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ABSTRACT. We consider the algebras e;11*(Q)e;, where IT* (Q)
is the deformed preprojective algebra of weight A and i is some ver-
tex of @, in the case where @) is an extended Dynkin diagram and
A lies on the hyperplane orthogonal to the minimal positive imag-
inary root 6. We prove that the center of ¢;I1*(Q)e; is isomorphic
to O*(Q), a deformation of the coordinate ring of the Kleinian sin-
gularity that corresponds to Q). We also find a minimal & for which
a standard identity of degree k holds in e;I1*(Q)e;. We prove that
the algebras Ap,  p,.u = Clz1,...,2,|Pi(z;) = 0,21 x; = pe)
make a special case of the algebras e IT*(Q)e, for star-like quivers
Q@ with the origin c.

Introduction

Consider the problem of describing n-tuples of Hermitian operators {A;}
on a Hilbert space satisfying given restrictions on the spectra o(A4;) C M;,
with M; C R being finite, and the relation ) ; A; = pl, where I is the
identity operator and p € R. The study of such n-tuples is equivalent to a
study of x-representations of a certain x-algebra. Dropping the involution,
we arrive at the following class of algebras.

Definition 1. Let Py, ..., P, be complex polynomials in one variable
and p € C. We impose an inessential restriction that P;(0) = 0. Define
the following algebra by

n
APl,---7Pn;M = (C(xl, PN ,xn]Pz(mZ) =0 (7, = 1, .. .,n),Z:{:i = /,L6>.
i=1
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In the joint work of the author with Yu. Samoilenko and M. Vlasenko
(see |1]) we studied some properties of such algebras; we computed the
growth of these algebras and proved existence of polynomial identities in
certain cases (in fact, the finiteness over the center was proved).

These algebras are closely related to the deformed preprojective al-
gebras of W. Crawley-Boevey and M.P. Holland (|2]). We briefly recall
their definition. Let Q be a quiver with a set of vertices, 1.  Write Q for
the double quiver of ), that is, the quiver obtained by adding the reverse
arrow a* : j — i for every arrow a : i — j, and write CQ for its path
algebra, which has the paths in @ as a basis, including the trivial paths
e; for each vertex i. If A = ()\;) € C/, then the deformed preprojective
algebra of weight A is

Q) =CQ/( Y, [aa]-N),
a€Arrows(Q)

where Arrows(@) denotes the set of arrows of @, and A is identified with
the element ) . Ae;.
Let A= Ap,, . p,;u Consider a quiver Q(A) with the vertices

I={@Gjli=1,...,n,j=1,...,deg P, — 1} U{c}
and the arrows
{aij : (Z7]) —>(Z7]_1)|Z:177n7]:177degR_1}7

where (i,0) is identified with ¢ for i =1,...,n.

(1,1) <= (1,2) <— - <z (1, deg Py — 1)
aii
o (1) < (2.2) =+ < (2. deg Py — 1)
anl
(n,1) < (n,2) =— o degg)n deg P, — 1)

Note that the graph @ coincides with the graph of algebra A, con-
sidered in [1]. Below is an example of the quiver @ for the case n = 3,
deg Py =2, deg P, =3, deg P3s = 2:

ail az1 az?
€11 €c €21 < €22

TCLSI

€31
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The first result establishes a connection between the algebras Ap, . p,..
and the deformed preprojective algebras.

Theorem 1. The algebra A = Ap,, . p,.u is isomorphic to eJJ1MQ)e.
under the isomorphism sending z; to ajal; for Q@ = Q(A) and

n deg Pi—1
A=D1 ) (a1 — aieij + e,
i=1 =1
where a;o, 41, . . ., Qideg P;—1 are all roots of the polynomial P; taken with

multiplicities in any order with oo = 0.

Consider the case when the graph @ is an extended Dynkin diagram of
type An, Dn, or E The following pictures show all such graphs together
with coordinates of the so-called minimal imaginary root § € C!. The
boxed vertex is the extending vertex.

Ap
\
D,
1/2 2\1
1
Eg
1 2 3 2
1——2
Er
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3

It was proved in [2] that TIN(Q) is a PI-algebra (for PI algebras, see
[3]) if and only if 6 - A = 0. The authors in [2] also studied the algebra
OMQ), which is egIT*(Q)eg where the 0-th vertex is the extending vertex
of @, and proved that this algebra is commutative if and only if §- A = 0.
For A\ = 0, the algebra O°(Q) coincides with the coordinate ring of the
corresponding Kleinian singularity.

In this paper we consider the algebras e;I1*e; for an arbitrary i € I.
For the case § - A = 0, we study the center of this algebra and find the
minimal number k for which it has a standard identity of degree k, that

is,
k

Z sign(m) Hxﬁ(i) =0.

