Number 3. (2004). pp. 135-143
(C) Journal "Algebra and Discrete Mathematics"

Representations of linear groups over \widetilde{A}_{2}-algebras

Anatoliy S. Timoshin

Communicated by Yu. Drozd

Abstract. In the space of irreducible unitary representations of a linear group over an algebra of type \widetilde{A}_{2} an open dense subset of representations in the general position is singled out. This set is identified, up to simple direct factors, with the space of representations of a full linear group.

Let A be an algebra over the field \mathbb{C} of complex numbers. A linear group over A is, by definition, the group $G(P, A)$ of automorphisms of a projective (finitely generated) A-module P. It is known (cf., e.g., [1]) that the classification of all unitary representations of linear groups over A is a wild problem provided A is not semisimple. On the other hand, in [1] for the so called Dynkin algebras it was shown that the dual space \widehat{G}, i.e. the space of irreducible unitary representations of the group $G=G(P, A)$ [3], contains an open dense subset isomorphic to $\widehat{\mathrm{GL}}(m, \mathbb{C})$ for some m. (It was called the set of "representations in general position".) For the Kronecker algebra \widetilde{A}_{1}, i.e. the path algebra of the quiver $x \rightrightarrows y$, a similar result was obtained in [5]. In this paper we consider the case of algebras of type \widetilde{A}_{2}, i.e. the path algebra of the quiver

which we denote by \widetilde{A}_{2}, the algebra \widetilde{A}_{2}^{τ} given by the quiver

$$
x \xrightarrow[c]{\stackrel{b}{\longrightarrow}} z \xrightarrow{a} y
$$

[^0]with relation $a c=0$, which is tilted to the algebra $\widetilde{A}_{2}[4]$, and its opposite algebra $\left(\widetilde{A}_{2}^{\tau}\right)^{\mathrm{op}}$. We show that the situation is almost the same for linear groups over these algebras. It makes plausible that an analogous result is valid for Euclidean algebras, i.e. for path algebras of the Euclidean (or extended Dynkin) diagrams and for the algebras tilted to them.

Namely, denote by \mathbb{C}^{\times}the multiplicative group of the field \mathbb{C} and by Q_{s} the factor W_{s} / S_{s}, where $W_{s} \subset \mathbb{C}^{s}$ is the set $\left\{\left(\lambda_{1}, \ldots, \lambda_{s}\right) \mid \lambda_{i} \neq\right.$ λ_{j} if $\left.i \neq j\right\}$ and S_{s} is the symmetric group acting on W_{s} by permutations. We shall prove the following theorem.

Theorem 1 (Main Theorem). Let $G=G(P, A)$ be a linear group over an algebra A of type \widetilde{A}_{2}. The space \widehat{G} of irreducible unitary representations of G contains an open dense subset Γ isomorphic to $Q_{s} \times\left(\mathbb{C}^{\times}\right)^{s} \times \widehat{\mathrm{GL}}(t, \mathbb{C})$ for some s, t (possibly, $s=0$, i.e. $\Gamma \simeq \widehat{\mathrm{GL}}(t, \mathbb{C})$, or $t=0$, i.e. $\Gamma \simeq$ $\left.Q_{s} \times\left(\mathbb{C}^{\times}\right)^{s}\right)$.

As in [1], we call the representations from the set Γ the "representations in general position."

Proof. Any projective module P over the algebra A, where $A=\widetilde{A}_{2}$ or $A=\widetilde{A}_{2}^{\tau}$, uniquely decomposes as $m A_{x} \oplus p A_{y} \oplus n A_{z}$, where $A_{i}=e_{i} A$ is the indecomposable projective A-module corresponding to the vertex i; e_{i} being the "empty" path at this vertex. We call the triple $\mathbf{d}=(m, p, n)$ the vector dimension of the projective module P and of the group G. Note also that a linear group over the opposite algebra A^{op} is an opposite group to G. Since any group is isomorphic to the opposite one, any linear group over $\left(\widetilde{A}_{2}^{\tau}\right)^{\text {op }}$ is isomorphic to a linear group over \widetilde{A}_{2}^{τ}. We set $|\mathbf{d}|=m+n+p$ and call $|\mathbf{d}|$ the absolute dimension of the group G. We shall prove the Main Theorem using induction by $|\mathbf{d}|$. Namely, we shall deduce it from the following lemma.

