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Abstract. In the space of irreducible unitary representations

of a linear group over an algebra of type Ã2 an open dense subset

of representations in the general position is singled out. This set is

identified, up to simple direct factors, with the space of represen-

tations of a full linear group.

Let A be an algebra over the field C of complex numbers. A linear
group over A is, by definition, the group G(P, A) of automorphisms of a
projective (finitely generated) A-module P . It is known (cf., e.g., [1]) that
the classification of all unitary representations of linear groups over A is
a wild problem provided A is not semisimple. On the other hand, in [1]
for the so called Dynkin algebras it was shown that the dual space Ĝ, i.e.
the space of irreducible unitary representations of the group G = G(P, A)

[3], contains an open dense subset isomorphic to ĜL(m, C) for some m.
(It was called the set of “representations in general position”.) For the
Kronecker algebra Ã1, i.e. the path algebra of the quiver x ⇒ y, a similar
result was obtained in [5]. In this paper we consider the case of algebras
of type Ã2, i.e. the path algebra of the quiver

x

��?
??

??
??

// z

y

??�������

,

which we denote by Ã2, the algebra Ãτ
2 given by the quiver

x
b //

c
// z

a // y

2000 Mathematics Subject Classification: 20G05,22E45,16G20.

Key words and phrases: unitary representations, linear groups, Euclidean

algebras, matrix problems, small reduction.



Jo
u
rn

al
 A

lg
eb

ra
 D

is
cr

et
e 

M
at

h
.136 Representations of linear groups

with relation ac = 0, which is tilted to the algebra Ã2 [4], and its opposite
algebra (Ãτ

2)
op. We show that the situation is almost the same for linear

groups over these algebras. It makes plausible that an analogous result
is valid for Euclidean algebras, i.e. for path algebras of the Euclidean (or
extended Dynkin) diagrams and for the algebras tilted to them.

Namely, denote by C
× the multiplicative group of the field C and

by Qs the factor Ws/Ss, where Ws ⊂ C
s is the set { (λ1, . . . , λs) |λi 6=

λj if i 6= j } and Ss is the symmetric group acting on Ws by permutations.
We shall prove the following theorem.

Theorem 1 (Main Theorem). Let G = G(P, A) be a linear group over an
algebra A of type Ã2. The space Ĝ of irreducible unitary representations of
G contains an open dense subset Γ isomorphic to Qs × (C×)s × ĜL(t, C)

for some s, t (possibly, s = 0, i.e. Γ ' ĜL(t, C) , or t = 0, i.e. Γ '
Qs × (C×)s ).

As in [1], we call the representations from the set Γ the “representa-
tions in general position.”

Proof. Any projective module P over the algebra A, where A = Ã2 or
A = Ãτ

2 , uniquely decomposes as mAx ⊕ pAy ⊕ nAz, where Ai = eiA is
the indecomposable projective A-module corresponding to the vertex i; ei

being the “empty” path at this vertex. We call the triple d = (m, p, n) the
vector dimension of the projective module P and of the group G. Note
also that a linear group over the opposite algebra Aop is an opposite
group to G. Since any group is isomorphic to the opposite one, any
linear group over (Ãτ

2)
op is isomorphic to a linear group over Ãτ

2 . We set
|d| = m + n + p and call |d| the absolute dimension of the group G. We
shall prove the Main Theorem using induction by |d|. Namely, we shall
deduce it from the following lemma.

Lemma 2 (Main Lemma). Let G = G(P, A), where A = Ã2 or A = Ãτ
2.

The dual space Ĝ contains an open dense subset V isomorphic either to
Qs × (C×)s × ĜL(t, C) or to Ĝ′, where G′ is a linear group of smaller ab-
solute dimension over an algebra A′ from the list {Ã2, Ã

τ
2 , Ã1, A2}. (Here

A2 is the path algebra of the quiver x → y.)

Proof. We follow the calculations from [1, 5]. First, let A = Ã2. The
linear group G can be presented as the group of block matrices of the
form 



Z B C D
0 Y K 0
0 0 X 0
0 0 0 X


 ,
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where X ∈ GL(m), Y ∈ GL(p), Z ∈ GL(n). We denote this group by
G(m, p, n). This group decomposes into the semidirect product H n N ,
where

N =








I B C D
0 I 0 0
0 0 I 0
0 0 0 I








, H =








Z 0 0 0
0 Y K 0
0 0 X 0
0 0 0 X








.

Obviously, N is an Abelian normal subgroup. Hence, we can apply the
Mackey’s “little” theorem [3] to calculate the representations of the group
G. It gives a surjection π : Ĝ → N̂/H with slices π−1(χH) ' Ŝ(χ), where
χ ∈ N̂ , S(χ) is the stabilizer of χ in H.

