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Abstract. We consider the algebras eiΠ
λ(Q)ei, where Πλ(Q)

is the deformed preprojective algebra of weight λ and i is some ver-

tex of Q, in the case where Q is an extended Dynkin diagram and

λ lies on the hyperplane orthogonal to the minimal positive imag-

inary root δ. We prove that the center of eiΠ
λ(Q)ei is isomorphic

to Oλ(Q), a deformation of the coordinate ring of the Kleinian sin-

gularity that corresponds to Q. We also find a minimal k for which

a standard identity of degree k holds in eiΠ
λ(Q)ei. We prove that

the algebras AP1,...,Pn;µ = C〈x1, . . . , xn|Pi(xi) = 0,
∑n

i=1 xi = µe〉
make a special case of the algebras ecΠ

λ(Q)ec for star-like quivers

Q with the origin c.

Introduction

Consider the problem of describing n-tuples of Hermitian operators {Ai}
on a Hilbert space satisfying given restrictions on the spectra σ(Ai) ⊂Mi,
with Mi ⊂ R being finite, and the relation

∑n
i=1 Ai = µI, where I is the

identity operator and µ ∈ R. The study of such n-tuples is equivalent to a
study of ∗-representations of a certain ∗-algebra. Dropping the involution,
we arrive at the following class of algebras.

Definition 1. Let P1, . . . , Pn be complex polynomials in one variable
and µ ∈ C. We impose an inessential restriction that Pi(0) = 0. Define
the following algebra by

AP1,...,Pn;µ = C〈x1, . . . , xn|Pi(xi) = 0 (i = 1, . . . , n),
n∑

i=1

xi = µe〉.
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In the joint work of the author with Yu. Samoilenko and M. Vlasenko
(see [1]) we studied some properties of such algebras; we computed the
growth of these algebras and proved existence of polynomial identities in
certain cases (in fact, the finiteness over the center was proved).

These algebras are closely related to the deformed preprojective al-
gebras of W. Crawley-Boevey and M.P. Holland ([2]). We briefly recall
their definition. Let Q be a quiver with a set of vertices, I. Write Q̄ for
the double quiver of Q, that is, the quiver obtained by adding the reverse
arrow a∗ : j −→ i for every arrow a : i −→ j, and write CQ̄ for its path
algebra, which has the paths in Q̄ as a basis, including the trivial paths
ei for each vertex i. If λ = (λi) ∈ C

I , then the deformed preprojective
algebra of weight λ is

Πλ(Q) = CQ̄/(
∑

a∈Arrows(Q)

[a, a∗]− λ),

where Arrows(Q) denotes the set of arrows of Q, and λ is identified with
the element

∑
i∈I λiei.

Let A = AP1,...,Pn;µ. Consider a quiver Q(A) with the vertices

I = {(i, j)|i = 1, . . . , n, j = 1, . . . ,deg Pi − 1} ∪ {c}

and the arrows

{aij : (i, j) −→ (i, j − 1)|i = 1, . . . , n, j = 1, . . . ,deg Pi − 1},

where (i, 0) is identified with c for i = 1, . . . , n.

(1, 1)

a11

~~||
||

||
||

|
(1, 2)a12

oo · · ·oo (1, deg P1 − 1)a1 deg P1−1

oo

c (2, 1)a21

oo (2, 2)a22

oo · · ·oo (2, deg P2 − 1)a2 deg P2−1

oo

· · · · · · · · ·

(n, 1)

an1

YY2
2
2
2
2
2
2
2
2
2
2
2
2
2
2

(n, 2)an2

oo · · ·oo (n, deg Pn − 1)an deg Pn−1

oo

Note that the graph Q coincides with the graph of algebra A, con-
sidered in [1]. Below is an example of the quiver Q for the case n = 3,
deg P1 = 2, deg P2 = 3, deg P3 = 2:

e11
a11−−−−→ ec

a21←−−−− e21
a22←−−−− e22xa31

e31
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The first result establishes a connection between the algebras AP1,...,Pn;µ

and the deformed preprojective algebras.

Theorem 1. The algebra A = AP1,...,Pn;µ is isomorphic to ecΠ
λ(Q)ec

under the isomorphism sending xi to ai1a
∗
i1 for Q = Q(A) and

λ =
n∑

i=1

deg Pi−1∑

j=1

(αij−1 − αij)eij + µec,

where αi0, αi1, . . . , αi deg Pi−1 are all roots of the polynomial Pi taken with
multiplicities in any order with αi0 = 0.

Consider the case when the graph Q is an extended Dynkin diagram of
type Ãn, D̃n, or Ẽn. The following pictures show all such graphs together
with coordinates of the so-called minimal imaginary root δ ∈ C

I . The
boxed vertex is the extending vertex.

Ãn

1

��
��

��
�

1 1 · · · 1

OOOOOOOOOOOOOOO

D̃n

1 2 · · · 2 1

1

��������

1

>>>>>>>

Ẽ6

1 2 3 2 1

1 2

��������

Ẽ7

1 2 3 4 3 2 1

2
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Ẽ8

2 4 6 5 4 3 2 1

3

It was proved in [2] that Πλ(Q) is a PI-algebra (for PI algebras, see
[3]) if and only if δ · λ = 0. The authors in [2] also studied the algebra
Oλ(Q), which is e0Π

λ(Q)e0 where the 0-th vertex is the extending vertex
of Q, and proved that this algebra is commutative if and only if δ ·λ = 0.
For λ = 0, the algebra O0(Q) coincides with the coordinate ring of the
corresponding Kleinian singularity.

In this paper we consider the algebras eiΠ
λei for an arbitrary i ∈ I.

