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Introduction

In this paper we consider a family of associative algebras, given via gen-
erators and relations. Namely, each algebra is generated by finite set of
idempotents {pi; 1 ≤ i ≤ N}, where for each pair of i, j (i 6= j) either

pipj = pjpi = 0 (1)

or
pipjpi = τpi and pjpipj = τpj (2)

for some nonzero τ = τ(i, j) ∈ C. One can see that, equipped with
unity, this algebra becomes a quotient of Temperley-Lieb algebra, where
we have commutation pipj = pjpi instead of orthogonality (1).

*-representations of some algebras defined as above were studied in
[1, 2].

It will be useful to associate a non-oriented graph Γ with N vertices to
the algebra above, where vertices i and j are connected by an edge if and
only if (2) holds. So, there is no edge between the vertices correspondent
to the orthogonal generating idempotents, and there is exactly one edge
otherwise. We denote by Γ0 and Γ1 the sets of vertices and edges of the
graph Γ correspondingly, and consider a nonzero map τ : Γ1 −→ C\{0}
on edges, where for the edge α between i and j one has τ(α) = τ(i, j) from
(2). So, the pair (Γ, τ), consisting of a graph, Γ, and a map, τ , as above,
defines an associative algebra. We denote this algebra R = R(Γ, τ). Note,
that R may not contain the unit element 1.

As the generators corresponding to non-connected vertices are orthog-
onal, R(Γ, τ) is a direct sum of algebras, corresponding to the connected
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components of the graph Γ, i. e. R(Γ, τ) =
⊕

Γ
′∈π0(Γ)

R(Γ
′

, τ |
Γ
′

1

), where

π0(Γ) is a set of connected components of graph Γ. Thus we can always
assume Γ to be a connected graph.

In this paper we establish some results on the structure of R(Γ, τ).
Section 1 contains a series of technical propositions, which are applied
in next sections. We construct a homomorphism from R to the algebra
of N × N matrices over a certain subalgebra K ⊂ R. It is known that
R(Γ, τ) is finite dimensional if and only if Γ is a tree ([3]). In Section 2
we consider this case and prove

Theorem 1. If Γ is a tree then the ring R is either isomorphic to MN (C)
or the center of R is Z(R) = {r ∈ R;Rr = rR = 0}.

There exist a polynomial Q in |Γ1| variables such that R ∼= MN (C)
if and only if Q(τ(Γ1)) 6= 0. The polynomial Q depends on the graph Γ
only.

An isomorphism with MN (C) was obtained by author in [4] for some
special τ .

In Section 3 we consider the case when Γ contains exactly one cycle.
In particular, all correspondent rings are PI-rings (Corollary 2).

Denote AnnRR = {r ∈ R; rR = 0} — the left annihilator of R. We
prove

Theorem 2. If Γ is an arbitrary connected graph with exactly one cycle
then there exist a polynomial P such that Z(R/AnnRR) is isomorphic to
the principal ideal in C[x, x−1] generated by P (x), i.e.

Z(R/AnnRR) ∼= C[x, x−1]P (x).

There are inclusions

MN (Z(R/AnnRR)) ⊂ R/AnnRR ⊂ MN (C[x, x−1]),

which are both proper if P is not a constant.

In particular Z(R/AnnRR) is always a domain. In Section 3 we also
present an algorithm for finding the polynomial P . Note that if P = 0
then Z(R) ⊂ AnnRR, thus Z(R) = {r ∈ R;Rr = rR = 0}.

In Section 4 we apply Theorem 2 to the case of a cyclic graph Γ. In this
case AnnRR = {0} (Proposition 8). Let nonzero numbers τ0, . . . , τN−1 be
arranged sequentially on edges along the cycle Γ. Consider the following
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matrix over C[x, x−1]

A =




1 τ0 0 . . . x
1 1 τ1 . . . 0
0 1 1 . . . 0
...

...
...

...
...

0 0 0 . . . τN−2
τN−1

x
0 0 . . . 1




, (3)

Put

α(τ) =
detA(1) + (−1)N (1 + τ0 . . . τN−1)√

τ0 . . . τN−1
, (4)

where one can take any value of the square root. Note that detA is
invariant under the cyclic shifts of numbers τi, so α(τ) is invariant under
such shifts as well.