Lemma 2 (Main Lemma). Let $G=G(P, A)$, where $A=\widetilde{A}_{2}$ or $A=\widetilde{A}_{2}^{\tau}$. The dual space \widehat{G} contains an open dense subset V isomorphic either to $Q_{s} \times\left(\mathbb{C}^{\times}\right)^{s} \times \widehat{\mathrm{GL}}(t, \mathbb{C})$ or to \widehat{G}^{\prime}, where G^{\prime} is a linear group of smaller absolute dimension over an algebra A^{\prime} from the list $\left\{\widetilde{A}_{2}, \widetilde{A}_{2}^{\tau}, \widetilde{A}_{1}, A_{2}\right\}$. (Here A_{2} is the path algebra of the quiver $x \rightarrow y$.)

Proof. We follow the calculations from $[1,5]$. First, let $A=\widetilde{A}_{2}$. The linear group G can be presented as the group of block matrices of the form

$$
\left(\begin{array}{cccc}
Z & B & C & D \\
0 & Y & K & 0 \\
0 & 0 & X & 0 \\
0 & 0 & 0 & X
\end{array}\right)
$$

where $X \in G L(m), Y \in G L(p), Z \in G L(n)$. We denote this group by $G(m, p, n)$. This group decomposes into the semidirect product $H \ltimes N$, where

$$
N=\left\{\left(\begin{array}{cccc}
I & B & C & D \\
0 & I & 0 & 0 \\
0 & 0 & I & 0 \\
0 & 0 & 0 & I
\end{array}\right)\right\}, \quad H=\left\{\left(\begin{array}{cccc}
Z & 0 & 0 & 0 \\
0 & Y & K & 0 \\
0 & 0 & X & 0 \\
0 & 0 & 0 & X
\end{array}\right)\right\}
$$

Obviously, N is an Abelian normal subgroup. Hence, we can apply the Mackey's "little" theorem [3] to calculate the representations of the group G. It gives a surjection $\pi: \widehat{G} \rightarrow \widehat{N} / H$ with slices $\pi^{-1}\left(\chi^{H}\right) \simeq \widehat{S}(\chi)$, where $\chi \in \widehat{N}, S(\chi)$ is the stabilizer of χ in H.

The space of characters \widehat{N} can de identified with the dual vector space to H, which is isomorphic to the spaces of matrices of the form

$$
F=\left(\begin{array}{cccc}
0 & 0 & 0 & 0 \tag{1}\\
B^{\prime} & 0 & 0 & 0 \\
C^{\prime} & 0 & 0 & 0 \\
D^{\prime} & 0 & 0 & 0
\end{array}\right)
$$

where B^{\prime} is of the size $p \times n, C^{\prime}$ and D^{\prime} are of the size $m \times n$. Namely, such a matrix F defines a character χ_{F} of N by the rule: $\chi_{F}(M)=$ $\exp (i \operatorname{Re} \operatorname{tr}(F M))$ for $M \in N$. The action of the group H on \widehat{N} correspond to its action on the matrices: if F is given by a triple $\left(B^{\prime}, C^{\prime}, D^{\prime}\right)$ as in (1) and $h \in H$, then F^{h} is given by the triple

$$
\begin{equation*}
\left(\left(Y B^{\prime}+K C^{\prime}\right) Z^{-1}, X C^{\prime} Z^{-1}, X D^{\prime} Z^{-1}\right) \tag{2}
\end{equation*}
$$

