximate jump number sA(P ) = n − 1 − bA(P ), so the
approximation ratio is

sA(P )

s(P )
6

n− 1− b(P )
log |V |

n− 1− b(P )
.

We verify when this ratio is worse than n
log log n

:

n− 1− b(P )
log |V |

n− 1− b(P )
>

n

log log n
,

log log n · (n− 1−
b(P )

log |V |
) > n · s(P ),
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n · s(P ) < (n− 1) · log log n−
log log n · b(P )

log |V |
< n · log log n,

s(P ) < log log n.

When the jump number is very small, i.e., s(P ) < log log n, the algo-
rithm of Agarwal et al. [1] does not provide the claimed approximation of
s(P ), but in such cases we may compute the jump number to optimality
by the McCartin algorithm [15] in polynomial time, since one quickly
verifies that (log log n)! < n.

5. Conclusions and future work

In this paper a new tabu search algorithm for the jump number
problem has been proposed and benchmarked. There are some remarks
concerning the approximation, exact computation and hardness of the
problem.

The results of our algorithm on interval orders have been compared
with optimal values. The experiments reveal that in relatively short time
linear extensions can be obtained with no more jumps than 105% of s(P ).
It is easy to spot interval orders for which a 50% suboptimal semi-strongly
greedy linear extension exists [12]. Hence, it is definitely worth to apply
tabu search to improve the quality of generated solutions.

Previously, no approximation algorithms have been given for the class
of two-dimensional posets. Our work is an attempt to fulfill this demand.
In comparison with a lower bound on the jump number, linear extensions
generated by our tabu search procedure turn out to be at most 30%
suboptimal. Since the LP relaxation is usually inexact, the real error is
probably lower. We have proved by other techniques that there is an
(n/ log log n)-approximation algorithm for the jump number problem on
two-dimensional posets We hypothesize that even stronger approximation
ratio could be proved for this class, perhaps by a detailed analysis of the
semi-strongly greedy algorithm. Addressing this questions is our main
objective in the future work. More precisely, it is conceivable that such
an algorithm may be based on the rectangle intersection MWIS lower
bound.

We have also empirically verified the number of all linear extensions
generated by the exact algorithm OptLinExt of Sysło. It turns out that
their number is far from the theoretical bound of k!. Considering that
we have proved, based on the results of Mitas, that the complexity of
computing s(P ) on interval orders is dominated by 2n, and is lower in
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practice, we believe that an estimation of the running time of OptLinExt

can be improved in this class. Another question for further research is,
whether or not the time complexity bound of this algorithm can be lowered
on arbitrary posets.

The complexity status of computing s(P ) on two dimensional orders
is open. Our experiments show that the space of semi-strongly greedy
linear extensions is explicitly greater than in the case of interval orders.
Hence, from this point of view, the class of two dimensional posets seems
harder than interval orders for the jump number problem.
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