The space of characters N̂ can de identified with the dual vector space
to H, which is isomorphic to the spaces of matrices of the form

F =




0 0 0 0
B′ 0 0 0
C ′ 0 0 0
D′ 0 0 0


 , (1)

where B′ is of the size p × n, C ′ and D′ are of the size m × n. Namely,
such a matrix F defines a character χF of N by the rule: χF (M) =
exp(iRe tr(FM)) for M ∈ N . The action of the group H on N̂ corre-
spond to its action on the matrices: if F is given by a triple (B′, C ′, D′)
as in (1) and h ∈ H, then F h is given by the triple

(
(Y B′ + KC ′)Z−1, XC ′Z−1, XD′Z−1

)
. (2)

To investigate the action (2), it is convenient to consider matrices F of
the form (1) as matrices with coefficients from a bimodule U , like in [1].
Namely, U is the bimodule over the algebra Λ × C, where Λ is the set of
3 × 3 matrices over C of the form




y k 0
0 x 0
0 0 x




and U = C
3 with the natural action of Λ. Recall that a matrix with

coefficients from U is, by definition, an element of Q⊗Λ U ⊗L, where Q
is a projective Λ-module and L is a vector space. If Q = p(e1Λ)⊕m(e2Λ),
where e1 = e11, e2 = e22+e33 are primitive idempotents of Λ, and dimL =
n, we just get the matrices F from (1), and the action of Aut P × Aut L
is then described by the formulas (2). The triple dimM = (m, p, n) will
be called the vector dimension of the matrix F .
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We shall describe the matrices from the bimodule U and other bi-
modules, which arise in the calculations, using bigraphs with relations.
So, the bimodule U is described by the picture

x

β

��

z
d

kk
css

b
��
��

����
�

y

b = βc.

Note that we show all non-zero relations near the bigraph. For instance,
in the considered situation βd = 0. Here the solid arrows b, c, d describe
a basis of U , while the dotted arrows describe a basis of the radical of
the algebra Λ. For the matrices, it means that, except usual transforma-
tions of these matrices, corresponding to a base change, we can add any
multiple of the matrix C ′ to the matrix B′. As a rule, we need to precise
the vector dimension dimM = (m, p, n); then we shall write as follows

(
m n

p

)
:

x

β

��

y
d

kk
css

b
��

�

�����
�

z

b = βc. (3)

Since we are interested in a “good” open dense subspace in the space
of matrices F , we use the algorithm of small reduction, as in [1, 5]. It
means that we reduce matrices to a normal form supposing, at every step,
that the reduced matrix is of maximal possible rank. For details, as well
as for the interpretation in terms of boxes, we refer to [1]. The result
depends on the correlation between the dimensions m, n, p. We always
start from the arrow c.

Case 1: m = n.

The small reduction of c glues the points x, z and kills the arrows c, b
and β. So we get the picture

(m p) : xd 99 y . (4)

The matrices over the obtained bimodule are given by two vector spaces,
of dimensions m and p, and a linear operator D in the first of them. We
can consider the (open dense) set W of such matrices that the operator
D has m different eigenvalues. Then H-orbits from W are parameterised
by the elements of Qm (the sets of eigenvalues up to a permutation). The
stabilizer of such an orbit is isomorphic to (C×)m × GL(p). The first
factor corresponds to the stabilizer of the operator D, which is the group
of diagonal matrices, i.e. (C×)m, while the second factor corresponds to
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the “isolated” point y of the picture (4). Thus, taking for V the preimage

of W in Ĝ, we get that V ' Qm× (C×)m× ĜL(p) (recall that Ĉ
× ' C

×).

Case 2: m > n.

The small reduction of c gives the picture

(
m − n n

p

)
:

x
ξ ++

β

��

z d1ee
d

kk

y

d1 = ξd. (5)

Now we have to reduce the arrow d. Again we have several cases.

A) Let m − n = n. The small reduction of d glue x and z, kills d1

and ξ, so gives the picture

(n p) : x β // y .

Since there are no solid arrows, there is a unique matrix, and its stabilizer
is described by the broken arrows. Thus it coincides with the linear group
G0 = G0(n, p) over the algebra of type A2, and we can take for V the
orbit of this matrix.

B) Let m − n > n. After the small reduction of the arrow d (from
the vertex x to the vertex z) we obtain the picture (again with no solid
arrows)

(
m − 2n n

p

)
:

x
ξ ++
γ

33

β

��

z

β1

��
y

β = β1γ.

Note that, according to our agreement, it means that β1ξ = 0. Thus, in
this case the stabilizer of the unique matrix is isomorphic to the linear
group G′ of vector dimension (n, p, m − 2n) over the algebra Ãτ

2 .

C) Let m − n < n. Now the small reduction of d (from z to x) gives

(
m − n 2n − m

p

)
:

x
γ ++

β

��

z d1eed0

kk

y

d1 = γd0.

It is the same as the picture (5), but with smaller dimensions. So we can
repeat the same reductions, which gives the following result.

