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Abstract. The problem of unitarization of representations

of algebras generated by idempotents with linear relations is stud-

ied. Construction of non-unitarizable representations for some sub-

intervals of continuous spectrum is presented. Unitarization of rep-

resentations from discrete series is proven.

1. Introduction

Representations of algebras generated by projections and idempotents
have deep applications in different areas of mathematics such as alge-
braic geometry, topology, analysis and mathematical physics and have
been studied by many authors (see [5, 3, 7, 9, 8, 3] and bibliography
therein). This article is a continuation of work begun in [10, 11, 12]. It
deals with the algebras Pn,α, Pn,abo,α, α ∈ R, and their multi-parameter
generalizations. Recall that the algebras Pn,α and Pn,abo,α are defined in
terms of idempotent generators and relations as follows:

Pn,α = C〈q1, . . . , qn|q2j = qj ,
n∑

j=1

qj = αe〉, (1)

Pn,abo,α = C〈p, p1, . . . , pn|p2 = p, pipj = δijpj ,
n∑

j=1

pj = e, pjppj = αpj〉,

(2)
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where δij is the Kronecker delta and e is the unit element. The main
questions we study in this work are: for which values of parameters the
algebras have finite-dimensional representations and whether they are
unitarizable, i.e. equivalent to ∗-representations, where the images of
idempotent generators are selfadjoint.

The paper is organized as follows: In the second section we con-
struct certain homomorphisms between the algebras Pn,α, Pn,abo,τ and
matrix algebras over them which give us functors between the categories,
RepPn,α, RepPn,abo,τ , of their representations for different parameters
α, τ . Using this result we prove that finite-dimensional representations
of Pn,α exist only for α ∈ Σn∩Q, where Σn is a union of so called discrete
spectrum points and an interval of continuous spectrum points.

In Section 3 we study unitarizability of representations of Pn,α. By
[16] any finite-dimensional representation of Pn,α for discrete spectrum
point α is unitarizable. Our conjecture is that unitarizability fails for
rational points in continuous spectrum. We prove that this is in fact
true for all rational points in a collection of subintervals of the inter-
val of continuous spectrum. In Section 4 we discuss a generalization
P(α(1),...,α(t)),γ of Pn,α. There is a connection between finding parameters
for which there are finite-dimensional representations of P(α(1),...,α(t)),γ ,
the famous Horn’s problem and semi-stable representations of quivers
(see [4, 7, 9, 11]). It allows us to describe generalized dimensions of irre-
ducible representations in terms of roots of certain Kac-Moody algebras
(Theorem 5). In Section 5 we study multi-dimensional version, Pn,α1,...,αn

and Pn,abo,α1,...,αn
, of Pn,α and Pn,abo,α, in particular, unitarizability and

generalized dimensions of their finite-dimensional representations. Here
we use several known results on diagonals of matrices.

2. Discrete Fourier transform and Coxeter Functors

The main objects of this section are the algebras Pn,α and Pn,abo,α, α ∈ R,
introduced in the previous section. We begin with finding a sequence of
homomorphisms:

Pn,τn ψ−−−−→ Pn,abo,τ
φ−−−−→ Pn,τn ⊗Mn(C).

Let ζ be a primitive root of unity of degree n. Further on all summation
indices will run over {1, 2, . . . , n}. Put ψ(qk) equal to

∑
i,j ζ

(i−j)kpippj
and denote ψ(qk) by Fk to shorten notation. It is easy to see that F 2

k = Fk
and

∑n
k=1 Fk = nτ . Thus ψ extends to a homomorphism ψ : Pn,τn →

Pn,abo,τ . Let S = (ζ
ij
)ij and A = S∗ diag(F1, . . . , Fn)S ∈ Mn(C) ⊗
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Pn,abo,τ . Then

Aij =
1

n

n∑

k=1

ζikFkζ
kj

=
1

n

n∑

k=1

ζ(i−j)k ∑

l,r

ζ(l−r)kprppl =
n∑

l=1

pi−j+lppl

Set gij = 1
τ pippj . It is easy to see that the elements gij generate Pn,abo,τ .