To investigate the action (2), it is convenient to consider matrices F of the form (1) as matrices with coefficients from a bimodule U, like in [1]. Namely, U is the bimodule over the algebra $\Lambda \times \mathbb{C}$, where Λ is the set of 3×3 matrices over \mathbb{C} of the form

$$
\left(\begin{array}{ccc}
y & k & 0 \\
0 & x & 0 \\
0 & 0 & x
\end{array}\right)
$$

and $U=\mathbb{C}^{3}$ with the natural action of Λ. Recall that a matrix with coefficients from U is, by definition, an element of $Q \otimes_{\Lambda} U \otimes L$, where Q is a projective Λ-module and L is a vector space. If $Q=p\left(e_{1} \Lambda\right) \oplus m\left(e_{2} \Lambda\right)$, where $e_{1}=e_{11}, e_{2}=e_{22}+e_{33}$ are primitive idempotents of Λ, and $\operatorname{dim} L=$ n, we just get the matrices F from (1), and the action of Aut $P \times$ Aut L is then described by the formulas (2). The triple $\operatorname{dim} M=(m, p, n)$ will be called the vector dimension of the matrix F.

We shall describe the matrices from the bimodule U and other bimodules, which arise in the calculations, using bigraphs with relations. So, the bimodule U is described by the picture

Note that we show all non-zero relations near the bigraph. For instance, in the considered situation $\beta d=0$. Here the solid arrows b, c, d describe a basis of U, while the dotted arrows describe a basis of the radical of the algebra Λ. For the matrices, it means that, except usual transformations of these matrices, corresponding to a base change, we can add any multiple of the matrix C^{\prime} to the matrix B^{\prime}. As a rule, we need to precise the vector dimension $\operatorname{dim} M=(m, p, n)$; then we shall write as follows

$$
\left(\begin{array}{cc}
m & n \tag{3}\\
p
\end{array}\right):
$$

Since we are interested in a "good" open dense subspace in the space of matrices F, we use the algorithm of small reduction, as in $[1,5]$. It means that we reduce matrices to a normal form supposing, at every step, that the reduced matrix is of maximal possible rank. For details, as well as for the interpretation in terms of boxes, we refer to [1]. The result depends on the correlation between the dimensions m, n, p. We always start from the arrow c.

Case 1: $m=n$.
The small reduction of c glues the points x, z and kills the arrows c, b and β. So we get the picture

$$
\begin{equation*}
(m \propto p): \quad{ }^{d} \bigodot^{x} \quad y . \tag{4}
\end{equation*}
$$

The matrices over the obtained bimodule are given by two vector spaces, of dimensions m and p, and a linear operator D in the first of them. We can consider the (open dense) set W of such matrices that the operator D has m different eigenvalues. Then H-orbits from W are parameterised by the elements of Q_{m} (the sets of eigenvalues up to a permutation). The stabilizer of such an orbit is isomorphic to $\left(\mathbb{C}^{\times}\right)^{m} \times \operatorname{GL}(p)$. The first factor corresponds to the stabilizer of the operator D, which is the group of diagonal matrices, i.e. $\left(C^{\times}\right)^{m}$, while the second factor corresponds to
the "isolated" point y of the picture (4). Thus, taking for V the preimage of W in \widehat{G}, we get that $V \simeq Q_{m} \times\left(\mathbb{C}^{\times}\right)^{m} \times \widehat{\mathrm{GL}}(p)\left(\right.$ recall that $\left.\widehat{\mathbb{C}}^{\times} \simeq \mathbb{C}^{\times}\right)$.

Case 2: $m>n$.
The small reduction of c gives the picture

Now we have to reduce the arrow d. Again we have several cases.
A) Let $m-n=n$. The small reduction of d glue x and z, kills d_{1} and ξ, so gives the picture

$$
\left(\begin{array}{ll}
n & p
\end{array}\right): \quad x \quad \beta>y .
$$

Since there are no solid arrows, there is a unique matrix, and its stabilizer is described by the broken arrows. Thus it coincides with the linear group $G_{0}=G_{0}(n, p)$ over the algebra of type A_{2}, and we can take for V the orbit of this matrix.
B) Let $m-n>n$. After the small reduction of the arrow d (from the vertex x to the vertex z) we obtain the picture (again with no solid arrows)

$$
\left(\begin{array}{cc}
m-2 n & n \\
p &
\end{array}\right): \beta_{\beta_{1}}^{\beta_{1}} \quad \beta=\beta_{1} \gamma
$$

Note that, according to our agreement, it means that $\beta_{1} \xi=0$. Thus, in this case the stabilizer of the unique matrix is isomorphic to the linear group G^{\prime} of vector dimension $(n, p, m-2 n)$ over the algebra \widetilde{A}_{2}^{τ}.
C) Let $m-n<n$. Now the small reduction of d (from z to x) gives

$$
\left(\begin{array}{cc}
m-n & 2 n-m \\
p
\end{array}\right):
$$

It is the same as the picture (5), but with smaller dimensions. So we can repeat the same reductions, which gives the following result.