For the case δ · λ = 0, we study the center of this algebra and find the
minimal number k for which it has a standard identity of degree k, that
is,

∑

π∈Sk

sign(π)
k∏

i=1

xπ(i) = 0.

We denote by Sk the group of permutations on k elements.
We will prove the following theorems.

Theorem 2. If Q is an extended Dynkin diagram Ãn, D̃n or Ẽn, δ·λ = 0,
and i ∈ I is some vertex in Q, then the center of eiΠ

λ(Q)ei is isomorphic
to Oλ(Q) = e0Π

λ(Q)e0, where the 0-th vertex is the extending vertex of
Q.

Theorem 3. If Q is an extended Dynkin diagram Ãn, D̃n or Ẽn, δ·λ = 0,
and i ∈ I is some vertex in Q, then eiΠ

λei possesses a standard identity
of degree 2δi and it is the minimal number with such a property.

Theorem 3 was proved for the partial case of the diagram D̃4 in [4]
using different approach.

1. Representations of groups

Let V be a two-dimensional complex vector space with a simplectic form
ω. Let G be a finite subgroup of SL(V ). Let irreducible representations
of G be precisely {Vi}i∈I , where I = {0, 1, 2, . . . , n} with V0 denoting the
trivial representation. Suppose that

V ⊗ Vi =

n⊕

j=1

mijVj .
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Then the McKay graph of G is defined to be a graph with the set of
vertices I and the number of edges between the vertices i and j equal
to mij (we always have mij = mji). According to J. McKay [5], the
McKay graphs of finite subgroups of SL(V ) are extended Dynkin dia-

grams; Ãn for cyclic groups, D̃n for dihedral groups and Ẽ6, Ẽ7, Ẽ8 for
binary tetrahedral, octahedral and icosahedral groups. Dimensions of ir-
reducible representations are dimVi = δi. Fixing an orientation of the
McKay graph of G we obtain a quiver Q.

Let M be some CG-module. Consider the vector space F0(M) =
T (V ∗)⊗M , where

T (V ∗) =
∞⊕

i=0

V ∗⊗i

is the tensor algebra of V ∗.
Equip F0(M) with the componentwise action of G. Then we can

consider the subspace of G-invariant vectors, F (M) = F0(M)G. Note
that if M is an algebra and the multiplication respects the action of G,
then both F0(M) and F (M) become graded algebras with the grading
F0(M)i = V ∗⊗i ⊗M and F (M)i = (F0(M)i)

G. Consider the algebra
F (EndC(VΣ)), where VΣ is the direct sum of all irreducible CG-modules
and G acts on EndC(VΣ) by conjugation. Clearly F (EndC(VΣ))0 coincides
with (EndC(VΣ))G which, in its turn, can be identified with C

I . Our aim
is to build a graded algebra isomorphism ϕ from CQ̄ to F (EndC(VΣ))
such that

ϕ is an identity on C
I ,

ϕ(
∑

a∈Arrows(Q)

[a, a∗]) = δω. (*)

We accomplish this in two steps.

Lemma 1. The natural homomorphism

F (EndC(VΣ))i ⊗F (EndC(VΣ))0 F (EndC(VΣ))j −→ F (EndC(VΣ))i+j

is an isomorphism

Proof. We make some identifications,

F (EndC(VΣ))i = (V ∗⊗i ⊗ EndC(VΣ))G ∼= HomG(VΣ, V ∗⊗i ⊗ VΣ)

∼=
⊕

i∈I

HomC(C, Cai),

where
V ∗⊗i ⊗ VΣ

∼=
⊕

i∈I

V ⊕ai

i .



Jo
u
rn

al
 A

lg
eb

ra
 D

is
cr

et
e 

M
at

h
.94 On Kleinian singularities and algebras. . .

F (EndC(VΣ))j = (V ∗⊗j ⊗ EndC(VΣ))G ∼= HomG(V ⊗j ⊗ VΣ, VΣ)

∼=
⊕

i∈I

HomC(Cbi , C),

where
V ⊗j ⊗ VΣ

∼=
⊕

i∈I

V ⊕bi

i .

F (EndC(VΣ))i+j = (V ∗⊗(i+j) ⊗ EndC(VΣ))G

∼= HomG(V ⊗j ⊗ VΣ, V ∗⊗i ⊗ VΣ) ∼=
⊕

i∈I

HomC(Cbi , Cai).

Recall that
F (EndC(VΣ))0 ∼=

⊕

i∈I

C.

Now the statement is clear.

This lemma implies that the natural homomorphism from the tensor
algebra of F (EndC(VΣ))1 over F (EndC(VΣ))0 to F (EndC(VΣ)) is an iso-
morphism. The graded algebra CQ̄ possesses the same property, so it is
clear that for constructing an isomorphism of the graded algebras which
would be an identity on C

I , it is necessary and sufficient to establish
an isomorphism of subbimodules of degree 1. Decompose F (EndC(VΣ))1
with respect to the primitive idempotents of C

I ,

F (EndC(VΣ))1 = (V ∗ ⊗ EndC(VΣ))G ∼=
⊕

i,j∈I

HomG(V ⊗ Vi, Vj).

Clearly HomG(V ⊗Vi, Vj) is zero if there are no arrows from i to j in Q̄ and
is one dimensional if there is an arrow from i to j in Q̄. A subbimodule
of C

I of degree 1 has a similar decomposition. So any assignment a −→
ϕ(a) ∈ HomG(V ⊗ Vi, Vj), ϕ(a) 6= 0 for a ∈ Arrows(Q̄), induces some
isomorphism of the graded algebras, ϕ : CQ̄ −→ F (EndC(VΣ)).