In these new generators we have Aij = τ
∑

l gi−j+l,l.
Define a homomorphism φ : Pn,abo,τ → Pn,nτ⊗Mn(C) putting φ(pj) =

ejj and φ(p) = S∗ diag(q1, . . . , qn)S. Obviously, φ(pj)
2 = φ(pj), and it is

a routine to check that φ(p)2 = φ(p). We have also

φ(pj)φ(p)φ(pj) =
1

n

∑
ζjkqk ⊗ ejjζ

kj
=

1

n

∑

k

qkejj = τφ(pj),

so that φ extends to a homomorphism φ : Pn,abo,τ → Pn,nτ ⊗Mn(C).
One can check that φ(gij) = 1

nτ

∑
k ζ

(i−j)kqk ⊗ eij .
Denote by γ the homomorphism (ψ⊗id)◦φ : Pn,abo,τ → Pn,τ⊗Mn(C)

and by ρ the homomorphism φ ◦ ψ : Pn,nτ → Pn,nτ ⊗Mn(C). Let q̂t be
the sum

∑
k ζ

ktqk. Formally, (q̂1, . . . , q̂n) is the discrete Fourier transform
of (q1, . . . , qn). Then {q̂1, . . . , q̂n} is again generators of Pn,τ since qt =
1
n

∑
k ζ

kt
q̂k. We have

ρ(q̂t) =
∑

k

ζktφ(
∑

i,j

ζ(i−j)kτgij) =
∑

k

ζktτ
∑

i,j

ζ(i−j)k 1

nτ
q̂i−j ⊗ eij

=
1

n

∑

k,i,j

ζ(i−j+t)kq̂i−j ⊗ eij

and the (i, j)-entry of ρ(q̂t) is equal to q̂−t for j ≡ t + i mod n and
0 otherwise. Thus ρ(q̂t) = q̂−t ⊗ U t where U ∈ Mn(C) is the cyclic
permutation matrix Uei = ei−1, Ue1 = en (ej is the standard basis in
Cn). This will be used below to prove that ψ is an imbeding of Pn,τn into
Pn,abo,τ . Here is some other formulas which can be useful later on. We
have

ψ(q̂t) =
∑

k

ζktψ(qk) =
∑

k

ζkt
∑

i,j

ζ(i−j)kpippj = n
∑

i

pippi+t.

Using this we obtain also

γ(gij) = (ψ ⊗ id)(gij) = (ψ ⊗ id)(
1

nτ

∑

k

ζ(i−j)kqk ⊗ eij)

=
1

nτ
ψ(q̂i−j) ⊗ eij =

1

nτ
n

∑

s

pspps+i−j ⊗ eij

=
∑

s

gs,s+i−j ⊗ eij .
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Theorem 1. The mapping ψ : Pn,nτ → Pn,abo,τ is injective.

Proof. Since {q̂t}nt=1 generate Pn,nτ there is a linear basis W of Pn,nτ
consisting of words w = w(q̂1, . . . , q̂n). Since the mapping q̂t → q̂−t
extends to an automorphism the set W− = {w(q̂−1, . . . , q̂−n)|w ∈ W} is
also a basis. Thus the set {w ⊗ U t|w ∈ W−, 0 ≤ t ≤ n − 1} is linearly
independent. Clearly ρ(q̂i1 . . . q̂ir) = q̂−i1 . . . q̂−ir ⊗ U i1+...+ir for any n-
tuple of non-negative integers i1, . . . , ir. Hence {ρ(w)}w∈W is linearly
independent and therefore ρ is injective. The injectivity of ψ follows
from the relation ρ = φ ◦ ψ.

Let RepPn,α and RepPn,abo,τ (Repfd Pn,α, and Repfd Pn,abo,τ ) be the
categories of bounded (finite-dimensional) representations of Pn,α and of
Pn,α and Pn,abo,τ respectively. In [16] two homomorphisms ξ : Pn,abo,τ →
Pn, 1

τ
⊗Mn(C) and φ2 : Pn, 1

τ
→ Pn,abo,τ are defined. In our notations

ξ(pj) = qj⊗ejj , ξ(p) = τ
∑

i,j qiqj⊗eij and φ2(qk) = 1
τ ppkp. It was proved

(see [16]) that these homomorphisms induce mutually inverse equivalences
of the categories RepPn,abo,τ and RepPn, 1

τ
. Taking the compositions

ξ ◦ ψ : Pn,nτ → Pn, 1
τ
⊗Mn(C) and (ψ ⊗ id) ◦ ξ : Pn,abo,τ → Pn,abo,n

τ
we

obtain the induced functors

Π : RepPn,α → RepPn,n
α

and Π̃ : RepPn,abo,τ → RepPn,abo,n
τ
.

Other equivalence functors

T : RepPn,n−α → RepPn,α and T̃ : RepPn,abo,1−τ → RepPn,abo,τ

we get by considering homomorphisms t : Pn,α → Pn,n−α and tabo :
Pn,abo,τ → Pn,abo,1−τ given on the generators by t(qi) = 1− qi, tabo(pi) =
pi and tabo(p) = 1 − p. Clearly all mentioned functors map finite-
dimensional representations into finite-dimensional ones.

Let Λn, Λn,fd, Λ̃n, and Λ̃n,fd be the set of all α for which RepPn,α,
Repfd Pn,α, RepPn,abo,α and Repfd Pn,abo,α respectively are non-empty.