TESE =1

We denote by Si the group of permutations on & elements.
We will prove the following theorems.

Theorem 2. If Q) is an extended Dynkin diagram ;l\;, bvn or E;, 0-A=0,
and i € I is some vertex in Q, then the center of e;ITN(Q)e; is isomorphic
to OMNQ) = eolTIN(Q)eq, where the 0-th vertex is the extending vertex of

Q.

Theorem 3. IfQ is an extended Dynkin diagram ;4;, ]j)vn or E\;, d-A=0,
and i € I is some vertex in Q, then e;I1e; possesses a standard identity
of degree 20; and it is the minimal number with such a property.

Theorem 3 was proved for the partial case of the diagram Dy in [4]
using different approach.

1. Representations of groups

Let V be a two-dimensional complex vector space with a simplectic form
w. Let G be a finite subgroup of SL(V'). Let irreducible representations
of G be precisely {V; }ier, where I = {0,1,2,...,n} with V{ denoting the
trivial representation. Suppose that

7j=1
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Then the McKay graph of G is defined to be a graph with the set of
vertices I and the number of edges between the vertices i and j equal
to m;; (we always have m;; = mj;). According to J. McKay [5], the
McKay graphs of finite subgroups of SL(V) are extended Dynkin dia-
grams; :4; for cyclic groups, l’)vn for dihedral groups and Ev@, E;, Eé for
binary tetrahedral, octahedral and icosahedral groups. Dimensions of ir-
reducible representations are dimV; = §;. Fixing an orientation of the
McKay graph of G we obtain a quiver Q.

Let M be some CG-module. Consider the vector space Fy(M) =
T(V*)® M, where

T(V*) =Pve
=0

is the tensor algebra of V*.

Equip Fo(M) with the componentwise action of G. Then we can
consider the subspace of G-invariant vectors, F(M) = Fy(M)%. Note
that if M is an algebra and the multiplication respects the action of G,
then both Fy(M) and F(M) become graded algebras with the grading
Fo(M); = V**' @ M and F(M); = (Fo(M);)“. Consider the algebra
F(Endc(Vx)), where Vy is the direct sum of all irreducible CG-modules
and G acts on Endc(Vy) by conjugation. Clearly F'(Endc(Vs))o coincides
with (Ende(Vs))® which, in its turn, can be identified with C’. Our aim
is to build a graded algebra isomorphism ¢ from CQ to F(Endc(V%))
such that

¢ is an identity on C?,

o 3 faa)) = bw. ()

a€Arrows(Q)
We accomplish this in two steps.
Lemma 1. The natural homomorphism
F(Endc(Vs))i @F(Ende (ve))o F(Ende(Vs)); — F(Ende(Vs))it;
18 an isomorphism
Proof. We make some identifications,
F(Endg(Vs))i = (V*¥ @ Endg(Vs))¢ = Home (Ve, V' @ Vi)
= @ Home(C, C*),

el

where '
el
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F(Endc(Vy))j = (V*® @ Ende (V)Y = Homg (VS @ Vg, V)
=~ (P Homc(C", €),
el
where .
Vo Ve = PV
el

F(Endc(VE))i+]’ = (V*®(i+j) ® EndC(VE))G

= Homg(V® ® Vs, V' @ Vi) = @D Home (C%, C%).
el
Recall that
F(Endc(Ve))o = @D C.
el

Now the statement is clear. O

This lemma implies that the natural homomorphism from the tensor
algebra of F(Endc(Vx))1 over F(Endc(Vy))o to F(Endc(Vy)) is an iso-
morphism. The graded algebra CQ possesses the same property, so it is
clear that for constructing an isomorphism of the graded algebras which
would be an identity on C!, it is necessary and sufficient to establish
an isomorphism of subbimodules of degree 1. Decompose F(Endc¢(Vs));
with respect to the primitive idempotents of C’,

F(Endc(Ve))1 = (V* ® Ende(V5))9 = @D Homa(V @ V;, V).
1,5€1

Clearly Homg (V@V}, Vj) is zero if there are no arrows from i to j in @ and
is one dimensional if there is an arrow from i to j in Q. A subbimodule
of C! of degree 1 has a similar decomposition. So any assignment a —

¢(a) € Homg(V @ V;, Vj), p(a) # 0 for a € Arrows(Q), induces some
isomorphism of the graded algebras, ¢ : CQ — F(Endc¢(Vs)).

Proposition 1. For every arrow a : i — j of Q choose any nonzero
representative p(a) € Homg(V ® V;, V). It is possible to choose p(a*) €
Homg(V;, V* ® V;) such that

tr((e @ Idy;)p(a*)p(a)) = dim V; dim Vj},
where v : V* — V. is such that
f(x) =w((f),z) for fEV* andz € V.