Theorem 3. If Γ is a cycle then the center Z(R) of R = R(Γ, τ) is
isomorphic to the principal ideal in C[x, x−1] generated by either x+ 1

x
+

α(τ) or x+ 1. The second alternative holds if and only if α(τ) = ±2 and
rankA((−1)N−1sign (α(τ))

√
τ0 . . . τN−1) = N − 2.

Note that any N − 2 consequtive columns of A(x) are linearly inde-
pendent for any x. Thus rankA(x) ≥ N − 2.

In the first case the center of R, equipped with the unity 1, is isomor-
phic to the coordinate ring of the affine algebraic variety defined by

z2 + y2 + (α− y)yz = 0, (5)

where α = α(τ). One can find the proof in Section 4. In the second
case the center, equipped with 1, is isomorphic to C[x, x−1], i.e. to the
coordinate ring of yz = 1.

The following is a consequence of Theorems 2 and 3, Amitsur-Levitsky
Theorem (see [6]) and Propositions 9, 10 together.

Corollary 1. If Γ is a cycle then
(i) R(Γ, τ) is not isomorphic to a matrix algebra over a commutative

algebra;
(ii) the following standard identity (S2N -identity) holds in R = R(Γ, τ):

∑

σ∈S2N

(−1)deg σrσ(1) . . . rσ(2N) = 0

for any r1, . . . , r2N ∈ R. Moreover, m = 2N is the minimal m, for which
the Sm-identity in R holds;
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(iii) the rings, corresponding to cycles of different length N1 6= N2,
are non-isomorphic;

(iv) the rings R = R(Γ, τ), corresponding to different maps τ , are
non-isomorphic if the absolute values of the numbers α(τ) are different;

(v) the rings R = R(Γ, τ) with α(τ) = ±2 and

rankA((−1)N−1sign (α(τ))
√
τ0 . . . τN−1) = N − 2

are non-isomorphic to the rings with

rankA((−1)N−1sign (α(τ))
√
τ0 . . . τN−1) > N − 2.

Note that in all our considerations C can be replaced by any alge-
braically closed field of characteristic 0.

1. An embedding into matrices

Recall that the graph Γ is a connected graph, τ : Γ1 −→ C \ {0}, and
R = R(Γ, τ). Let N = |Γ0| be the number of generating idempotents in
the definition of R. One can check that the relations (1) and (2) together
with p2

i = pi for all i ∈ Γ0 form a Groebner basis, so the products
pi1 . . . pim along the pathes in Γ without loops of length 2 form a linear
basis inR (see [3]). For details about the Groebner basis and the Diamond
lemma see for example [5].

We are going to consider the subalgebra K = piRpi of R. Note that
pi is the unity in K.

Proposition 1. Subalgebras piRpi and pjRpj are isomorphic for any i, j.

Proof. Consider a path from i to j in Γ, let it go through the vertices
pi = pi0 , pi1 , . . . , pim = pj and αj ∈ Γ1 be the edge from ij−1 to ij .
Consider the elements

w =
pi0pi1 . . . pim√
τ(α1) . . . τ(αm)

, v =
pimpim−1

. . . pi0√
τ(α1) . . . τ(αm)

.

Then wv = pi = 1piRpi
, vw = pj = 1pjRpj

, and the map from piRpi to
pjRpj , sending x to vxw, is an isomorphism.

Proposition 2. K = C if the graph Γ is a tree; K = C[x, x−1] if Γ
has exactly one cycle; K contains a free subalgebra of two generators
otherwise.
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Proof. piRpi is spanned by the products pipj1 . . . pjmpi along the pathes in
Γ without loops of length 2, starting and ending at i. In the case, when Γ
is a tree, there is only one such path, and it is the trivial path at the vertex
i. In the case, when Γ has exactly one cycle, we can take i to be a vertex
of this cycle. Then piRpi is spanned by pi, powers of w = pipj1 . . . pjmpi,
where the product is along the cycle, and powers of v = pipjm . . . pj1pi,
where the product is along the cycle but in the different direction. But
wv = λpi for some λ ∈ C, which proves the statement in this case. For
a graph with two or more cycles we can take such a products w1 and w2