Then the functors Π and Π̃ generate the dynamical system x→ n

x
on Λn,

Λn,fd, Λ̃n and Λ̃n,fd. Considering the compositions (TΠ)2 and (ΠT )2 we
obtain also the following maps on Λn and Λn,fd: Φ−(α) = n − 1 − 1

α−1

and Φ+(α) = 1 + 1
n−1−α .

In order to formulate our next statement we need to recall some facts
from [10] on ∗-representations of the ∗-algebras Pn,α with involution de-
fined by q∗i = qi. If no confusion arise we write also RepPn,α for the cat-
egory of ∗-representations π : Pn,α → B(H), B(H) being the ∗-algebra
of bounded operators on a Hilbert space H.
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Let Σn be the set of all α for which there exist ∗-representations
in B(H) of the ∗-algebra Pn,α. The complete description of Σn was
obtained in [10] using the Coxeter functors on the categories RepPn,α of
∗-representations of Pn,α, the one similar to (TΠ)2 and (ΠT )2. They also
generate the same dynamical systems on Σn given by the mapping Φ+ and
Φ−. The functor T which maps ∗-representations into ∗-representations
gives the mapping Ψ(α) = n−α on Σn. Let Φ+k denote the k-th iteration
of Φ+. In [10] it was proved that

Σn = ∆n ∪ (n− ∆n) ∪ [βn, n− βn],

where ∆n = {Φ+k(0),Φ+k(1)}k≥0 and βn = n−
√
n2−4n
2 . The points of

∆n and n − ∆n are called the discrete spectrum points, and the points
of [βn, n − βn] are called the continuous spectrum points. We denote
by Σn,fd the set of those α for which there exist finite-dimensional ∗-
representations of Pn,α. The following theorem was announced in [16].

Theorem 2. Λn,fd = Σn,fd = (∆n ∪ (n− ∆n) ∪ [βn, n− βn]) ∩ Q.

Proof. The last equality was proved in [10]. To show the equality of the
first and the third sets we claim first that Λn,fd ∩ (0, 1) = ∅. In fact, it is
known that trQ = dim ImQ for any idempotent Q and therefore taking
the trace from the both hand sides of the equality Q1 + . . . + Qn = αI
we obtain

dim ImQ1 + . . .+ dim ImQn = α · dimH < dimH

if 0 < α < 1. This implies that ImQ1 + . . .+ ImQn is a proper subspace
of H. On the other hand,

v =
1

α
(Q1 + . . .+Qn)v ∈ ImQ1 + . . .+ ImQ1,

for any v ∈ H, a contradiction.
Applying now first our functor T and then the functor Π, we obtain

Λn,fd ∩ (n − 1, n) = ∅ and Λn,fd ∩ (1, 1 + 1
n−1) = ∅, which was a hard

part of the analogous result for Σn. One can easily show the following
inequalities:

0 < 1 < 1 +
1

n− 1
= Φ+(0) < Φ+(1) < Φ+(Φ+(0)) < Φ+(Φ+(1)) < . . .

Since there is no finite-dimensional representation for α from (0, 1) and
(1,Φ+(0)), applying the functor (TΠ)2 : Repfd Pn,α → Repfd Pn,Φ+(α) we
conclude that there is no finite-dimensional representation for α from the
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union ∪k≥0(Φ
+k(0),Φ+k(1))

⋃∪k≥0(Φ
+k(1),Φ+(k+1)(0)). Since, clearly,

{0, 1} ⊂ Λn,fd, the application of the functor (TΠ)2 gives ∆n ⊂ Λn,fd.
Noting now that Φ+k(0) and Φ+k(1) has the limit point βn we get Λn,fd∩
[0, βn) = ∆n. Similar argument shows that Λn,fd ∩ (n− βn, n] = n−∆n.

By [10, Theorem 6], [βn, n− βn] ∩ Q ⊂ Σn,fd implying [βn, n− βn] ∩
Q ⊂ Λn,fd. To finish the proof we just note that Λn,fd can not contain
irrational points. This can be seen by taking the trace from the both
hand sides of the equality Q1 +Q2 + . . .+Qn = αI.

The question when the sum of idempotent bounded operators on a
Hilbert space (not necessarily finite-dimensional) is a multiple of the iden-
tity operator, was studied in [15]: for each α ∈ C there exist at most five
idempotents whose sum is αI, i.e. Λn = C if n ≥ 5 while sum of one,
two, three and four idempotents can be αI if and only if α ∈ Σ1, Σ2, Σ3

and Σ4 respectively.