This induces an isomorphism of the algebras which satisfies property (*).
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Proof. Let us first consider the possibility of choosing the above ¢(a*).
In the decomposition of V' ® V; into the direct sum of indecomposable
CG-modules, Vj occurs exactly once so, if we choose any nonzero ¢(a*) €
Homg(V ® Vi, V;), we obtain that

(e @ 1dy;)ip(a”)p(a)

is a projection on V; in V ® V; multiplied by some complex constant, so
its trace is nonzero and multiplying by a factor it is possible to make the
trace to take any complex value. We only needed check that

Y [ela),pla")] = bw.

a€Arrows(Q)

Choose some vertex i and multiply both sides by e; to get

Y. wl@e@) - > pa)pla) = siwe;. (1)
Jj€l, a:—>1, Jel aii—j,
ac€Arrows(Q) a€Arrows(Q)
Both sides belong to Homg(V ® V ® V;,V;), which can be identified
with Homg(V @ V;, V* @ V;) by “lifting” the first element of the tensor
product. Apply ¢ ® Idy, to both sides. Since (w(z))(y) = w(y,z) and
(w(x))(y) = w(t(w(x)),y), we have that ¢(w(z)) = —x and

(L ® Idv;)(siwei = —; IdV@Vi .

Recall that each (¢®@Idy;)¢(a)p(a*) and (¢@1Idy;)p(a*)e(a), which occur
in (1), is a projection onto the summand V; multiplied by some complex
number where j is another endpoint of a distinct from ¢. Denote this
projection by p;. Then

tr((c ® Idy; )p(a)p(a”))
dim V;

(e @ Idy; )p(a)p(a®) = p; and

—tr((e © ldv; )p(a*)p(a))

—(e®Idy;)p(a*)p(a) = dim V;

bj-
By definition,

(0 @ 1y, )p(a*)p(a)) = dim Vi dim V.
There is an identity,

tr((t ® Idy;)zy) = — tr((¢ @ Idy; )yz),
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which holds for every € Homc(V ® Vj, V;) and y € Home(V ® V3, ;).
It is enough to check this identity for x = f1 ® ¢ and y = fo ® yo, where
fla f2 € V*a To € HomC(‘/}')%)v and Yo € HOIH(C(V;', Vj))

tr((e @ Idy; )zy) = tr(e(f1) f2 ® zoyo) = f2(¢(f1)) tr(zoyo)
= w(t(f2),e(f1)) tr(zoyo) = —w(e(f1), t(f2)) tr(yoxo)
= —f1(e(f2)) tr(yozo) = — tr(e(f2) f1 @ yowo) = — tr((¢ ® Idy; )yz).

Using this identity we have
(0 @ Ty, )p(a)p(a*)) = — tr((¢ @ Ty, )p(a*)p(a) = — dim V; dim V.

It follows that ¢ ® Idy;, applied to left-hand side of (1), equals

—dimV; Z pj = —dim V;Idygy;,
Jj€l, axi—y,
a€Arrows(Q)
and recalling that ¢; = dim V; we finish the proof. O

The next corollary summarizes the results obtained in this section.

Corollary 1. The algebra I (Q) is isomorphic to the algebra
(T(V*) ® Endc(V5))C /(6w — A).

Moreover, this is an isomorphism of filtered algebras with the filtrations
induced by the gradings of CQ and T(V*).

2. The case A =0

In this section we are going to prove Theorems 2 and 3 in the case where
A = 0. The key result is the following lemma.

Lemma 2. The algebra I1°(Q) is isomorphic to the algebra of polynomial
G-equivariant maps from V to Endc(Vy), that is, to the algebra

(Sym(V*) ® Endc(V5))%,

where Sym(V™*) is the algebra of symmetric tensors over V*. Moreover,
this is an isomorphism of graded algebras.

Proof. We already know that I1°(Q) is isomorphic to

(T(V*) ® Endc(Vs))¢/(6w) = (T(V*) @ Ende(Vs))9 /w.
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Since

Sym(V*) ® End¢(Vs) =
= (T(V*)/w) ® Endc(V) = (T(V") @ Endc(Ve))/w,
it is sufficient to prove that the idempotent
P
geG

maps the ideal generated by w in T(V*) ® Endc(Vs) into the ideal
generated by w in (T(V*) ® Endc (V). To prove this, take some
f € V* @Endc(Vs), g € V*® ® Endc(Vs), and consider £(fwg). Note
that fwg is antisymmetric in the (¢ + 1)-th and (i 4+ 2)-th arguments.
It follows that e(fwg) is antisymmetric in the (i + 1)-th and (i 4+ 2)-th
argument as well. Since