along the pathes containing two different cycles, each of which doesn’t
contain another one, correspondently. Then for any word s in alphabet
{w1, w2} we can take the path in Γ which is a combination of copies of
two pathes above in correspondent order. Let γ(s) be the path obtained
by consequtive removing of loops of length 2 from this path. The path
γ(s) goes through these two cycles in the same order as before removing
of loops of length 2, so it uniquely depends on s. The product s is a
multiple of the element of linear basis in R corresponding to the path
γ(s). Thus all such products s are linearly independent, which proves
the statement in this case.

We will need the following

Proposition 3. {r ∈ R; rRpi = 0} = AnnRR for any i ∈ Γ0.

Proof. Denote the left hand side by AnnR(Rpi). Obviously, AnnRR ⊂
AnnR(Rpi). To show the reverse inclusion let r ∈ AnnR(Rpi). Then
0 = rRpiR = rR because pj ∈ RpiR for any j ∈ Γ0.

Now, we construct an embedding of R/AnnRR into N ×N matrices
over K.

Proposition 4. There exist a homomorphism φ : R −→ MN (K) with
Kerφ = AnnRR.

Proof. Consider any i ∈ Γ0. Note that Rpi =
⊕

j∈Γ0
pjRpi in the cat-

egory Mod − piRpi of right piRpi modules. Each component of the
direct sum above is a free piRpi module of rank 1. Indeed, the products
pjpk1

. . . pkm
pi along the pathes from j to i span pjRpi. Consider any

two such products: s1 = pjpk1
. . . pkm

pi and s2 = pjpl1 . . . pltpi. Then

w = pipkm
. . . pk1

pjpl1 . . . pltpi

belongs to piRpi, and s2 = λs1w for some λ ∈ C. Thus pjRpi is spanned
by s1piRpi. To show it is free choose an arbitrary s = pjpk1

. . . pkm
pi



Jo
u
rn

al
 A

lg
eb

ra
 D

is
cr

et
e 

M
at

h
.M. Vlasenko 149

and consider the homomorphism ψ : piRpi −→ pjRpj of right piRpi

modules, sending arbitrary w ∈ piRpi to sw. Then Kerψ = {0} because
pipkm

. . . pk1
pjψ(w) = λw for some nonzero λ ∈ C.

So, Rpi is a free K-module of rank N .

As Rpi belongs to the category of bimodules R − Mod − piRpi, we
have R/AnnR(Rpi) ⊂ End(Rpi)piRpi

∼= MN (K). Proof now follows from
Proposition 3.

An algebra is called a PI-algebra if some polynomial identity holds in
it, see for example [6, 7].

Corollary 2. R is a PI-algebra if and only if Γ contains not more than
one cycle.

Proof. If Γ contains more than one cycle, the statement follows from
Proposition 2. Otherwise K is commutative and the S2N identity holds
in MN (K) due to teh Amitsur-Levitsky Theorem ([6]). Then, for every
r1, . . . , r2N ∈ R, we have S2N (r1, . . . , r2N ) ∈ AnnRR due to Proposition
4, so the identity

S2N (r1, . . . , r2N )r1 = 0

holds in R.

The following proposition describes the image of the homomorphism
φ from Proposition 4.

Proposition 5. (i)The centralizer of φ(R) in MN (K) is included into
the diagonal matrices with all diagonal elements conjugate in K.

(ii) R/AnnRR ∼= MN (K)φ(
∑

i∈Γ0
pi).