3. Non unitarizable representations on continuous

spectrum

In this section we will investigate the question whether each n-tuple of
idempotents (Q1, . . . , Qn) on a finite-dimensional space with the sum
equal to αI is similar to an n-tuple of projections (P1, . . . , Pn), i.e.,
whether there exists an invertible matrix S such that

S−1QiS = Pi, i = 1, . . . , k.

This is equivalent to the question whether there exists an equivalent Her-
mitian form on the finite-dimensional space such that the representation
π of Pn,α, π(qi) = Qi, 1 ≤ i ≤ n, is a ∗-representation with respect to this
Hermitian form, in this case we say that the representation π is unita-
rizable. As it follows from Theorem 2 finite-dimensional representations
of Pn,α exist only for those α for which there exists a finite-dimensional
∗-representation of Pn,α. The following theorem was proved in [16].

Theorem 3. If α ∈ Σn ∩Q for n = 1, 2, 3 and α ∈ (∆n ∪ (n−∆n))∩Q

for n ≥ 4, then any finite-dimensional representation of the algebra Pn,α
is unitarizable.

For α = 2, k = 4 it follows from [2] that in each space of dimen-
sion 7k, k ∈ N, there exist indecomposable n-tuples of idempotents with
sum equal to αI while any indecomposable (=irreducible) n-tuple of such
projections act either in one- or two-dimensional spaces (see [17]). There-
fore, there exist non-unitarizable finite-dimensional representations of the
algebra P4,2.
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Conjecture. For any α ∈ [βn, n − βn] ∩ Q there exist idempotent
matrices Q1, . . . , Qn which are not similar to any n-tuple of projection
matrices and such that Q1 + . . .+Qn = αI.

In support of this conjecture we have the following

Proposition 1. Let In = [2 + βn−2/2, n − 2 − βn−2/2], Ψ(α) = n − α.
Then for any n ≥ 9 and any α ∈ (∪k≥0Φ

+k(In) ∪Ψ(Φ+k(In))) ∩ Q there
exists a non-unitarizable representation of the algebra Pn,α.

Proof. We will use the fact that there exist non-unitarizable quadruple of
idempotents Q1, Q2,Q3, Q4 in C7k, k ∈ N such that Q1 +Q2 +Q3 +Q4 =
2I. Clearly, for each δ ∈ Σn−4 ∩Q we can find n− 4 projections Pk with
the sum equal to δI in one of the spaces C7k by taking if necessary a direct
sum of the same projections. Then the n-tuple {Qi, 1 ≤ i ≤ 4, Pi, 1 ≤ i ≤

n−4} is non-unitarizable and
4∑

i=1

Qi+
n−4∑

i=1

Pi = (δ+2)I. We have therefore

non-unitarizable representations of Pn,α for α ∈ [2 + βn−4, n− 2− βn−4].
Next we search for idempotents Pi, 1 ≤ i ≤ n, in Cl ⊕ Cl, l = 7k, in

the form Pi = Qi ⊕Ri, 1 ≤ i ≤ 4, Pi = 0l ⊕Ri, 5 ≤ i ≤ n− 2 and

Pn−1 =

(
τIl

√
τ(1 − τ)Il√

τ(1 − τ)Il (1 − τ)Il

)
,

Pn =

(
τIl −

√
τ(1 − τ)Il

−
√
τ(1 − τ)Il (1 − τ)Il

)
,

such that {Qi}4
i=1 is a non-unitarizable quadruple of idempotents with

the sum equal to 2Il and
n∑

i=1

Pi = αI2l. This forces 2τ = α − 2 and Ri,

1 ≤ i ≤ n− 2, to be idempotents in Cl satisfying

n−2∑

i=1

Ri = (α− 2(1 − τ))Il = (2α− 4)Il.

Such idempotent matrices Ri exist for some k ∈ N if 2α− 4 ∈ [βn−2, n−
2 − βn−2], i.e, α ∈ [2 + βn−2/2, 1 + (n− βn−2)/2]. Then for Pn−1, Pn to
be idempotents we have τ ∈ [0, 1] implying also α ∈ [2, 4].

We claim now that for α ∈ [2+βn−2/2, 1+(n−βn−2)/2]∩[2, 4]\{3} =
[2+βn−2/2, 4]\{3} the corresponding n-tuple {Pi}ni=1 is not equivalent to
an n-tuple of projections. In fact, assuming that there exists an invertible
matrix C such that (CPiC

−1)∗ = CPiC
−1, 1 ≤ i ≤ n, we obtain from

the equality for i = n − 1, n that C∗C = C1 ⊕ C2. Then the equality
for 1 ≤ i ≤ 4 gives Q∗

iC1 = C1Qi and (
√
C1Qi

√
C1

−1
)∗ =

√
C1Qi

√
C1

−1
,
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a contradiction. For α = 3 we construct a non-unitarizable n-tuple by
taking Pi = Qi, 1 ≤ i ≤ 4, P4 = I and Pi = 0 for 6 ≤ i ≤ n. Thus we
have non-unitarizable representations of Pn,α for

α ∈ [2+βn−2/2, 4]∪ [2+βn−4, n−2−βn−4] = [2+βn−2/2, n−2−βn−4].