Proposition 3. Suppose that $m>n$. Choose $k \geq 1$ so that $(k-1) m<$ $k n$ and $k m \geq(k+1) n$. (Note that such k always exists and is unique.) Set $m^{\prime}=k n-(k-1) m, n^{\prime}=k m-(k+1) n$. Then $\widehat{G}(m, p, n)$ contains an open dense subset V isomorphic to \widehat{G}^{\prime}, where G^{\prime} is

- the linear group of vector dimension $\left(m^{\prime}, p, n^{\prime}\right)$ over the algebra \widetilde{A}_{2}^{τ}, if $n^{\prime} \neq 0$.
- the linear group $G_{0}(m-n, p)$ of vector dimension $(m-n, p)$ over the algebra A_{2}, if $n^{\prime}=0$ (then $m^{\prime}=m-n$).

Case 3: $m<n$.
The small reduction of c gives the picture

$$
\begin{aligned}
& \left(\begin{array}{cc}
m & n-m \\
& p
\end{array}\right): \\
& d_{1}=d \xi
\end{aligned}
$$

Calculations, quite analogous to those of Case 2, give the following result.
Proposition 4. Suppose that $m<n$. Choose k so that $(k-1) n<k m$ and $k n \geq(k+1) m$. Set $n^{\prime}=k m-(k-1) n$, $m^{\prime}=k n-(k+1) m$. If $m^{\prime} \neq 0, \widehat{G}(m, p, n)$ contains an open dense subset isomorphic to the set of matrices over the bimodule described by the picture

If $m^{\prime}=0$ (then $\left.n^{\prime}=n-m\right), \widehat{G}(m, p, n)$ contains an open dense subset isomorphic to the linear group $G_{0}(n-m, p)$ over the algebra A_{2}.

Thus we have to consider the bimodule given by the picture (6). Here we reduce the arrow b. If $n^{\prime} \geq p$, we get

$$
\left(\begin{array}{ll}
m^{\prime} & n^{\prime}-p \\
& p
\end{array}\right): \quad \xi_{y}^{x} \cdot \xi_{1} \cdot \eta^{\eta} \cdot \quad \xi=\eta \xi_{1}
$$

Therefore the stabilizer is isomorphic to $G\left(m^{\prime}, p, n^{\prime}-p\right)$. Especially, if $n^{\prime}=p$, the vertex z vanishes and we get the group $G_{0}\left(m^{\prime}, p\right)$.

If $n^{\prime}<p$, we get, setting $p^{\prime}=p-n^{\prime}$,

Now, if $m^{\prime} \geq p^{\prime}$, the small reduction of b_{1} gives
where $m^{\prime \prime}=m^{\prime}+n^{\prime}-p$. Therefore, the stabilizer is isomorphic to $G\left(p^{\prime}, m^{\prime \prime}, n^{\prime}\right)$. Especially, if $m^{\prime}=p^{\prime}$, the vertex x vanishes, so we get the linear group $G_{1}\left(p^{\prime}, n^{\prime}\right)$ of vector dimension $\left(p^{\prime}, n^{\prime}\right)$ over the Kronecker algebra.

At last, if $m^{\prime}<p^{\prime}$, the small reduction of b_{1} gives

$$
\begin{aligned}
& \left(\begin{array}{rr}
m^{\prime} & n^{\prime} \\
p^{\prime}- & m^{\prime}
\end{array}\right): \\
& \eta=\eta_{1} \theta .
\end{aligned}
$$

It describes the algebra $\left(\widetilde{A}_{2}^{\tau}\right)^{\text {op }}$; thus the stabilizer is the linear group of the "opposite" vector dimension $\left(n^{\prime}, m^{\prime}, p^{\prime}-m^{\prime}\right)$ over the algebra \widetilde{A}_{2}^{τ}.