e(fwg) € (V**UH#2) @ Endc(Vs))%,
and we know from Lemma 1 that
(V*OUH+2) @ Endc(Ve))Y = (V*¥' ® Endc(Vs))?
®ce (V2 @ Ende(Vx)) ®@ce (V¥ @ Ende(Vs))C,

we can decompose
e(fwg) Z Jewr g

with fr € (V*® @ Endc(V5))%, gr € (V*¥ @ Endc (V)Y and wy, €
(V*®2 @ Endc(Vx))Y. Denote by 7 the operator acting on elements of
(V*@(i+i+2) @ Ende(Vs))C by interchanging the (i + 1)-th and (i + 2)-th
arguments. Then

e(fwg) = Z Frwign

with wj obtained from wj by 1nterchanglng the first two arguments.
Hence,

| —
M=

e(fwg) = %(dfwg) —re(fwg)) = =

fie(wk — wy,) gk
=1

Since wi, — wy, € Homg(V @ V, Endc(Vy)) is antisymmetric and V' is two
dimensional, it can be represented as wzy with 2, € Ende(Vs)Y. Thus

e(fwg) Z Jewrgr
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with fi, 3 and g; from (T(V*) ® Endc(Vs))®. This completes the
proof. [

The next propositions follow immediately.

Proposition 2. The algebra e;11°(Q)e; is isomorphic to the algebra of
polynomial G-equivariant maps from V to Endc(V;) for any i € I. In
particular, O(Q) = eol1%(Q)eq is isomorphic to the algebra of invariants
of G on V.

Proposition 3. The algebra e;11°(Q)e; has a standard identity of degree
20; for any i € 1.

Proposition 4. There is a graded inclusion from egl1%(Q)eq to the center
of I°(Q), and the graded inclusions from egll’(Q)eqg to the center of
e119(Q)e;, for i € I, are induced by the inclusions C C Endc(Vs) and
C C End¢(V;), correspondingly.

For any i € I and x € V denote by u;(z) the subset of Endc(V;)
defined by

pi(x) = {f(x)|f is a polynomial G-equivariant map from V' to Endc(V;)}.
In what follows we will need the following statement.

Lemma 3. The set of x € V such that pi(z) = Endc(V;) is algebraically
dense for any i € 1.

Proof. Suppose f : V — C is a non-constant G-invariant polynomial
function. Then its differential df is a polynomial G-equivariant map from
V to V*. Denote by U the set of z € V for which (df (z))(z) # 0. Clearly
U is open and U is not empty since (df(z))(x) = 0 implies that f is a
constant. Denote by U’ the subset of U of all z such that f(x) # 0. Since
U’ is open and not empty, it is dense. We will prove that every x from U’
satisfies the required condition. So let f(z) # 0 and let (df(z))(x) # 0.
Then «df(x) € V (v : V* — V is such that w(e(y1),y2) = y1(y2) for
every y1 € V* and y2 € V') is not a multiple of x because if idf (x) = Cx,
C € C, then

(df (x))(x) = w(udf (z), 2) = w(Ci, ) = 0.

It follows that f(z)z and tdf (z) span V. Since g1 : V. — V defined by
91(y) = f(y)y and go : V. — V defined by ¢2(y) = df (y) are polynomial
and G-equivariant we have that every element of V is a value in z of
some polynomial G-equivariant map from V to V. It follows that for
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every k every element of V® is a value in = of some polynomial G-
equivariant map from V to V®*. Since every finite dimensional CG-
module is a submodule of V®* for some k, the statement holds for every
finite dimensional CG-module, in particular for Endc(V4). O

This lemma implies that there is no k < 24; such that e;,11°(Q)e; has
a standard identity of degree k (since some factor of e;11°(Q)e; is the
algebra of §; x §;-matrices). Moreover, this implies that every polynomial
map from V' to Endc(V;) commuting with all G-equivariant polynomial
maps from V' to Endc(V;) takes only scalar values, and thus the inclusion
in Proposition 4 is in fact an isomorphism.

Corollary 2. Theorems 2 and 3 hold for A= 0.

3. Regularity of the multiplication law

Denote by S, the C’-bimodule (Sym™(V*) ® Endc(V%))%, by S the
graded algebra (Sym(V*)®Endc(V5))Y, by T;, the C!-bimodule (V*®"®
Endc(Vs))%, and by T the graded algebra (T'(V*) @ Endc(Vs))€. In this
section we will show that all algebras of the family I1*(Q) can be identi-
fied with an algebra that is S as a vector space and the multiplication law
in it polynomially depends on A. For every k = 0,1,2,..., we construct
an operator

k
71'2\ : Tk, — @ Sz
i=0
such that

1. m(z) =z for @ € Sk;

2. m(z) =2 mod dw — A for any z € Tj;
3. w,i‘(mlwxg) = 71'2‘72@15_1)\1‘2) for any x1 € T; and x2 € T with

t+j=Fk—2;
4. m(x) polynomially depends on .