Applying now the Coxeter functors corresponding to Φ+, Φ−, Ψ which
map non-unitarizable representations into non-unitarizable (see [16, The-
orem 6]), we obtain the statement.

We say that an interval I1 = [a, b] is less than an interval I2 = [c, d]
and write I1 < I2 if b < c. A simple calculation shows that the in-
tervals from the proposition above satisfy Φ+(k+1)(In) < Φ+k(In) and
Ψ(Φ+k)(In) < Ψ(Φ+(k+1))(In). There are still a lot of points left where
we do not know the non-unitarizability, e.g. the length of the interval
between Φ+(In) and In is greater than 5/6 and goes to 5/6 as n→ ∞.

Theorem 4. The functor Π : RepPn,α → RepPn,n
α

maps unitarizable
representations into unitarizable one.

Proof. It follows from the fact that the functor Π maps ∗-representations
of Pn,α into ∗-representations of Pn,n

α
.

Note that if we knew that the functor Π maps non-unitarizable rep-
resentations into non-unitarizable ones, we could prove the existence of
non-unitarizable representations for each continuous spectrum point α if
n ≥ 9.

4. Algebras generated by idempotents with orthogonality

condition

In this section we consider a generalization of the algebras considered
in the previous sections. The famous Horn’s problem and its variations
(see[4, 7, 9, 11] ) can be stated in terms of representations of ∗-algebras.

Let α(s) = (α
(s)
1 , α

(s)
2 , . . . , α

(s)
ds

), 1 ≤ s ≤ t, be vectors with real strictly
increasing coefficients. Let us define the following algebra (see [16]):

P(α(1),α(2),...,α(t)),γ =

= C〈{p(s)
j }1≤s≤t,1≤j≤ds

|p(s)
i p

(s)
j = δijp

(s)
i ,

t∑

s=1

ds∑

j=1

α
(s)
j p

(s)
j = γe〉.

This is a ∗-algebra if we require all generators to be self-adjoint. We use
P(α(1),α(2),...,α(t)) as a shorthand of P(α(1),α(2),...,α(t)),1. In [11] the following
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sets are considered T(d1,...,dt) = {(α(1), α(2), . . . , α(t), γ)|α(s) ∈ Rds , γ ∈ R}
and

W(d1,...,dt) = {((α(1), α(2), . . . , α(t), γ) ∈ T(d1,...,dt)|
there is a representation of P(α(1),α(2),...,α(t)),γ}

dependent only on (d1, . . . , dt). With an integer vector (d1, . . . , dt) we
associate a non-oriented tree with t rays of length d1, . . . , dt correspond-
ingly coming from a single root. Further on we will denote W by W (G)
and T(d1,...,dt) by T (G), where G is such a tree. In [11, 14] an equivalence
of the category of ∗-representations of P(α(1),α(2),...,α(t)),1 and a subcate-
gory of locally-scalar graph representations (see [13]) has been established
and in the case of a Dynkin graph G a complete description of W (G) as
well as an algorithm for writing out all irreducible ∗- representations were
obtained.

In [4] a connection of Horn’s problem with semi-stable quiver rep-
resentations has been established. It allows to reformulate the problem
of finding parameters, for which there are representations (not neces-
sarily ∗-representations) of P(α(1),α(2),...,α(t)), in terms of root systems of
Kac-Moody Lie algebras. Here we will describe a connection between
representations of the algebra P(α(1),α(2),...,α(t)),γ and semi-stable quiver
representations in a way convenient for our application.

We denote by G also a quiver obtained from the graph G by orienting
all arrows toward the root. Recall that a semi-stable representation of
the quiver G is given by vector spaces Hv and complex numbers λv for
each vertex v, and by linear maps a : Hv → Hw and a∗ : Hw → Hv for
each arrow a : v → w in G such that the linear maps satisfy

∑

a∈G, h(a)=v
aa∗ −

∑

a∈G, t(a)=v
a∗a = λvI

for each vertex v. Here t(v) and h(v) denote the tail and the head vertices
of the arrow a.

Let π be a ∗-representation of the algebra P(ν(1),...,ν(t)),σ in a space H

of dimension n. Let P
(s)
j = π(p

(s)
j ). Without loss of generality we can

assume that ν
(s)
ds

= 0 for all 1 ≤ s ≤ t. Let R
(s)
j = P

(s)
1 + . . . + P

(s)
j

(a projection), H
(s)
j = ImR

(s)
j and let Γ

(s)
j : H

(s)
j → H be the natural

isometries. Then, in particular, Γ
(s)∗
j Γ

(s)
j = I

H
(s)
j

, and Γ
(s)
j Γ

(s)∗
j = R

(s)
j .