Proof. Choose an arbitrary vertex in Γ0, which we can assume is 0. We
can identify K ∼= p0Rp0, and then Rp0 is a free right K-module of rank
N , as it was shown in proposition 4. Choose a K-basis {ei, i ∈ Γ0} in
Rp0, where ei = pipi1 . . . pimp0 is a product along some path, connecting i
with 0. In this basis φ(pj) is a matrix with some elements {wj1, . . . , wjN}
of K in the j-th row and all other rows equal to zero. Note that wjj = 1,
wji is an invertible element of K if there is an edge between j and i in Γ,
and wji = 0 otherwise. Now (i) follows. Indeed, consider B ∈ MN (K)
commuting with φ(R). If B = (bij) commutes with φ(pk), we have that
all elements in the k-th column of B, except the diagonal ones, vanish,
and bjj = wjibiiw

−1
ji for all vertices i connected to j by an edge in Γ.
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To prove (ii), consider the following matrices P j
i ∈ MN (K):

P j
i =




0 0 . . . 0
...

...
...

wi1 wi2 . . . wiN

...
...

...
0 0 . . . 0



, j, i ∈ Γ0,

where the only nonzero row in P j
i is the j-th row. So, φ(pj) = P j

j . It

suffices to show that φ(pjRpi) = KP j
i . Consider any product pi1 . . . pim .

One can prove by induction on m, that

φ(pi1 . . . pim) = wi1i2 . . . wim−1imP
i1
im
.

So, φ(pjRpi) ⊂ KP j
i . For each ei = pipi1 . . . pimp0 from the basis consider

the element ri = p0pim . . . pi1pi. Then riei = λip0 for some nonzero

λi ∈ C. Take an arbitrary β ∈ p0Rp0, and let v =
ejβri

λi
. Then v ∈ pjRpi,

and vei = ejβ. Thus the matrix φ(v) has an element β on the intersection

of the j-th row and the i− th column, which implies φ(v) = βP j
i . β ∈ K

was arbitrary, and this completes the proof.

The following proposition gives a simple necessary and sufficient con-
dition for R to be a matrix algebra over K.

Proposition 6. R ∼= MN (K) if and only if R contains a unity.

Proof. MN (K) contains a unity as K contains a unity. Thus if R ∼=
MN (K) then R contains a unity.

If R contains 1 then AnnRR = {0}, so we have a monomorphism
φ : R −→ End(Rpi)piRpi

.
Consider the homomorphism ψ : End(Rpi)piRpi

−→ End(RpiR)R

given by ψ(η)(apib) = η(api)b for η ∈ End(Rpi)piRpi
and a, b ∈ R. Let

us show that it is correctly defined. Consider some
∑

k akpibk = 0, where
ak, bk ∈ R. We need

∑
k η(akpi)bk = 0. Note that R =

⊕
j Rpj , thus

we can consider only the case bk ∈ Rpj for each k. So, bk = bkpj .
Consider s1 = pjpk1

. . . pkm
pi, s2 = pipkm

. . . pk1
pj , then s1s2 = λpj

for some nonzero λ ∈ C. Then λ
∑

k η(akpi)bk =
∑

k η(akpi)bks1s2 =
η((

∑
k akpibk)s1)s2 = 0.

Now we show that ψ is a monomorphism. Indeed, if η(api) 6= 0, then
ψ(η)(api) = η(api) 6= 0. Note that RpiR = R because pj ∈ RpiR for
each j ∈ Γ0. There is a natural isomorphism ξ : EndRR −→ R given by
ξ(η) = η(1).

Note that ξ◦ψ◦φ is an identity on R. So, φ is an isomorphism. Recall
that End(Rpi)piRpi

∼= MN (K) from the proof of Proposition 4.
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In Sections 2-4 we consider examples in which K is commutative,
especially when the graph Γ is a tree and when Γ contains exactly one
cycle.

Proposition 7. If K is commutative, then the center Z = Z(R/AnnRR)
is isomorphic to an ideal in K, and there is an inclusion

MN (Z) ⊂ R/AnnRR.

Moreover, either the inclusion above is proper or Z = K and R/AnnRR ∼=
MN (K).

Proof. As K is commutative, the conjugate elements in it are equal.
Thus, from part (i) of Proposition 5 we have that the centralizer of φ(R)
coincides with Z(MN (K)) = K. So, Z ∼= φ(R) ∩ K as R/AnnRR ∼=
φ(R). φ(R) ∩K is an ideal in K and MN (φ(R) ∩K) ⊂ φ(R) due to the
part (ii), because φ(R) is right ideal in MN (K).