Proposition 1. For every arrow a : i −→ j of Q choose any nonzero
representative ϕ(a) ∈ HomG(V ⊗ Vi, Vj). It is possible to choose ϕ(a∗) ∈
HomG(Vj , V

∗ ⊗ Vi) such that

tr((ι⊗ IdVi
)ϕ(a∗)ϕ(a)) = dimVi dimVj ,

where ι : V ∗ −→ V is such that

f(x) = ω(ι(f), x) for f ∈ V ∗ and x ∈ V .

This induces an isomorphism of the algebras which satisfies property (*).



Jo
u
rn

al
 A

lg
eb

ra
 D

is
cr

et
e 

M
at

h
.A. Mellit 95

Proof. Let us first consider the possibility of choosing the above ϕ(a∗).
In the decomposition of V ⊗ Vi into the direct sum of indecomposable
CG-modules, Vj occurs exactly once so, if we choose any nonzero ϕ(a∗) ∈
HomG(V ⊗ Vi, Vj), we obtain that

(ι⊗ IdVi
)ϕ(a∗)ϕ(a)

is a projection on Vj in V ⊗ Vi multiplied by some complex constant, so
its trace is nonzero and multiplying by a factor it is possible to make the
trace to take any complex value. We only needed check that

∑

a∈Arrows(Q)

[ϕ(a), ϕ(a∗)] = δω.

Choose some vertex i and multiply both sides by ei to get

∑

j∈I, a:j−→i,
a∈Arrows(Q)

ϕ(a)ϕ(a∗)−
∑

j∈I, a:i−→j,
a∈Arrows(Q)

ϕ(a∗)ϕ(a) = δiωei. (1)

Both sides belong to HomG(V ⊗ V ⊗ Vi, Vi), which can be identified
with HomG(V ⊗ Vi, V

∗ ⊗ Vi) by “lifting” the first element of the tensor
product. Apply ι ⊗ IdVi

to both sides. Since (ω(x))(y) = ω(y, x) and
(ω(x))(y) = ω(ι(ω(x)), y), we have that ι(ω(x)) = −x and

(ι⊗ IdVi
)δiωei = −δi IdV ⊗Vi

.

Recall that each (ι⊗IdVi
)ϕ(a)ϕ(a∗) and (ι⊗IdVi

)ϕ(a∗)ϕ(a), which occur
in (1), is a projection onto the summand Vj multiplied by some complex
number where j is another endpoint of a distinct from i. Denote this
projection by pj . Then

(ι⊗ IdVi
)ϕ(a)ϕ(a∗) =

tr((ι⊗ IdVi
)ϕ(a)ϕ(a∗))

dimVj
pj and

−(ι⊗ IdVi
)ϕ(a∗)ϕ(a) =

− tr((ι⊗ IdVi
)ϕ(a∗)ϕ(a))

dimVj
pj .

By definition,

tr((ι⊗ IdVi
)ϕ(a∗)ϕ(a)) = dimVi dimVj .

There is an identity,

tr((ι⊗ IdVi
)xy) = − tr((ι⊗ IdVj

)yx),
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which holds for every x ∈ HomC(V ⊗ Vj , Vi) and y ∈ HomC(V ⊗ Vi, Vj).
It is enough to check this identity for x = f1⊗x0 and y = f2⊗ y0, where
f1, f2 ∈ V ∗, x0 ∈ HomC(Vj , Vi), and y0 ∈ HomC(Vi, Vj),

tr((ι⊗ IdVi
)xy) = tr(ι(f1)f2 ⊗ x0y0) = f2(ι(f1)) tr(x0y0)

= ω(ι(f2), ι(f1)) tr(x0y0) = −ω(ι(f1), ι(f2)) tr(y0x0)

= −f1(ι(f2)) tr(y0x0) = − tr(ι(f2)f1 ⊗ y0x0) = − tr((ι⊗ IdVj
)yx).

Using this identity we have

tr((ι⊗ IdVi
)ϕ(a)ϕ(a∗)) = − tr((ι⊗ IdVj

)ϕ(a∗)ϕ(a)) = −dimVi dimVj .

It follows that ι⊗ IdVi
, applied to left-hand side of (1), equals

−dimVi

∑

j∈I, a:i−→j,
a∈Arrows(Q̄)

pj = −dimVi IdV ⊗Vi
,

and recalling that δi = dimVi we finish the proof.

The next corollary summarizes the results obtained in this section.

Corollary 1. The algebra Πλ(Q) is isomorphic to the algebra

(T (V ∗)⊗ EndC(VΣ))G/(δω − λ).

Moreover, this is an isomorphism of filtered algebras with the filtrations
induced by the gradings of CQ̄ and T (V ∗).

2. The case λ = 0

In this section we are going to prove Theorems 2 and 3 in the case where
λ = 0. The key result is the following lemma.

Lemma 2. The algebra Π0(Q) is isomorphic to the algebra of polynomial
G-equivariant maps from V to EndC(VΣ), that is, to the algebra

(Sym(V ∗)⊗ EndC(VΣ))G,

where Sym(V ∗) is the algebra of symmetric tensors over V ∗. Moreover,
this is an isomorphism of graded algebras.

Proof. We already know that Π0(Q) is isomorphic to

(T (V ∗)⊗ EndC(VΣ))G/(δω) = (T (V ∗)⊗ EndC(VΣ))G/ω.