Denote by V
(s)
j the operator Γ

(s)∗
j+1(

∑j
i=1

√
ν

(s)
i − ν

(s)
j+1P

(s)
i )Γ

(s)
j : H

(s)
j →
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H
(s)
j+1, where 1 ≤ j ≤ ds − 1. Then

V
(s)∗
j V

(s)
j − V

(s)
j−1V

(s)∗
j−1 = (ν

(s)
j − ν

(s)
j+1)IH(s)

j

,

V
(s)∗
1 V

(s)
1 = (ν

(s)
1 − ν

(s)
2 )I

H
(s)
1

,

V
(s)
ds−1V

(s)∗
ds−1 = A(s).

Here A(s) : H → H is a self-adjoint operator A(s) =
∑ds

i=1 ν
(s)
i P

(s)
i .

Moreover, A(1) + . . . + A(t) = σIH . The operators V
(s)
j together with

their conjugate give rise to a semi-stable representation of the quiver G.
This correspondence is in fact an equivalence functor between the cat-

egory of ∗-representations of algebra P(ν(1),...,ν(t)),σ and the subcategory
of semi-stable ∗-representations of the corresponding quiver (the proof is
similar to one in [5]).

Below we show how to obtain a description of all possible generalized
dimensions of representations of the algebra P(α(1),α(2),...,α(t)),γ using the
results from [5]. Note that to single out which of them occur as dimensions
of ∗-representations is another problem(see [16, 11]).

An n-tuple of diagonalizable matrices Aj such that A1 + . . .+An = 0
gives rise to a representation of the algebra P(α(1),α(2),...,α(t)),0, where

α(j) is the spectrum of Aj counted with multiplicities. Indeed, Aj =∑
k α

(j)
k P

(j)
k where I = P

(j)
1 + . . . + P

(j)
dj

is a decomposition of the iden-
tity into pairwise orthogonal idempotents. These idempotents form a
representation of P(α(1),α(2),...,α(t)),0. Conversely, having a representation

P
(j)
k = π(p

(j)
k ) of the algebra P(α(1),α(2),...,α(t)),γ we can form diagonaliz-

able operators summing up to zero as follows A1 =
∑d1

k=1 α
(1)
k P

(1)
k − γI,

As =
∑ds

k=1 α
(s)
k P

(s)
k for 1 < j ≤ t. Theorem 1 [5] describes possible spec-

tra of diagonalizable matrices summing up to zero. To formulate next
result we need to recall some notations from [5].

Consider a graph G with vertices I = {0} ∪ {[i, j]|1 ≤ i ≤ t; 1 ≤
j ≤ di}. Let C be a generalized Cartan matrix with columns indexed
by elements of I such that Cv,v = 2 for v ∈ I and Cu,v = −1 for u 6= v
if u and v are connected by an edge. Let R be the root system of Kac-
Moody Lie algebra with Cartan matrix C. If λ ∈ CI , then R+

λ will
denote the set of positive roots α ∈ NI such that λα =

∑
v∈I λvαv = 0.

Set p(α) = 1 − (1/2)αTCα ∈ Z. Remark that p(α) = 0, if α is a real
root.

In [5] Σλ is defined as the set of all α ∈ R+
λ such that p(α) > p(β(1))+

p(β(2)) + . . . , for any decomposition α = β(1) + β(2) + . . . as a sum of
two or more elements of R+

λ . Put d =
∑t

s=1 ds. If G is a Dynkin graph
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then all roots are real, so p(α) = 0. Thus Σλ is the set of all α ∈ R+
λ for

which there is no decomposition α = β(1) + β(2) + . . . as a sum of two or

more elements of R+
λ . Let d = (d

(s)
j ) ∈ Nd where 1 ≤ s ≤ t; 1 ≤ j ≤ ds

be a vector such that n :=
∑ds

j=1 d
(s)
j is independent of 1 ≤ s ≤ t. Put

α̃[s, r] = n − ∑r
j=1 d

(s)
j , 1 ≤ r ≤ ds − 1, α̃0 = n and let λ[s, j] =

α
(s)
j − α

(s)
j+1, 1 ≤ j ≤ ds − 1, λ0 = γ − (α

(1)
1 + α

(2)
1 + . . . + α

(t)
1 ). We will

write α̃ = α̃(α(1), α(2), . . . , α(t)) and λ = λ(d(1), . . . , d(t)) to emphasize
the dependence of the parameters. As a corollary of [5, Theorem 1] we
obtain the following

Theorem 5. Algebra P(α(1),α(2),...,α(t)),γ has an irreducible representa-

tion in generalized dimension d if and only if α̃(α(1), α(2), . . . , α(t)) ∈
Σλ(d(1),...,d(t)).