If MN (φ(R) ∩ K) = φ(R), then 1 ∈ φ(R) ∩ K. Indeed, the matrix
φ(pi) contains 1 on the i-th position of diagonal.

2. The finite-dimensional case

Consider the case when the graph Γ is a tree with N vertices.

Proof of theorem 1. Note that R has the linear dimension N2. Indeed,
R is spanned by the products of the generating idempotents along the
pathes without loops, and there is exactly one path from i to j for each
i, j ∈ Γ0.

Now K = C due to Proposition 2. As Z(R/AnnRR) is isomorphic to
an ideal in C by Proposition 7, we have two possibilities: Z(R/AnnRR) =
{0} or Z(R/AnnRR) = C.

In the first case we have AnnRR 6= {0}. Indeed, dimR = N2 =
dimMN (C) so if AnnRR = {0} then R = MN (C) and Z(R) = C.
Thus R is non semisimple. Z(R) ⊂ AnnRR in this case as well, thus
Z(R) = {r ∈ R;Rr = rR = 0}.

In the second case R = MN (C) due to the equality of their dimensions
and Proposition 7.

Note that, due to Proposition 5, the first case is possible if and only
if detφ(

∑
i∈Γ0

pi) = 0. Fixing some vertex 0 ∈ Γ0 and taking the same
basis {ei; i ∈ Γ0} in Rp0 as in the proof of Proposition 5, we will get that
all entries of the matrix φ(

∑
i∈Γ0

pi) are either equal to 0 or to 1 or to
τ(γ) for some γ ∈ Γ1. So we can put Q(τ(Γ1)) = detφ(

∑
i∈Γ0

pi) as it is
a polynomial in {τ(γ); γ ∈ Γ1}.
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Consider a simple example: let Γ consist of two vertices 1 and 2,
connected by an edge γ and τ(γ) = τ on it. Now R = R(Γ, τ) =
C〈p1, p2|p2

1 = p1, p
2
2 = p2, p1p2p1 = τp1, p2p1p2 = τp2〉 with the linear

basis {p1, p2, p1p2, p2p1}. Consider the basis e1 = p1 and e2 = p2p1 in
Rp1. Then

φ(p1) =

(
1 τ
0 0

)
, φ(p2) =

(
0 0
1 1

)
.

detφ(p1 + p2) = 1 − τ , so either τ = 1 or

φ(p1 + p2)
−1 =

1

1 − τ

(
1 −τ
−1 1

)
=

1

1 − τ
φ(2 − p1 − p2).

Thus, if τ 6= 1 then there is unity 1 in R given by

1 =
(2 − p1 − p2)(p1 + p2)

1 − τ
=
p1 + p2 − p1p2 − p2p1

1 − τ
,

and R ∼= M2(C). If τ = 1, then one can directly check that

Z(R) = C(p1 + p2 − p1p2 − p2p1),

AnnRR = C(p1 − p1p2) + C(p2 − p2p1),

R/AnnRR ∼=
{(

a a
b b

)
; a, b ∈ C

}
⊂ M2(C).

The Jacobson radical Rad(S) of S = R/AnnRR is C

(
1 1
−1 −1

)
, and

S/Rad(S) ∼= C.

3. Description of the center for a graph with one cycle

Consider the case when Γ contains exactly one cycle. Then due to propo-
sition 2 we have K = C[x, x−1], so it is an Euclidean domain. Then the
greatest common divisor (g.c.d.) is defined for any finite set of elements
of K (up to the multiplication by an invertible element). We write a ∼ b
if a = cb for some invertible element c. Recall that all invertible elements
are of the form λxn for 0 6= λ ∈ C and some integer n.