Jo
u
rn

al
 A

lg
eb

ra
 D

is
cr

et
e 

M
at

h
.A. Mellit 97

Since

Sym(V ∗)⊗ EndC(VΣ) =

= (T (V ∗)/w)⊗ EndC(VΣ) = (T (V ∗)⊗ EndC(VΣ))/w,

it is sufficient to prove that the idempotent

ε =
1

|G|

∑

g∈G

g

maps the ideal generated by ω in T (V ∗) ⊗ EndC(VΣ) into the ideal
generated by ω in (T (V ∗) ⊗ EndC(VΣ))G. To prove this, take some
f ∈ V ∗⊗i⊗EndC(VΣ), g ∈ V ∗⊗j ⊗EndC(VΣ), and consider ε(fωg). Note
that fωg is antisymmetric in the (i + 1)-th and (i + 2)-th arguments.
It follows that ε(fωg) is antisymmetric in the (i + 1)-th and (i + 2)-th
argument as well. Since

ε(fωg) ∈ (V ∗⊗(i+j+2) ⊗ EndC(VΣ))G,

and we know from Lemma 1 that

(V ∗⊗(i+j+2) ⊗ EndC(VΣ))G = (V ∗⊗i ⊗ EndC(VΣ))G

⊗CG (V ∗⊗2 ⊗ EndC(VΣ))G ⊗CG (V ∗⊗j ⊗ EndC(VΣ))G,

we can decompose

ε(fωg) =
K∑

k=1

fkωkgk

with fk ∈ (V ∗⊗i ⊗ EndC(VΣ))G, gk ∈ (V ∗⊗j ⊗ EndC(VΣ))G and ωk ∈
(V ∗⊗2 ⊗ EndC(VΣ))G. Denote by τ the operator acting on elements of
(V ∗⊗(i+j+2) ⊗EndC(VΣ))G by interchanging the (i + 1)-th and (i + 2)-th
arguments. Then

τε(fωg) =
K∑

k=1

fkω
′
kgk

with ω′
k obtained from ωk by interchanging the first two arguments.

Hence,

ε(fωg) =
1

2
(ε(fωg)− τε(fωg)) =

1

2

K∑

k=1

fk(ωk − ω′
k)gk.

Since ωk − ω′
k ∈ HomG(V ⊗ V, EndC(VΣ)) is antisymmetric and V is two

dimensional, it can be represented as ωxk with xk ∈ EndC(VΣ)G. Thus

ε(fωg) =
1

2

K∑

k=1

fkωxkgk
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with fk, xk and gk from (T (V ∗) ⊗ EndC(VΣ))G. This completes the
proof.

The next propositions follow immediately.

Proposition 2. The algebra eiΠ
0(Q)ei is isomorphic to the algebra of

polynomial G-equivariant maps from V to EndC(Vi) for any i ∈ I. In
particular, O0(Q) = e0Π

0(Q)e0 is isomorphic to the algebra of invariants
of G on V .

Proposition 3. The algebra eiΠ
0(Q)ei has a standard identity of degree

2δi for any i ∈ I.

Proposition 4. There is a graded inclusion from e0Π
0(Q)e0 to the center

of Π0(Q), and the graded inclusions from e0Π
0(Q)e0 to the center of

eiΠ
0(Q)ei, for i ∈ I, are induced by the inclusions C ⊂ EndC(VΣ) and

C ⊂ EndC(Vi), correspondingly.

For any i ∈ I and x ∈ V denote by µi(x) the subset of EndC(Vi)
defined by

µi(x) = {f(x)|f is a polynomial G-equivariant map from V to EndC(Vi)}.

In what follows we will need the following statement.

Lemma 3. The set of x ∈ V such that µi(x) = EndC(Vi) is algebraically
dense for any i ∈ I.

Proof. Suppose f : V −→ C is a non-constant G-invariant polynomial
function. Then its differential df is a polynomial G-equivariant map from
V to V ∗. Denote by U the set of x ∈ V for which (df(x))(x) 6= 0. Clearly
U is open and U is not empty since (df(x))(x) = 0 implies that f is a
constant. Denote by U ′ the subset of U of all x such that f(x) 6= 0. Since
U ′ is open and not empty, it is dense. We will prove that every x from U ′

satisfies the required condition. So let f(x) 6= 0 and let (df(x))(x) 6= 0.
Then ιdf(x) ∈ V (ι : V ∗ −→ V is such that ω(ι(y1), y2) = y1(y2) for
every y1 ∈ V ∗ and y2 ∈ V ) is not a multiple of x because if ιdf(x) = Cx,
C ∈ C, then

(df(x))(x) = ω(ιdf(x), x) = ω(Cx, x) = 0.

It follows that f(x)x and ιdf(x) span V . Since g1 : V −→ V defined by
g1(y) = f(y)y and g2 : V −→ V defined by g2(y) = df(y) are polynomial
and G-equivariant we have that every element of V is a value in x of
some polynomial G-equivariant map from V to V . It follows that for
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every k every element of V ⊗k is a value in x of some polynomial G-
equivariant map from V to V ⊗k. Since every finite dimensional CG-
module is a submodule of V ⊗k for some k, the statement holds for every
finite dimensional CG-module, in particular for EndC(Vi).

This lemma implies that there is no k < 2δi such that eiΠ
0(Q)ei has

a standard identity of degree k (since some factor of eiΠ
0(Q)ei is the

algebra of δi×δi-matrices). Moreover, this implies that every polynomial
map from V to EndC(Vi) commuting with all G-equivariant polynomial
maps from V to EndC(Vi) takes only scalar values, and thus the inclusion
in Proposition 4 is in fact an isomorphism.

Corollary 2. Theorems 2 and 3 hold for λ = 0.