Finally, we consider representations of the linear group of vector dimension (m, p, n) over the algebra \tilde{A}_{2}^{τ}, which may be represented as a group of block matrices of the following form:

$$
\left(\begin{array}{cccc}
Y & 0 & K & D \\
0 & Z & 0 & C \\
0 & 0 & Z & B \\
0 & 0 & 0 & X
\end{array}\right)
$$

where $X \in G L(m), Y \in G L(p), Z \in G L(n)$. Now $G=N \ltimes H$, where

$$
N=\left\{\left(\begin{array}{cccc}
I & 0 & 0 & D \\
0 & I & 0 & C \\
0 & 0 & I & B \\
0 & 0 & 0 & I
\end{array}\right)\right\}, \quad H=\left\{\left(\begin{array}{cccc}
Z & 0 & K & 0 \\
0 & Y & 0 & 0 \\
0 & 0 & Y & 0 \\
0 & 0 & 0 & X
\end{array}\right)\right\}
$$

so the space of characters \widehat{N} coincide with that of the matrices

$$
\left(\begin{array}{cccc}
0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 \\
D^{\prime} & C^{\prime} & B^{\prime} & 0
\end{array}\right)
$$

It can be treated as matrices over the bimodule given by the picture

$$
\left(\begin{array}{cc}
m & n \\
p
\end{array}\right):
$$

$$
b=d \beta
$$

We start with the small reduction of the arrow d.
Case 1': $m=p$.
The reduction glues y with z and kills b, c and β, so that

$$
\left(\begin{array}{ll}
m & n
\end{array}\right): \quad x<c-c
$$

remains, describing the dual space of the group $G_{0}(n, m)$.
Case 2': $m>p$.
The reduction gives the picture

$$
\left(\begin{array}{cc}
m-p & n \\
p &
\end{array}\right):
$$

which coincides with (3) up to notations.
Case 3': $n<p$.
The reduction gives the picture

$$
\left(\begin{array}{cr}
m & n \\
p-m
\end{array}\right):
$$

which coincides with (7) up to notations.
It accomplishes the proof of the Main Lemma.
Now the proof of the Main Theorem is obvious. Namely, if the algebra A^{\prime} from the Main Lemma is either \widetilde{A}_{2} or \widetilde{A}_{2}^{τ}, we can use the induction hypothesis, which shows that V contains an open dense subset Γ of the necessary form. If $A^{\prime}=\widetilde{A}_{1}$, we know the same from [5]. At last, if $A^{\prime}=A_{2}$, it is known that \widehat{G}^{\prime} contains an open dense subset $\Gamma \simeq \widehat{\mathrm{GL}}(t)$ (cf. e.g. [1]).

References

[1] Y. A. Drozd. Matrix problems, small reduction and representations of a class of mixed Lie groups. In: Representations of Algebras and Related Topics, Cambridge Univ. Press, 1992, pp. 225-249.
[2] Y. A. Drozd. Reduction algorithm and representations of boxes and algebras. Comtes Rendue Math. Acad. Sci. Canada 23 (2001) 97-125.
[3] A. A. Kirillov. Elements of Representation Theory. Nauka, Moscow, 1978.
[4] C. M. Ringel. Tame Algebras and Integral Quadratic Forms. Lecture Notes in Math. 1099, Springer-Verlag, 1984.
[5] A. S. Timoshin. Representations of liner groups over Kronecker algebra. Visnyk (Bulletin) of Kiev University, No. 3 (2002), 60-64.

Contact information

A. Timoshin
Rubezhnoye Branch of the East Ukrainian National V. Dal University, 93009 Rubezhnoye, Lugansk Region, Ukraine E-Mail: timas@rfvnu.lg.ua

Received by the editors: 15.04.2004 and final form in 01.10.2004.

[^0]: 2000 Mathematics Subject Classification: 20G05,22E45,16G20.
 Key words and phrases: unitary representations, linear groups, Euclidean algebras, matrix problems, small reduction.