Consider the matrix A = φ(
∑

i∈Γ0
pi), where φ is the homomorphism

from Proposition 4. Let A∨
ij be the (N−1)×(N−1) matrix, obtained from

A by deleting its i-th row and j-th column. Let A−
ij = (−1)i+j det(A∨

ji)

and A− = (A−
ij) be a matrix from MN (K). Consider a ∼ g.c.d.(A−

ij) if

some A−
ij 6= 0, and take any nonzero element a otherwise. Then a divides

detA as A−A = (detA)1MN (K), where the left hand side is divisible by a.
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We will prove that the center of φ(R) is the principal ideal in C[x, x−1]
generated by det A

a
. Then we can take a polynomial P ∼ det A

a
in the

statement of theorem 2, and

Proof of Theorem 2. The second part of the statement is a consequence
of the first part together with propositions 7 and 4. So it remains to
prove that the center of φ(R) is a principal ideal in C[x, x−1] generated
by det A

a
, and take a polynomial P ∼ det A

a
defined above.

Z(φ(R)) is isomorphic to an ideal in K due to Proposition 7, and φ(R)
is right ideal in MN (K), generated by the matrix A defined above. Let
β ∈ K be such that β1MN (K) lies in φ(R). Then there exists matrix B ∈
MN (K), such that BA = β1MN (K). If β 6= 0, then for all x such that

β(x) 6= 0 we have 1
β(x)B(x)A(x) = 1MN (C), so detA(x) = (detA)(x) 6= 0.

Thus if detA = 0 then Z(φ(R)) = {0} which proves the theorem in this
case. Let detA 6= 0. Consider F — the field of fractions of K, i.e. the
field of rational functions in x. If two such functions coincide in an infinite
number of points they are equal. Consider the matrices 1

det A
A− and 1

β
B

from MN (F ). They are equal in MN (C) for all nonzero values of x
except may be the roots of detA and β. Thus B = β

det A
A− in MN (F ).

But B ∈ MN (K). So, we have that det A
a

divides β.

Conversely, if some β = cdet A
a

, then β1MN (K) = c
a
A−A ∈ φ(R).

4. An example with a cyclic graph

Consider Γ to be a cycle with N vertices 0, . . . , N − 1, and the number
τi on the edge between i and i + 1 (where N means 0). The following
proposition can be applied in this case.

Proposition 8. If every vertex in Γ has degree greater than 1, than
AnnRR = {0}.

Proof. Suppose that this is not the case. Let y ∈ AnnRR be nonzero.
Consider the following order on the idempotents generating R: p0 <
p1 < · · · < pN−1. Then the homogenous lexicographical order on the
monomials is defined. Let pi1 . . . pim be the highest monomial in y. As
im ∈ Γ0 has degree greater than 1, there exists a vertex k ∈ Γ0, k 6= pim−1

with the edge between k and pim . Then z = ypk is again nonzero, because
the highest monomial of z will be pi1 . . . pimpk.

Recall the matrix A, defined by (3), and the number α(τ), defined by
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(4), in the introduction. Denote

Fm(x1, . . . , xm) = det




1 x1 0 . . . 0
1 1 x2 . . . 0
0 1 1 . . . 0
...

...
...

...
...

0 0 0 . . . xm

0 0 0 . . . 1




.

Proof of the Theorem 3. We use notation of the previous sections. Put
τ0 . . . τN−1 = T . We construct a homomorphism φ : R −→
MN (C[x, x−1]) taking ei = pipi−1 . . . p0 as a basis in Rp0 over p0Rp0

and x = p0pn−1 . . . p1p0 ∈ p0Rp0. φ is now a monomorphism due to
Proposition 8. One can calculate that φ(

∑
i∈Γ0

pi) equals

A =




1 τ0 0 . . . x
1 1 τ1 . . . 0
0 1 1 . . . 0
...

...
...

...
...

0 0 0 . . . τN−2
τN−1

x
0 0 . . . 1




,

defined by (3). Then

detA = FN−2(τ1, . . . , τN−2) − τ0FN−3(τ2, . . . , τN−2)−
− τN−1FN−3(τ1, . . . , τN−3) + (−1)N−1(x+ Tx−1).