3. Regularity of the multiplication law

Denote by Sn the C
I -bimodule (Symn(V ∗) ⊗ EndC(VΣ))G, by S the

graded algebra (Sym(V ∗)⊗EndC(VΣ))G, by Tn the C
I -bimodule (V ∗⊗n⊗

EndC(VΣ))G, and by T the graded algebra (T (V ∗)⊗EndC(VΣ))G. In this
section we will show that all algebras of the family Πλ(Q) can be identi-
fied with an algebra that is S as a vector space and the multiplication law
in it polynomially depends on λ. For every k = 0, 1, 2, . . . , we construct
an operator

πλ
k : Tk −→

k⊕

i=0

Si

such that

1. πλ
k (x) = x for x ∈ Sk;

2. πλ
k (x) ≡ x mod δω − λ for any x ∈ Tk;

3. πλ
k (x1ωx2) = πλ

k−2(x1δ
−1λx2) for any x1 ∈ Ti and x2 ∈ Tj with

i + j = k − 2;

4. πλ
k (x) polynomially depends on λ.

Then the family of operators πλ
k define an operator πλ acting from T to S.

It is clear that πλ is a projection with the image S, the second property
of πλ

k guarantees that πλ(x) is equivalent to x in the algebra Πλ(Q),
whereas the third property implies that elements equivalent in Πλ(Q) are
mapped into identical elements. Combining this gives an isomorphism
between Πλ(Q) and S as filtered vector spaces, and the multiplication in
Πλ(Q) is carried over to S to give

x× y = πλ(x⊗ y),
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which polynomially depends on λ. It remains to show that the family of
operators with properties (1) – (4) exists.

Clearly, for k = 0 and k = 1 we can take the identity operators. Then
we prove existence of πλ

k by induction. Fix some λ ∈ C
I and an integer

k ≥ 2. For i = 1, . . . , k − 1, define the operators

τi : Tk ⊕
k−2⊕

j=0

Sj −→ Tk ⊕
k−2⊕

j=0

Sj

by setting

τi(x) = 0 if x ∈
⊕k−2

j=0 Sj ,

τi(x) = 0 if x ∈ Tk and x is symmetric with respect to the i-th and
(i + 1)-th arguments,

τi(fωg) = fωg − πk−2
λ (fδ−1λg).

This defines τi for x ∈ Tk such that x is antisymmetric with respect
to the i-th and (i + 1)-th arguments. Put ρi = 1 − 2τi. We prove the
following fact.

Proposition 5. The family of operators (ρi) satisfy the following condi-
tions:

1. ρ2
i = 1,

2. ρiρj = ρjρi for |i− j| > 1,

3. ρiρi+1ρi = ρi+1ρiρi+1,

so (ρi) induce a representation of the group of permutations of k elements.

Proof. Property (1) is easy. Consider the property (2). Assume j > i. It
is enough to check the property for argument of the form

x = f1ωf2ωf3 for f1 ∈ Ti−1, f2 ∈ Tj−i−2, f3 ∈ Tk−j−1.

Then

ρiρjx− ρjρix = πk−2
λ (f1ωf2δ

−1λf3 − f1ωf2δ
−1λf3)

= πk−4
λ (f1δ

−1λf2δ
−1λf3)− πk−4

λ (f1δ
−1λf2δ

−1λf3) = 0

by the induction hypothesis. Consider the property (3). Denote by ρ′i,
i = 1, 2, . . . , k−1, the operator in Tk that acts on x ∈ Tk by interchanging
the i-th and (i + 1)-th arguments. Then, clearly the operators ρ′i satisfy
conditions (1) – (3). Choose some i 6= k− 1. Since there is no element of
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Tk which is antisymmetric with respect to the arguments i, i + 1, i + 2,
the following operator vanishes on Tk:

1− ρ′i − ρ′i+1 − ρ′iρ
′
i+1ρ

′
i + ρ′iρ

′
i+1 + ρ′i+1ρ

′
i = 0.

If we substitute ρ′i = 1− 2τ ′
i we obtain that

τ ′
iτ

′
i+1τ

′
i =

1

4
τ ′
i and τ ′

i+1τ
′
iτ

′
i+1 =

1

4
τ ′
i+1

If we prove that

τiτjτi =
1

4
τi for |i− j| = 1,

then property (3) would follow. But if |i− j| = 1, then

τiτjτi = τ2
i τjτi = τiτ

′
iτ

′
jτ

′
i =

1

4
τiτ

′
i =

1

4
τ2
i =

1

4
τi,

here we consider τ ′
m, m = 1, 2, . . . , k− 1, as an operator on Tk⊕

⊕k−2
i=0 Si

which acts as zero on the component
⊕k−2

i=0 Si and use the equality
τm1

τm2
= τm1

τ ′
m2

which is valid for m1, m2 = 1, 2, . . . , k − 1.

Consider the representation of the group of permutations of k ele-
ments, Sk, given by the operators ρi. Denote by ε̄ the image of the
element

ε =
1

k!

∑

σ∈Sk

σ

of the group algebra CSk. Then we can expand every σ as a product of
the operators ρi, substitute ρi = 1− 2τi, and represent

ε̄ = 1 +

k−1∑

i,j=1

τixijτj , (2)

where xij are some operators. Then put πk
λx = ε̄x for x ∈ Tk. Let us

check the required properties for πk
λ. The property (1) follows from (2)

and the fact that all τi vanish on elements of Sk. Since all images of τi

belong to the ideal generated by δω − λ, the property (2) follows. The
property (3) is true, since ε̄ = ε̄ρi+1 implies that ε̄ = ε̄(1− τi+1) and

ε̄(x1ωx2) = ε̄(1− τi+1)(x1ωx2) = ε̄πk−2
λ (x1δ

−1λx2) = πk−2
λ (x1δ

−1λx2).