Then the family of operators 7r,;\ define an operator m acting from T to S.
It is clear that 7 is a projection with the image S, the second property
of 7 guarantees that 7*(z) is equivalent to x in the algebra I1*(Q),
whereas the third property implies that elements equivalent in II*(Q) are
mapped into identical elements. Combining this gives an isomorphism
between II*(Q) and S as filtered vector spaces, and the multiplication in
[I(Q) is carried over to S to give

zxy=m\(z®y),
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which polynomially depends on A. It remains to show that the family of
operators with properties (1) — (4) exists.

Clearly, for £ = 0 and k£ = 1 we can take the identity operators. Then
we prove existence of 7r,i‘ by induction. Fix some A\ € C! and an integer
k>2 Fori=1,...,k— 1, define the operators

k—2 k—2
Ti:Tk@@Sj %Tk@@sj
j=0 j=0

by setting

Ti(z) =0ifz € EB?;S S,

7i(z) = 0 if z € T and x is symmetric with respect to the i-th and
(7 + 1)-th arguments,

Ti(fwg) = fwg — 7y 2(f5 " Ag).

This defines 7; for x € T}, such that = is antisymmetric with respect
to the i-th and (i + 1)-th arguments. Put p; = 1 — 27;. We prove the
following fact.

Proposition 5. The family of operators (p;) satisfy the following condi-
tions:

1. p}=1,
2. pipj = pjpi for |i —j| > 1,
3. PiPi+1Pi = Pit1PiPit+1;
so (p;i) induce a representation of the group of permutations of k elements.

Proof. Property (1) is easy. Consider the property (2). Assume j > i. It
is enough to check the property for argument of the form

r= fiwfowfs for f1 €T 1, fo €Tj i 2, f3€TH_j_1.
Then

pipix — pipix = 2(frwfod ' Afs — frw foa6 T A f3)
=15 (10 N2 INf3) — T A (F10TIN 26T N f3) = 0

by the induction hypothesis. Consider the property (3). Denote by p},
1=1,2,...,k—1, the operator in T} that acts on « € T}, by interchanging
the i-th and (7 + 1)-th arguments. Then, clearly the operators p) satisfy
conditions (1) — (3). Choose some i # k — 1. Since there is no element of
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T} which is antisymmetric with respect to the arguments ¢, ¢ + 1, 7 + 2,
the following operator vanishes on T}:

1= pi = Piga = PP + Pipir + Pigaps = 0.
If we substitute p, = 1 — 27/ we obtain that

1 1
/1 /I / / /_! _ /
TiTiv1T = 1%’ and 7,1 TiTi = ETiJrl

If we prove that

1 .
TiTjTi:ZTi for |Z—j|:1,
then property (3) would follow. But if | — j| = 1, then

_ 2 _ Il 1 ! 1 2 _ 1
TiTiTy = T; TjTy = TiTiTjTi = ZTiTi = ZTi = ZTZ"
here we consider 7/, m = 1,2,...,k— 1, as an operator on T}, @ @;:02 S;
which acts as zero on the component 69?:—02 S; and use the equality
Ty Tma = Ty Typ, Which is valid for mq,me =1,2,...,k — 1. O

Consider the representation of the group of permutations of k ele-
ments, Sk, given by the operators p;. Denote by & the image of the

element )
E = g Z g
oESE

of the group algebra CS;. Then we can expand every ¢ as a product of
the operators p;, substitute p; = 1 — 27;, and represent

k—1
E=1+ Z TiTij Ty, (2)
i =1

where z;; are some operators. Then put W’;J) = éx for x € T,. Let us
check the required properties for 7r’f\. The property (1) follows from (2)
and the fact that all 7; vanish on elements of Si. Since all images of 7;
belong to the ideal generated by dw — A, the property (2) follows. The

property (3) is true, since & = £p;4; implies that € = £(1 — 7;4;) and

é(xlwxg) = 5(1 — 7'7;_;_1)(1‘1(4}.%'2) = §7r'f\_2(x15_1)\x2) = 7r§‘2(3:15_1)\x2).
The property (4) is obvious, so we have proved

Proposition 6. A family of operators 71'])\‘7 satisfying properties (1) — (4)
exists.
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An immediate corollary is

Corollary 3. Every algebra TIN(Q) is isomorphic, as a filtered algebra,
to S with multiplication law x* which polynomially depends on X and is
such that for any homogeneous x of degree i and homogeneous y of degree
j the term of degree i + j in x x*y does not depend on .