5. Multi-parameter algebras

One of the interesting subfamilies of the family of algebras considered
in the previous section is obtained when d1 = d2 = . . . = dt = 1. ∗-
Representations of these algebras has been investigated in [12]. The cor-
responding Coxeter functors are constructed in [12, 16]. They give rise
to certain dynamical systems on the set of parameters (α1, . . . , αn). The
corresponding mapping are called multi-parameter Coxeter maps. Un-
like the one-parameter algebras neither the complete set of parameters
for which representations exist no classification of such representations in
a “discrete case” is obtained yet. Let us write these algebras and their
“abo” analogs explicitly:

Pn,abo,(α1,...,αn) = C〈q1, . . . , qn, q|q2j = qj , q
2 = q,

n∑

j=1

qj = e,

qiqj = δijqi, qjqqj = αjqj for all j = 1, . . . , n〉.

and

Pn,(α1,...,αn) = C〈p1, . . . , pn|
n∑

k=1

αkpk = e, p2
j = pj for all j = 1, . . . , n〉.

Further on we will assume that αj 6= 0 for all j = 1, . . . , n. These are
∗-algebras if we assume all generators to be self-adjoint. If π is a represen-
tation of Pn,(α1,...,αn) on a space H then the vector (d; d1, . . . , dn) where
d = dimH, dj = rankπ(pj) will be called the generalized dimension of π.
Similarly, if π is a representation of Pn,abo,(α1,...,αn) on H then the vector
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(d; d1, . . . , dn) where d = rankπ(q), dj = rankπ(qj) will be called the
generalized dimension of π.

We are going to give an explicit construction of a non-unitarizable
representations of Pn,abo,(τ1,...,τn) when

∑
j τj = n/2 and n is even.

For this consider for 2 ≤ k ≤ n/2 the following vectors

vk = (
(τ1 − 1)(τk − 1)

τ1
, τk − 1, τk − 1, . . . , τk − 1, τk, τk − 1, . . . , τk − 1)

(here τk occurs on the k-th place). For m ∈ {1, n/2 + 2, n/2 + 3, . . . , n}
set vm = τm(1, 1, . . . , 1) and

vn/2+1 = (y, τn/2+1 − 1, . . . , τn/2+1 − 1, τn/2+1, . . . , τn/2+1)

(here τn/2+1 for the first time occurs on the n/2 + 1 place), where

y = (1 − τ1) −
n∑

j=n/2+2

τj +
1 − τ1
τ1

(1 − n/2 +

n/2∑

j=2

τj).

Consider the matrix P with columns vT1 , . . . , v
T
n , i.e.
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


τ1
(τ1−1)(τ2−1)

τ1

(τ1−1)(τ3−1)
τ1

. . .
(τ1−1)(τn/2−1)

τ1

y τn/2+2 . . . τn

τ1 τ2 τ3 − 1 . . . τn/2 − 1 τn/2+1 − 1 τn/2+2 . . . τn

τ1 τ2 − 1 τ3 . . . τn/2 − 1 τn/2+1 − 1 τn/2+2 . . . τn

. . .

τ1 τ2 − 1 τ3 − 1 . . . τn/2 − 1 τn/2+1 τn/2+2 . . . τn




Proposition 2. Let
∑

j τj = n/2, τj 6= 1, τj 6= 0 (1 ≤ j ≤ n) and let n
be even. Then the mapping pj → ejj , p→ P extends to a homomorphism
π : Pn,abo,τ1,...,τn →Mn(C). Moreover, if 〈·, ·〉 is a sesquilinear form such
that 〈π(x)u, v〉 = 〈u, π(x∗)v〉 for all x ∈ Pn,abo,τ1,...,τn and all vectors u, v
then 〈·, ·〉 is zero.

Proof. It is a routine to check that P is an idempotent. Let C be the
matrix of the sesquilinear form 〈·, ·〉 in the standard basis then the con-
dition 〈π(pj)u, v〉 = 〈u, π(pj)v〉 (which is equivalent to Ceii = eTiiC for
all 1 ≤ i ≤ n) implies that C is a diagonal matrix diag(c1, c2, . . . , cn).
We are left with the condition 〈π(p)u, v〉 = 〈u, π(p)v〉 which is equivalent
to CP = P TC. Considering the second rows of these two matrices we
obtain

c3 =
c2(τ3 − 1)

τ2 − 1
, c4 =

c2(τ4 − 1)

τ2 − 1
,

c5 =
c2(τ5 − 1)

τ2 − 1
, . . . , cn

2
+1 =

c2(τn
2
+1 − 1)

τ2 − 1
,

cn
2
+2 =

c2(τn
2
+2)

τ2 − 1
, . . . , cn =

c2τn
τ2 − 1

.