The property (4) is obvious, so we have proved

Proposition 6. A family of operators πk
λ satisfying properties (1) – (4)

exists.
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An immediate corollary is

Corollary 3. Every algebra Πλ(Q) is isomorphic, as a filtered algebra,
to S with multiplication law ×λ which polynomially depends on λ and is
such that for any homogeneous x of degree i and homogeneous y of degree
j the term of degree i + j in x×λ y does not depend on λ.

4. Generic λ

Using Corollary 3 we identify Πλ(Q) with S equipped with a multiplica-
tion that depends on λ polynomially. Denote this multiplication by ×λ.
Sometimes, if λ is fixed, we will omit the sign ×λ and simply write xy
instead of x ×λ y keeping in mind that the result depends on λ polyno-
mially. In this section we will prove the statements of Theorems 2 and 3
for some algebraically dense subset of the set

η = {λ ∈ C
I : λ · δ = 0}.

Proposition 7. There exist elements f1, . . . , fn and g1, . . . , gn in S and
rational functions α1, . . . , αn defined on η such that

n∑

i=1

αi(λ)fi ×
λ e0 ×

λ gi = 1

for each λ from some algebraically dense subset of η.

Proof. It easily follows from the definition of the deformed preprojective
algebra that

Πλ(Q)/Πλ(Q)e0Π
λ(Q) ∼= Πλ′

(Q′),

where Q′ is the Dynkin diagram obtained from Q by deleting the vertex
0 and λ′ is the restriction of λ to the vertices of Q′. It was proved in [2]
that the deformed preprojective algebra of a Dynkin diagram is always
finite dimensional and is zero for all parameters except for a number of
hyperplanes. We will use the following facts:

1. the homogeneous subspace S×0 e0×
0 S of S has finite codimension,

2. there exists λ0 ∈ η such that S ×λ0 e0 ×
λ0 S = S.

Choose some basis in S ×0 e0 ×
0 S of the form (ai ×

0 e0 ×
0 bi) where i

ranges over the set of positive integers and all ai and bi are homogeneous
elements of S. It follows from the first statement that we can add some
finite number of homogeneous elements of S, x1, x2, . . . , xn, such that
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xi and ai ×
0 e0 ×

0 bi together form a basis of S. Now, for λ ∈ η consider
the set

B(λ) = {xi|i = 1, . . . , n} ∪ {ai ×
λ e0 ×

λ bi|i = 1, 2, . . . }.

It is again a basis of S, because each ai×
λ e0×

λ bi is equal to the sum of
ai ×

0 e0 ×
0 bi and some terms of lower degree. Moreover, every element

of S, being expanded with respect to this basis, has all coefficients that
are polynomial in λ.

It follows from the statement (2) that there exists some λ0 such that
for i = 1, . . . , n,

xi =

Ki∑

k=1

fk
i ×

λ0 e0 ×
λ0 gk

i ,

where all fk
i and gk

i are elements of S. Consider elements yi(λ) ∈ S for
i = 1, . . . , n defined by

yi(λ) =

Ki∑

k=1

fk
i ×

λ e0 ×
λ gk

i .

Consider an n × n matrix Z(λ) = (zij(λ)), where zij(λ) is the value of
the coefficient at xi in the expansion of yj(λ) with respect to the basis
B(λ). We have the following expansion of yj(λ) with respect to the basis
B(λ):

Kj∑

k=1

fk
j ×

λ e0 ×
λ gk

j =
n∑

i=1

zij(λ)xi +

Lj∑

k=1

cjk(λ)ak ×
λ e0 ×

λ bk

for some polynomial functions of λ cjk(λ). Rewrite this as

n∑

i=1

zij(λ)xi =

Kj∑

k=1

fk
j ×

λ e0 ×
λ gk

j −

Lj∑

k=1

cjk(λ)ak ×
λ e0 ×

λ bk

and consider it as a system of linear equations with indeterminates
x1, . . . , xn. Clearly it can be solved for λ if det Z(λ) 6= 0 and the so-
lution will depend on λ rationally. If we expand 1 with respect to the
basis B(λ) and then use this solution we obtain the required expansion.
The set of λ ∈ η for which det Z(λ) 6= 0 is open. It is nonempty since
Z(λ0) is the identity matrix, hence this set is dense. This completes the
proof.

Denote by η′ the subset of η for which we the proposition above holds.
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Proposition 8. For every λ ∈ η′ and every x ∈ Oλ(Q) = e0Π
λ(Q)e0

there exists z(x) in the center of Πλ(Q) such that e0z(x)e0 = x.

Proof. Put

z(x) =
n∑

i=1

αi(λ)fixgi.

Then

e0z(x)e0 =

n∑

i=1

αi(λ)e0fixgie0 =

n∑

i=1

αi(λ)xfie0gie0 = x,

since Oλ(Q) is commutative. Again, using commutativity of Oλ(Q) for
any y ∈ S we have

yz(x) =
n∑

i=1

αi(λ)yfixgi =
n∑

i,j=1

αi(λ)αj(λ)fje0gjyfixgi

=
n∑

i,j=1

αi(λ)αj(λ)fjxgjyfie0gi =
n∑

j=1

αj(λ)fjxgjy = z(x)y.

Proposition 9. For every λ ∈ η′ and every q ∈ I, the algebra eqΠ
λ(Q)eq

has a standard identity of degree 2δq.

Proof. For x ∈ S, construct an n× n matrix M(x) over Oλ(Q) with the
elements

mij(x) = αi(λ)e0gixfje0.

Then for x, y ∈ S the matrix M(x)M(y) has elements

n∑

k=1

mik(x)mkj(y) =
n∑

k=1

αi(λ)e0gixfke0αk(λ)e0gkyfje0

= αi(λ)e0gixyfje0 = mij(xy),

so
M(xy) = M(x)M(y).