4. Generic )\

Using Corollary 3 we identify II*(Q) with S equipped with a multiplica-
tion that depends on A polynomially. Denote this multiplication by x*.
Sometimes, if \ is fixed, we will omit the sign x* and simply write xy
instead of x x* y keeping in mind that the result depends on A polyno-
mially. In this section we will prove the statements of Theorems 2 and 3
for some algebraically dense subset of the set

n={ eCl:x-6 =0}

Proposition 7. There exist elements fi,..., fn and g1,...,9n 10 S and
rational functions o, ..., a, defined on n such that

n
D aiW)fi xNeg xNgi =1
=1

for each X from some algebraically dense subset of 1.

Proof. 1t easily follows from the definition of the deformed preprojective
algebra that

IINQ) /TN Q)eoIN(Q) = TV (Q)),

where Q' is the Dynkin diagram obtained from @ by deleting the vertex
0 and X is the restriction of A to the vertices of @’. It was proved in [2]
that the deformed preprojective algebra of a Dynkin diagram is always
finite dimensional and is zero for all parameters except for a number of
hyperplanes. We will use the following facts:

1. the homogeneous subspace S x%eq x" S of S has finite codimension,

2. there exists Ag € 1 such that S X0 g xA0 § =G,

Choose some basis in S x° eg x? S of the form (a; x° eg x° b;) where i

ranges over the set of positive integers and all a; and b; are homogeneous
elements of S. It follows from the first statement that we can add some
finite number of homogeneous elements of S, x1, x2, ..., 5, such that
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0

z; and a; x° eg x0 b; together form a basis of S. Now, for X € 7 consider

the set

B()\):{xz\z:l,,n}u{az X/\eo X/\bi|i:1,2,...}.

It is again a basis of S, because each a; XA eg XA b; is equal to the sum of
a; xY eg x° b; and some terms of lower degree. Moreover, every element
of S, being expanded with respect to this basis, has all coefficients that
are polynomial in A.

It follows from the statement (2) that there exists some Ag such that

fori=1,...,n,
K;

k oA Xo Kk
%:Zfz X% eg X g,

k=1

where all f¥ and g¥ are elements of S. Consider elements y;(\) € S for
1 =1,...,n defined by

yi(A\) = Zflk x*eg x* gk,

Consider an n x n matrix Z(X) = (2;;())), where z;;()) is the value of
the coefficient at z; in the expansion of y;(A) with respect to the basis
B(X). We have the following expansion of y;(\) with respect to the basis
B(\):

K;
kax eox g] Z’ZU xﬁ—Zc]k akx ey X bk

k=1

for some polynomial functions of A ¢;j(\). Rewrite this as

n
Zzij(/\)%‘ T ka xA eg x* gJ Zc]k )ak x* eg X by
i=1

k=1

and consider it as a system of linear equations with indeterminates
x1,...,Tn. Clearly it can be solved for A if det Z(\) # 0 and the so-
lution will depend on A rationally. If we expand 1 with respect to the
basis B(A) and then use this solution we obtain the required expansion.
The set of A € n for which det Z(\) # 0 is open. It is nonempty since
Z(Xo) is the identity matrix, hence this set is dense. This completes the
proof. O

Denote by 7/ the subset of i for which we the proposition above holds.
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Proposition 8. For every A € 1 and every x € OMQ) = eglTN(Q)eg
there exists z(z) in the center of TIN(Q) such that egz(x)eq = .

Proof. Put
Z Oéz fzxgz

Then

epz(x)eg = E a;(Neg fixgieo = § a;(N)z fieogieo = x,

=1
since OA(Q) is commutative. Again, using commutativity of O*(Q) for
any y € S we have

yz(z) = Zai(/\)yfi:rgi = Z a;(N)og(A) fieogiy fizgs
i—1

'J—l
n

=Y ai(Nay( ) fizgy fieogi = Zaj )izgzy = 2(x)y.

i,j=1
O

Proposition 9. For every A € ' and every q € I, the algebra eqH’\(Q)eq
has a standard identity of degree 20,.

Proof. For x € S, construct an n x n matrix M (x) over O(Q) with the
elements

mij(x) = ai(A)eogiz fjeo.
Then for z,y € S the matrix M ()M (y) has elements

> ma(@)mig(y) = Y ci(Neogiz freoor(Neogry fieo

= ai(Neogizy fieo = maj(zy),
M(xy) = M (x)M (y).

Denote by p the matrix M(1). Clearly p is an idempotent and M defines a
homomorphism from I*(Q) to p Mat(n, O*(Q))p, where Mat(n, ONQ))
denotes the algebra of n x n matrices over O*(Q). Construct the inverse
map N : Mat(n, OMQ)) — S. Let A = (a;;) and set

N(A) =) aj(\) fiaijg;.
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Then we can check that

N(M(z)) = > aj(\) fii(Neogiz fieog; =
ij—1

and
n

mig(N(A)) = Y ai(Neogion(N) frarigifieo,
k=1
which implies that
M(N(A)) = pAp.