Proposition 3. Suppose that m > n. Choose k ≥ 1 so that (k − 1)m <
kn and km ≥ (k + 1)n. (Note that such k always exists and is unique.)
Set m′ = kn − (k − 1)m, n′ = km − (k + 1)n. Then Ĝ(m, p, n) contains
an open dense subset V isomorphic to Ĝ′, where G′ is
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• the linear group of vector dimension (m′, p, n′) over the algebra Ãτ
2,

if n′ 6= 0.

• the linear group G0(m − n, p) of vector dimension (m − n, p) over
the algebra A2, if n′ = 0 (then m′ = m − n).

Case 3: m < n.

The small reduction of c gives the picture

(
m n − m

p

)
:

xa 99
ξ ++ z
d

kk

b
��
��

����
�

y

d1 = dξ

Calculations, quite analogous to those of Case 2, give the following result.

Proposition 4. Suppose that m < n. Choose k so that (k − 1)n < km
and kn ≥ (k + 1)m. Set n′ = km − (k − 1)n, m′ = kn − (k + 1)m. If
m′ 6= 0, Ĝ(m, p, n) contains an open dense subset isomorphic to the set
of matrices over the bimodule described by the picture

(
m′ n′

p

)
:

x
ξ ++
γ

33

b1

??
?

��?
??

z

b
��
��

����
�

y

b1 = bγ. (6)

If m′ = 0 (then n′ = n − m), Ĝ(m, p, n) contains an open dense subset
isomorphic to the linear group G0(n − m, p) over the algebra A2.

Thus we have to consider the bimodule given by the picture (6). Here
we reduce the arrow b. If n′ ≥ p, we get

(
m′ n′ − p

p

)
:

x
ξ ++
γ

33

ξ1
��

z

y

η

??

. ξ = ηξ1.

Therefore the stabilizer is isomorphic to G(m′, p, n′ − p). Especially, if
n′ = p, the vertex z vanishes and we get the group G0(m

′, p).

If n′ < p, we get, setting p′ = p − n′,

(
m′ n′

p′

)
:

x ξ //

b1

??
?

��?
??

z

y

η

??

. (7)



Jo
u
rn

al
 A

lg
eb

ra
 D

is
cr

et
e 

M
at

h
.A. Timoshin 141

Now, if m′ ≥ p′, the small reduction of b1 gives

(
m′′ n′

p′

)
:

x ξ // z

y

θ

__
η

77

ξ1

HH

ξ1 = ξθ,

where m′′ = m′ + n′ − p. Therefore, the stabilizer is isomorphic to
G(p′, m′′, n′). Especially, if m′ = p′, the vertex x vanishes, so we get
the linear group G1(p

′, n′) of vector dimension (p′, n′) over the Kronecker
algebra.

At last, if m′ < p′, the small reduction of b1 gives

(
m′ n′

p′ − m′

)
:

x
ξ ++
η1

33 z

y

η

??

θ

__

η = η1θ.

It describes the algebra (Ãτ
2)

op; thus the stabilizer is the linear group of

the “opposite” vector dimension (n′, m′, p′ − m′) over the algebra Ãτ
2 .

Finally, we consider representations of the linear group of vector di-
mension (m, p, n) over the algebra Ãτ

2 , which may be represented as a
group of block matrices of the following form:




Y 0 K D
0 Z 0 C
0 0 Z B
0 0 0 X




where X ∈ GL(m), Y ∈ GL(p), Z ∈ GL(n). Now G = N n H, where

N =








I 0 0 D
0 I 0 C
0 0 I B
0 0 0 I








, H =








Z 0 K 0
0 Y 0 0
0 0 Y 0
0 0 0 X








,

so the space of characters N̂ coincide with that of the matrices



0 0 0 0
0 0 0 0
0 0 0 0
D′ C ′ B′ 0


 .

It can be treated as matrices over the bimodule given by the picture

(
m n

p

)
:

x z
c

kk
bss

β

��
y

d???

__???
b = dβ.
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We start with the small reduction of the arrow d.

Case 1′: m = p.

The reduction glues y with z and kills b, c and β, so that

(m n) : x zcoo

remains, describing the dual space of the group G0(n, m).

Case 2′: m > p.

The reduction gives the picture

(
m − p n

p

)
:

x

ξ

��

z
c

kk
bss

c1
��

�

����
�

y

c1 = ξc,

which coincides with (3) up to notations.

Case 3′: n < p.

The reduction gives the picture

(
m n

p − m

)
:

x

ξ

��

zcoo

β

��
y

,

which coincides with (7) up to notations.

It accomplishes the proof of the Main Lemma.

Now the proof of the Main Theorem is obvious. Namely, if the algebra
A′ from the Main Lemma is either Ã2 or Ãτ

2 , we can use the induction
hypothesis, which shows that V contains an open dense subset Γ of the
necessary form. If A′ = Ã1, we know the same from [5]. At last, if

A′ = A2, it is known that Ĝ′ contains an open dense subset Γ ' ĜL(t)
(cf. e.g. [1]).
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