Denote by p the matrix M(1). Clearly p is an idempotent and M defines a
homomorphism from Πλ(Q) to p Mat(n,Oλ(Q))p, where Mat(n,Oλ(Q))
denotes the algebra of n× n matrices over Oλ(Q). Construct the inverse
map N : Mat(n,Oλ(Q)) −→ S. Let A = (aij) and set

N(A) =

n∑

i,j=1

αj(λ)fiaijgj .
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Then we can check that

N(M(x)) =

n∑

i,j=1

αj(λ)fiαi(λ)e0gixfje0gj = x

and

mij(N(A)) =
n∑

k,l=1

αi(λ)e0giαl(λ)fkaklglfje0,

which implies that
M(N(A)) = pAp.

This proves that M is an isomorphism. The algebra Oλ(Q) is a domain
(see [2]). Hence it can be embedded into its field of fractions, F . So
the algebra p Mat(n,Oλ(Q))p can be embedded into p Mat(n, F )p that is
isomorphic to Mat(r, F ) where r is the rank of p in Mat(n, F ). Denote
by pq the matrix M(eq) for q ∈ I. In a similar way, eqΠ

λ(Q)eq can be
embedded into Mat(rq, F ) where rq is the rank of pq in Mat(n, F ). On
the other hand, rq = tr pq which is a rational function of λ. Since rq

can accept only a finite number of values on the dense set η′, namely
1, 2, . . . , n, it is constant. In Πλ(Q),

∑

a∈Arrows(Q)

[a, a∗] =
∑

q∈I

λqeq.

Hence ∑

q∈I

λqrq = tr
∑

q∈I

λqpq = 0.

Since this equality holds for all λ from η′, which is dense in η, there is a
constant c ∈ C such that rq = cδq for q ∈ I. For q = 0,

p0 = M(e0) = (αi(λ)e0gie0fje0),

so p0 has rank 1. This implies that c = 1 and rq = δq. We have proved
that the algebra eqΠ

λeq for λ ∈ η′, q ∈ I, is isomorphic to some subal-
gebra of the algebra of δq × δq matrices over the field F , so a standard
identity of degree 2δq is satisfied by the Amitsur-Levitzki theorem.

5. Extending to the whole hyperplane

To finish the proof of Theorems 2 and 3, we need to take several steps.

Proposition 10. For any λ ∈ C
I such that λ · δ = 0 and any i ∈ I, the

algebra eiΠ
λ(Q)ei satisfies a standard identity of degree 2δi.
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Proof. For x1, . . . x2δi
∈ eiSei, the sum

∑

σ∈S2δi

sign(σ)xσ(1) ×
λ . . .×λ xσ(2δi)

is zero on an algebraically dense subset of λ ∈ C
I , λ · δ = 0. Since it is

polynomial in λ, it is zero for all λ ∈ C
I , λ · δ = 0.

Proposition 11. For every λ ∈ η and every x ∈ Oλ(Q) there exists a
unique z(x) in the center of Πλ(Q) such that e0z(x)e0 = x.

Proof. First note that if such z(x) exists, then it is unique. Suppose the
contrary. Then there exists a in the center of Πλ(Q) such that e0a = 0.
Suppose eia 6= 0. Then, since Πλ(Q) is prime (see [2]), there exists y ∈
Πλ(Q) such that e0yeia 6= 0. Rewrite it as e0ayei and get a contradiction.

Then note that the degree of z(x) is not greater than that of x. Let
z(x)′ be the term with a maximal degree of z(x) and suppose that the de-
gree of z(x)′ is greater than that of x. Clearly z(x)′ belongs to the center
of Π0(Q), but e0z(x)′e0 = 0 which, contradicts the previous remark.

The algebra Πλ(Q) is finitely generated and for any x, since the degree
of z(x) is bounded, the problem of finding such z(x) for any fixed x is
equivalent to solving some finite system of linear equations. Coefficients
of the system depend on λ polynomially. Suppose that the system has
m equations and n indeterminates. Consider the set W of λ for which
the system has a unique solution. The system has a unique solution if
and only if there exist equations i1, i2, . . . , in in the system such that
the subsystem i1, i2, . . . , in is nondegenerate (the set U of λ for which
this is true is open) and a solution of the equations i1, i2, . . . , in satisfies
other equations (the set of λ for which this is true is closed in U). Thus
we obtain a sequence of open sets U1, U2, . . . , UN and a sequence of sets
V1, V2, . . . , VN , each Vi being closed in the corresponding Ui. It follows
that W is covered by U1, U2, . . . , UN and the intersection of W with each
Ui is closed. So W is a closed set in the union of U1, U2, . . . Un, hence it
is an intersection of some open set and some closed set.

Applying Proposition 8 and the first remark in this proof we obtain
that W is an open set. Using Proposition 4 and the first remark we
obtain that W contains some neighborhood of zero. So for any x ∈ e0Se0

and any λ there exists some constant c ∈ C such that there is z′(x) ∈ S
that belongs to the center of Πcλ(Q) and e0z

′(x)e0 = x. Let x be a
homogeneous element of degree k. Define an operator φ on T as the
multiplication by c

n
2 on each Tn. Then φ is an automorphism of the

algebra T and it maps δω−cλ to cδω−cλ. It follows that φ(z′(x)) belongs
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to the center of Πλ(Q) and e0φ(z′(x))e0 = c
k
2 x, so z(x) = φ(z′(x))c−

k
2

belongs to the center of Πλ(Q) and e0z(x)e0 = x.