This proves that M is an isomorphism. The algebra O*(Q) is a domain
(see [2]). Hence it can be embedded into its field of fractions, F. So
the algebra p Mat(n, O*(Q))p can be embedded into p Mat(n, F)p that is
isomorphic to Mat(r, F') where r is the rank of p in Mat(n, F'). Denote
by p, the matrix M(e,) for ¢ € I. In a similar way, e,I1*(Q)e, can be
embedded into Mat(ry, F') where 74 is the rank of p, in Mat(n, F'). On
the other hand, r, = trp, which is a rational function of A. Since 7,
can accept only a finite number of values on the dense set 7/, namely
1,2,...,n, it is constant. In II*(Q),

Z [a,a*] = Z/\qeq.

a€Arrows(Q) qel
Hence
Z AJrd trz Agpg = 0.
qel qel

Since this equality holds for all A from 7/, which is dense in 7, there is a
constant ¢ € C such that r4 = cd, for ¢ € I. For ¢ =0,

po = M(eg) = (ai(AN)eogieofieo),

so po has rank 1. This implies that ¢ = 1 and r, = d,. We have proved
that the algebra eqHAeq for A € 1/, ¢ € I, is isomorphic to some subal-
gebra of the algebra of J, x J, matrices over the field F', so a standard
identity of degree 20, is satisfied by the Amitsur-Levitzki theorem. [

5. Extending to the whole hyperplane

To finish the proof of Theorems 2 and 3, we need to take several steps.

Proposition 10. For any A\ € C! such that -6 =0 and any i € I, the
algebra e;I1N(Q)e; satisfies a standard identity of degree 25;.
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Proof. For x1,...x95, € €;5¢;, the sum

Z sign(o)xq) xA XA To(25,)
0—68252'

is zero on an algebraically dense subset of A € C/, A\- 6 = 0. Since it is
polynomial in A, it is zero for all A € C/, \- 6 = 0. O

Proposition 11. For every A € n and every x € OMNQ) there exists a
unique z(x) in the center of IIN(Q) such that epz(x)eg = .

Proof. First note that if such z(x) exists, then it is unique. Suppose the
contrary. Then there exists a in the center of II*(Q) such that ega = 0.
Suppose e;a # 0. Then, since IT(Q) is prime (see [2]), there exists y €
1M (Q) such that egye;a # 0. Rewrite it as egaye; and get a contradiction.

Then note that the degree of z(x) is not greater than that of x. Let
z(z)" be the term with a maximal degree of z(x) and suppose that the de-
gree of z(x)' is greater than that of x. Clearly z(z)" belongs to the center
of I°(Q), but egz(x)’eg = 0 which, contradicts the previous remark.

The algebra IT(Q) is finitely generated and for any z, since the degree
of z(x) is bounded, the problem of finding such z(z) for any fixed x is
equivalent to solving some finite system of linear equations. Coefficients
of the system depend on A polynomially. Suppose that the system has
m equations and n indeterminates. Consider the set W of A for which
the system has a unique solution. The system has a unique solution if
and only if there exist equations 71, 12,...,%, in the system such that
the subsystem 41,49, ...,%, is nondegenerate (the set U of A for which
this is true is open) and a solution of the equations i1, s, ..., satisfies
other equations (the set of A for which this is true is closed in U). Thus
we obtain a sequence of open sets U1, Us,...,Uy and a sequence of sets
Vi, Va,..., VN, each V; being closed in the corresponding U;. It follows
that W is covered by Uy, Us, ..., Uy and the intersection of W with each
U, is closed. So W is a closed set in the union of Uy, Us,...U,, hence it
is an intersection of some open set and some closed set.

Applying Proposition 8 and the first remark in this proof we obtain
that W is an open set. Using Proposition 4 and the first remark we
obtain that W contains some neighborhood of zero. So for any x € eySeg
and any A there exists some constant ¢ € C such that there is 2/(x) € S
that belongs to the center of II°*(Q) and ep2/(z)eg = z. Let x be a
homogeneous element of degree k. Define an operator ¢ on T as the
multiplication by ¢2 on each T),. Then ¢ is an automorphism of the
algebra T' and it maps dw—c\ to cdw—cA. It follows that ¢(z'(x)) belongs
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to the center of ITMQ) and egp(2'(x))eg = cgm, so z(xz) = ¢(2'(z))e™
belongs to the center of IT*(Q) and egz(z)eq = . O

Proof of Theorem 2. For any A € C!, \-6 = 0, take a map ¢, from O*(Q)
to the center of TI*(Q) such that eggy(x)eg = = for all 2 € OMNQ). By
Proposition 11, ¢, is uniquely defined by this property, so it is linear.
If 2,y € OMQ), then ¢x(x)px(y) belongs to the center of TT*(Q) and
eodr(x)dx(y)eo = xy, so again by Proposition 11, ¢x(zy) = i (z)dr(y).
Clearly, ¢x(ep) = 1. So ¢, is a homomorphism. The homomorphism ¢
is an inclusion, since for any z € O*NQ), = = egpx(z)eo.