So detA is nonzero and detA ∼ x2 +γx+T where γ = (−1)N detA(1)+
T+1. The center of φ(R) is isomorphic to the ideal in C[x, x−1] generated
by det A

a
for some a ∼ g.c.d.(A−

ij) by Theorem 2. As

A−
N1 = (−1)N−1 − τN−1FN−3(τ1, . . . , τN−3)

1

x

and

A−
1N = (−1)N−1 T

τN−1
− FN−3(τ1, . . . , τN−3)x,

so either FN−3(τ1, . . . , τN−3) = 0 and a ∼ 1, or

τN−1A
−
1N − TA−

N1

τN−1FN−3(τ1, . . . , τN−3)
=
T

x
− x

is divisible by a. Consider the second case. We have that a divides both
x2 + γx+ T ∼ detA and x2 − T ∼ T

x
− x. Let us fix a value of

√
T the
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same as the one from (4). One can see that either a ∼ 1 or a ∼ x−
√
T

or a ∼ x+
√
T as T is nonzero.

In cases a ∼ 1 we have that x+ T
x

+γ generates Z(φ(R)) in C[x, x−1],

and, taking automorphism of C[x, x−1] sending x to (−1)N
√
Tx, we get

an isomorphic ideal, generated by x+ 1
x

+ α(τ) where α(τ) = (−1)N γ√
T

.

If a ∼ x+
√
T or a ∼ x−

√
T then Z(φ(R)) is obviously isomorphic to

an ideal in C[x, x−1] generated by x+1. Let us establish some conditions
under which a ∼ x − ε

√
T for a given ε = ±1. Then ε

√
T is a root

of x2 + γx + T , so γ = −ε2
√
T and α(τ) = (−1)N+1ε2. If the latter

holds then A−(ε
√
T ) = 0 is a necessary and a sufficient condition for a ∼

x − ε
√
T . The condition A−(ε

√
T ) = 0 is equivalent to rankA(ε

√
T ) =

N − 2 because the columns 2, 3, . . . , N − 1 of matrix A(x) are linearly
independent.

Denote by I(α) the principal ideal in C[x, x−1] generated by x+ 1
x
+α.

Proposition 9. I(α) and I(β) are isomorphic algebras if and only if
β = ±α.

Proof. Consider y = x+ 1
x

+ α, z = x2 + 1 + αx ∈ I(α). Then z2 + y2 +
(α− y)yz = 0 and I(α) is generated over C by y and z. Suppose that it
is also generated over C by some elements Y, Z ∈ I(α), satisfying

Z2 + Y 2 + (β − Y )Y Z = 0. (6)

Then Y = P (x)xn, Z = Q(x)xm, where n,m are integers, P,Q are
polynomials in x with P (0), Q(0) 6= 0. Dividing (6) by g.c.d.(P,Q)2,
we conclude that Q = γP for some nonzero γ ∈ C. Moreover, P =
δ(x2 +1+αx) for some nonzero δ ∈ C, as Y, Z generate I(α) over C. So,
dividing (6) by P 2xm+n, we get

γ2xm−n + xn−m + (β − δ(x2 + αx+ 1)xn)γ = 0,

or
γ2xm−n + xn−m + γβ = γδx2+n + γδαx1+n + γδxn.

Hence, n = −1, γ = δ = ±1, thus β = ±α.
I(α) is turned into I(−α) under the automorphism of C[x, x−1] send-

ing x into −x. So, these ideals are isomorphic as algebras.

Note that for y = x+ 1
x

+α and z = x2 + 1 +αx ∈ I(α) as above the
elments {yn, zyn;n ≥ 0} are linearly independent. Indeed, assume that
P (y) + zQ(y) = 0 holds for some polynomials P and Q. Then

0 = P

(
y

(
1

x

))
+ z

(
1

x

)
Q

(
y

(
1

x

))
= P (y(x)) + z

(
1

x

)
Q(y(x)),
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so (z(x)− z( 1
x
))Q(y(x)) = 0. Hence P = Q = 0. So, I(α), equipped with

the unity 1, is isomorphic to the coordinate ring of the affine algebraic
variety (5).

Denote by J the ideal in C[x, x−1] generated by x+ 1.

Proposition 10. J and I(α) are nonisomorphic for any α.

Proof. y = 1 + 1
x

and z = 1 + x generate J over C and yz = y + z. One
can check that there are no elements Y, Z ∈ I(α), which generate I(α)
over C and satisfy Y Z = Y +Z in the same way as in Proposition 9.
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