(3)
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Considering the (n2 +1, n)-entry of these matrices we obtain cnτn
2
+1 =

cn
2
+1τn and using (3) we get c2τn

τ2−1τn
2
+1 =

c2(τn
2 +1−1)

τ2−1 τn. This implies c2 =
0. Equations (3) then show that cj = 0 for all 2 ≤ j ≤ n. Considering

the (1, 2)-entry we obtain c1
(τ1−1)(τ2−1)

τ1
= 0 thus c1 is also zero. So

C = 0.

Note that putting τj = 1/2 we obtain a non-unitarizable representa-
tion of the algebra P2n,abo,1/2 and hence (applying the functor generated
by the homomorphism φ2 from Section 2) of the algebra P2n,2 in dimen-
sion n.

It is worth mentioning that the number A =
∑n

i=1 αi changes under
multi-parameter Coxeter map by the rule A → Φ±(A), where Φ+ and
Φ− are the one-parameter Coxeter maps. This justifies the following
definition:

Definition 1. A point α ∈ C \ {0} will be called n-universal if for each
α1, . . . αn ∈ C\{0} with

∑n
j=1 αj = α the algebra Pn,(α1,...,αn) has a finite

dimensional representation.

Theorem 6. If α ∈ R is n-universal then α ∈ Σn ∩ Q.

Proof. If α ∈ R is n-universal then Repfd Pn,{α
n
,...,α

n
} 6= ∅. Obviously,

in this case Repfd Pn,nα 6= ∅. Since the categories Repfd Pn,nα and

Repfd Pn,abo,αn are equivalent we have α
n ∈ Λ̃n,fd = Σ̃n,fd = 1

nΣn ∩ Q

(for the last two equalities see [16]). Thus α ∈ Σn ∩ Q.

Theorem 7. If α ∈ C\{0} is such that there exist α1, . . . αn ∈ C\{0} with∑n
j=1 αj = α and Pn,abo,{α1,...αn} has a finite dimensional representation

in generalized dimension (1, 1, . . . , 1) then α is n-universal.

Proof. From the theorem of Fillmore [6] we know that a matrix C is simi-
lar to a matrix with the main diagonal (β1, . . . βn) if and only if

∑n
j=1 βj =

TrC. The condition that Pn,abo,{α1,...,αn} has a finite-dimensional repre-
sentation in generalized dimension (1, 1, . . . , 1) is equivalent to the exis-
tence of an idempotent n×nmatrixQ with the main diagonal (α1, . . . αn).
By the mentioned above theorem for any (β1, . . . , βn) with

∑n
j=1 βj = α

there is a matrix F similar to Q (hence an idempotent) with the main
diagonal (β1, . . . , βn).

Introduced above notion of universal point is appropriate only for the
category of all finite dimensional representations. If we restrict ourselves
to ∗-representations then no reasonable candidate is known since the
possible vectors of parameters are subject to special linear inequalities.
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But in the case of generalized dimension (1, 1, . . . , 1) the answer follows
from theorems of Schur and Horn (see [1],p.304). Let α = (α1, . . . αn) ∈
Rn and let Oα denote the set of Hermitian matrices with eigenvalues α.
Then the image of the map Φ : Oα → Rn that takes a matrix to its
diagonal is a convex polyhedron whose vertices are n! permutations of α.
Let us denote this polyhedron by Πα.

Theorem 8. The ∗-algebra Pn,(α1,...,αn) has a finite dimensional ∗-represen-
tation in generalized dimension (r; 1, 1, . . . , 1) iff

(α1, . . . , αn) ∈ Π(1,1,...,1,0,0,...,0)

(the subscript vector consists of r 1’s and n− r 0’s.)

Proof. Since the categories of ∗-representations of the algebras
Pn,(α1,...,αn) and Pn,abo,(α1,...,αn) are equivalent (see [16]) and any rep-
resentation of P(α1,...,αn) with generalized dimension vector (r; 1, 1, . . . , 1)
under this equivalence goes to a representation of Pn,abo,(α1,...,αn) with
the same generalized dimension the ∗-algebra Pn,(α1,...,αn) has a finite
dimensional ∗-representation in generalized dimension (r; 1, 1, . . . , 1) if
and only if there is an n × n projection matrix P of rank r with the
main diagonal (α1, . . . , αn). This happens exactly when (α1, . . . , αn) ∈
Π(1,1,...,1,0,0,...,0).
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