For any i € I, put ¢S (z) = e;px(z) for x. € OMQ). Then it is easy to
check that ¢} is a homomorphism from the algebra OMQ) to the center
of e;11*(Q)e;. It is an inclusion, since I1*(Q) is prime (see [2]), so if x # 0
belongs to the center of II*(Q), then there exists y € II*(Q) such that
e;yr # 0 and, hence, e;x # 0.

To prove that qbf\ is surjective, suppose that x belongs to the center
of e;TIN(Q)e;, x does not belong to the image of ¢}, and has the smallest
possible degree. Let 2’ be the term of highest degree of z (we again
identify TT*(Q) with S). Then 2’ belongs to the center of ¢;,11°(Q)e; and
thus there is a homogeneous y € O*(Q) such that 2’ = ¢i(y) (it follows at
once from Corollary 2 that ¢} is surjective). Consider z = ¢,(y) and 2/,
the term of the highest degree in z. Then 2’ is in the center of I1°(Q) and
ep?'eq is zero or equal to y. The first case is impossible due to Proposition
11. Thus 2’ = ¢o(y) and the term of the maximal degree of ¢} (y) = e;z2¢;
equals 2. It follows that z — ¢f\(y) has degree lower than x and does not
belong to the image of ¢%, thus obtaining a contradiction. O

Proof of Theorem 3. The statement of Theorem 3 follows from Proposi-
tion 10 and the fact that if k is such that

Z sign(o)zq(1) XA To) =0
oESK

for any z1,®g, ...,z € €;Se;, then denoting by  the term of the maxi-
mal degree of z; we get

Z sign(a)x;(l) x0 . %0 :c;(k) =0,
oESk

so from Corollary 2 we get that k > 24;. O
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6. The proof of theorem 1

Consider a quiver C),, with n vertices, I = {1,2,...,n}, which form a
chain,
n n—1 n—2 o 1
aAn—1 An—2 a1
Suppose we have a sequence of complex numbers A = (\;),i =1,...,n—1.

Consider the algebra
n—2
R) =e, <CC_n/(Z[aZ, a;l —ay_jap—1 — Z)\ ei) ) €n-
i=1

Proposition 12. The algebra R) is isomorphic to the algebra Clx]/P(z)
via an isomorphism sending x to an—1a),_,, where P(z) is a polynomial
given by

P)=z(x+ Ap—1)(@+ A1 + Ap—2) ... (x + Z Ai).

Proof. If n = 1 both algebras are isomorphic to C. We proceed by in-
duction. For n > 1, the algebra R,AL splits as a vector space,

n—1 n—1
R) =C@®an—1en1 (CQ/(Z[% a;] =an_1an-1 — Z/M‘&)) €n—10y_1.
i=1 i=1

Then,

n—1
€n—1 (Ccn/(z:[au *] a, —10n—1 — Z)\ € ) €n—1

i=1
= (Rgfl * Clay,_1an-1])/(an—20y_o — 5 _1an-1 — An—1€n-1),

where * denotes the free product of algebras. By the induction hypothesis,
the latter is isomorphic to

(Clan—2ay, o]/ P~ (an—2a5,_2) * Clay, _1an—1])
[(an—2ay, o —ay_10n-1 — Ap—1€n-1)

for
n—2

P (z) =z(x 4+ M—2) (@ + M2+ Ap—3) ... (z + Z Ai)s
i=1
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SO

|
—

n

€En—1 (CC’n/(

™

e L

n—1
las, a;] — ay_1an—1 — Z iei) | en—1
=1

7

Clay_1an-1]/P~ (ap_1an—1+ A—1),
and therefore,

R) = Clan_1a’_]/(P™ (an—1a’_| + An—1)an_1a’_;)
and it can be easily seen that

P~ (ap—1a),_1 + Ap—1)an—1a; 1 = P(ap—1a,_;).

O

The theorem is now valid because e.II*(Q)e., defined as in the state-
ment of the theorem, is isomorphic to the free product of the algebras
Ré‘;g p,—1 factored by the relation

n

* —_
E Q1041 = HEc,
i=1

where

i
A = (Qideg Pi—2 = Qlideg Pi—1, - - - » 01 — (2, —0¥i1)

and, by Proposition 12, each R(’};g p,—1 is isomorphic to

Clairaj;]/ Pi(aiagy).
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