Proof of Theorem 2. For any λ ∈ C
I , λ·δ = 0, take a map φλ from Oλ(Q)

to the center of Πλ(Q) such that e0φλ(x)e0 = x for all x ∈ Oλ(Q). By
Proposition 11, φλ is uniquely defined by this property, so it is linear.
If x, y ∈ Oλ(Q), then φλ(x)φλ(y) belongs to the center of Πλ(Q) and
e0φλ(x)φλ(y)e0 = xy, so again by Proposition 11, φλ(xy) = φλ(x)φλ(y).
Clearly, φλ(e0) = 1. So φλ is a homomorphism. The homomorphism φλ

is an inclusion, since for any x ∈ Oλ(Q), x = e0φλ(x)e0.

For any i ∈ I, put φi
λ(x) = eiφλ(x) for x ∈ Oλ(Q). Then it is easy to

check that φi
λ is a homomorphism from the algebra Oλ(Q) to the center

of eiΠ
λ(Q)ei. It is an inclusion, since Πλ(Q) is prime (see [2]), so if x 6= 0

belongs to the center of Πλ(Q), then there exists y ∈ Πλ(Q) such that
eiyx 6= 0 and, hence, eix 6= 0.

To prove that φi
λ is surjective, suppose that x belongs to the center

of eiΠ
λ(Q)ei, x does not belong to the image of φi

λ, and has the smallest
possible degree. Let x′ be the term of highest degree of x (we again
identify Πλ(Q) with S). Then x′ belongs to the center of eiΠ

0(Q)ei and
thus there is a homogeneous y ∈ Oλ(Q) such that x′ = φi

0(y) (it follows at
once from Corollary 2 that φi

0 is surjective). Consider z = φλ(y) and z′,
the term of the highest degree in z. Then z′ is in the center of Π0(Q) and
e0z

′e0 is zero or equal to y. The first case is impossible due to Proposition
11. Thus z′ = φ0(y) and the term of the maximal degree of φi

λ(y) = eizei

equals x′. It follows that x−φi
λ(y) has degree lower than x and does not

belong to the image of φi
λ, thus obtaining a contradiction.

Proof of Theorem 3. The statement of Theorem 3 follows from Proposi-
tion 10 and the fact that if k is such that

∑

σ∈Sk

sign(σ)xσ(1) ×
λ . . .×λ xσ(k) = 0

for any x1, x2, . . . , xk ∈ eiSei, then denoting by x′
i the term of the maxi-

mal degree of xi we get

∑

σ∈Sk

sign(σ)x′
σ(1) ×

0 . . .×0 x′
σ(k) = 0,

so from Corollary 2 we get that k ≥ 2δi.
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6. The proof of theorem 1

Consider a quiver Cn with n vertices, I = {1, 2, . . . , n}, which form a
chain,

n n − 1
a

n−1

oo n − 2
a

n−2

oo · · ·oo 1
a1

oo

Suppose we have a sequence of complex numbers λ = (λi), i = 1, . . . , n−1.
Consider the algebra

Rλ
n = en

(
CC̄n/(

n−2∑

i=1

[ai, a
∗
i ]− a∗n−1an−1 −

n−1∑

i=1

λiei)

)
en.

Proposition 12. The algebra Rλ
n is isomorphic to the algebra C[x]/P (x)

via an isomorphism sending x to an−1a
∗
n−1, where P (x) is a polynomial

given by

P (x) = x(x + λn−1)(x + λn−1 + λn−2) . . . (x +
n−1∑

i=1

λi).

Proof. If n = 1 both algebras are isomorphic to C. We proceed by in-
duction. For n > 1, the algebra Rλ

n splits as a vector space,

Rλ
n = C⊕an−1en−1

(
CQ̄/(

n−1∑

i=1

[ai, a
∗
i ]− a∗n−1an−1 −

n−1∑

i=1

λiei)

)
en−1a

∗
n−1.

Then,

en−1

(
CC̄n/(

n−1∑

i=1

[ai, a
∗
i ]− a∗n−1an−1 −

n−1∑

i=1

λiei)

)
en−1

∼= (Rλ
n−1 ∗ C[a∗n−1an−1])/(an−2a

∗
n−2 − a∗n−1an−1 − λn−1en−1),

where ∗ denotes the free product of algebras. By the induction hypothesis,
the latter is isomorphic to

(C[an−2a
∗
n−2]/P−(an−2a

∗
n−2) ∗ C[a∗n−1an−1])

/(an−2a
∗
n−2 − a∗n−1an−1 − λn−1en−1)

for

P−(x) = x(x + λn−2)(x + λn−2 + λn−3) . . . (x +
n−2∑

i=1

λi),
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so

en−1

(
CC̄n/(

n−1∑

i=1

[ai, a
∗
i ]− a∗n−1an−1 −

n−1∑

i=1

λiei)

)
en−1

∼= C[a∗n−1an−1]/P−(a∗n−1an−1 + λn−1),

and therefore,

Rλ
n
∼= C[an−1a

∗
n−1]/(P−(an−1a

∗
n−1 + λn−1)an−1a

∗
n−1)

and it can be easily seen that

P−(an−1a
∗
n−1 + λn−1)an−1a

∗
n−1 = P (an−1a

∗
n−1).

The theorem is now valid because ecΠ
λ(Q)ec, defined as in the state-

ment of the theorem, is isomorphic to the free product of the algebras
Rλi

deg Pi−1 factored by the relation

n∑

i=1

ai1a
∗
i1 = µec,

where

λi = (αi deg Pi−2 − αi deg Pi−1, . . . , αi1 − αi2,−αi1)

and, by Proposition 12, each Rλi

deg Pi−1 is isomorphic to

C[ai1a
∗
i1]/Pi(ai1a

∗
i1).
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