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Abstract. In this survey we discuss the results on the fini-

tistic dimension of various stratified algebras. We describe what is

already known, present some recent estimates, and list some open

problems.

1. Introduction and preliminaries

Let A be a finite-dimensional, associative, and unital algebra over an alge-
braically closed field k, and A−mod be the category of finite-dimensional
left A-modules. Assume that the isomorphism classes of simple A-
modules are indexed by Λ = {1, 2, . . . , n} and denote by L(λ), P (λ),
I(λ), λ ∈ Λ, the corresponding simple module, its projective cover, and
its injective envelope respectively. Remark that the elements of Λ are
ordered in the natural way. For λ ∈ Λ set P>λ = ⊕µ>λP (µ) and de-
fine the standard module ∆(λ) = P (λ)/TraceP >λ(P (λ)). Denote by
F(∆) the full subcategory of A−mod, which consists of all modules,
having a filtration with subquotients isomorphic to standard modules.
Call the algebra A strongly standardly stratified (or an SSS-algebra) if

AA ∈ F(∆). The class of SSS-algebras contains the very important sub-
class of quasi-hereditary algebras, and forms a subclass of the class of
standardly stratified algebras, introduced in [CPS]. SSS-algebras (some-
times also called just standardly stratified in the literature, which makes
everything somewhat confusing) were intensively studied during the last
decade, see [AHLU1, AHLU2, Ma] and references therein. Such algebras
arise naturally in Lie theory, see [Ma]. In [AHLU1] it has been shown
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.78 On finitistic dimension

that both the projectively and the injectively defined finitistic dimensions
of such algebras do not exceed 2n − 2. Though this bound is exact for
certain algebras, in most cases this estimate is very rough. For example
any hereditary algebra is stratified (even quasi-hereditary) with respect
to any order on Λ, see [DR, Theorem 1], and has global dimension 1.

In the present paper we try to approach rather non-symmetric sit-
uations, i.e. the one for which projective and injective dimensions can
be different. Let P<∞(A) and I<∞(A) denote the full subcategories of
A−mod, which consists of all modules M having finite projective or in-
jective dimension respectively. We denote by fdim(A) the projectively

defined finitistic dimension of A, that is the supremum of pd(M), taken
over all M ∈ P<∞(A); and by ifdim(A) the injectively defined finitis-

tic dimension of A, that is the supremum of i. d.(M), taken over all
M ∈ I<∞(A).

For λ ∈ Λ define the proper standard module

∆(λ) = ∆(λ)/TraceP (λ)(rad∆(λ)).

Dually one defines the costandard modules ∇(λ) and the proper costan-

dard modules ∇(λ), λ ∈ Λ. The categories F(∇), F(∆) and F(∇) are
defined analogously to F(∆). For all modules indexed by λ ∈ Λ the no-
tation without index will mean the direct sum over all λ ∈ Λ, for example
L = ⊕n

λ=1L(λ) etc. According to [Dl2, La], an alternative description of
SSS-algebras can be given requiring I ∈ F(∇).

Varying the requirements one gets many other classes of stratified al-
gebras. The ones, which are important for the present paper, are properly

stratified algebras, defined in [Dl1] via AA ∈ F(∆) ∩ F(∆), or, alterna-
tively, via I ∈ F(∇) ∩ F(∇); and quasi-hereditary algebras, defined as
those properly stratified algebras, for which ∆(λ) = ∆(λ) for all λ, which
is equivalent to requiring ∇(λ) = ∇(λ) for all λ (see for example [DR]).

2. General approach via tilting modules

2.1. Tilting modules and finitistic dimension

Let us forget the stratified structure for a moment. So, let A just be
a finite-dimensional, associative, and unital k-algebra. Recall, see [Mi],
that an A-module T is called a generalized tilting module if T has fi-
nite projective dimension, is ext-self-orthogonal, and its additive closure
Add(T ) coresolves AA in a finite number of steps. The generalized cotilt-

ing modules are defined dually. Looking at the homomorphisms in Db(A)
from T •[i] to the tilting coresolution of AA one easily derives that pd(T ),
in fact, equals the length of the shortest tilting coresolution of AA. Here
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for M ∈ A−mod we denote by M• the complex, whose only non-zero
component is M , concentrated in degree zero.

The trivial example of a generalized tilting module is P . If gldim(A) <
∞, then I is a generalized tilting module as well. In general I need
not be a tilting module, since it may have infinite projective dimension.
However, if I is a generalized tilting module then, embedding any M ∈
P<∞(A) into an injective module, and applying HomA(−, L), one derives
that fdim(A) = pd(I). Moreover, in this case any M ∈ P<∞(A) can be
substituted in Db(A) by its finite projective resolution, which then can be
turned into a finite injective complex in Db(A), since I is a tilting module
(see for example [MO, Lemma 4]). This implies that any M ∈ P<∞(A)
has finite injective coresolution, in particular, P<∞(A) is contravariantly
finite in A−mod, see [AR].

2.2. Using self-dual tilting modules

We have seen that finding non-trivial generalized tilting modules in
A−mod can give some interesting information about the homological
behavior of A−mod. Especially if such modules are self-dual with re-
spect to some contravariant exact equivalence on A−mod (usually called
a duality). A duality is called simple preserving if it preserve the isomor-
phism classes of simple modules. A careful study of the proof of [MO,
Theorem 1] shows that what is actually proved there is the following
statement:

Theorem 1. Let A be a finite-dimensional, associative, and unital k-

algebra for which fdim(A) < ∞. Assume that there exists a duality on

A−mod, and a generalized tilting A-module T , such that Q? ∼= Q for

every indecomposable Q ∈ Add(T ). Then fdim(A) = 2 · pd(T ).

Proof. Applying ? to the tilting coresolution of P gives a tilting resolution
of I, in particular, pd(I) < ∞. Since fdim(A) < ∞ we can embed any
M ∈ A−mod with pd(M) = fdim(A) into an injective module, apply
HomA(−, L), and obtain pd(I) = pd(M) = fdim(A). Further, pd(I)
is exactly the maximal degree l, for which Extl

A(I, P ) does not vanish.
The latter can be computed in Db(A) studying homomorphisms from the
shifted tilting resolution of I to the tilting coresolution of P . Under our
assumptions we can apply [MO, Lemma 1] and the arguments from [MO,
Appendix]. The statement of the theorem follows.

2.3. Applications to stratified algebras

Assuming A has some sort of stratification makes it in many cases possible
to ensure the assumptions of Theorem 1. Indeed, assume that A is an
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SSS-algebra having a simple preserving duality (i.e. a duality, which
preserves the isomorphism classes of simple modules). Then A is in fact
properly stratified, the category F(∆) ∩ F(∇) equals Add(T ) for some
generalized tilting module T called the characteristic tilting module, and
the category F(∆) ∩ F(∇) equals Add(C) for some generalized tilting
module C, called the characteristic cotilting module. Moreover, if T ∼=
C, then all indecomposable direct summands of T are self-dual. The
condition T ∼= C is satisfied, for example, for quasi-hereditary algebras.
Hence we obtain (see [MO, Theorem 1 and Corollary 1]).

Corollary 1. Let A be an algebra having a simple preserving duality.

1. If A is an SSS-algebra and T ∼= C then fdim(A) = 2 · pd(T ).

2. If A is quasi-hereditary then gldim(A) = 2 · pd(T ).

3. Using tilting and various filtration dimensions

3.1. Filtration (co)dimensions

Let M be a class of A-modules and F(M) be the full subcategory in
A−mod, which consists of all modules having a filtration with subquo-
tients, isomorphic to modules from M. For an A-module N we say that N
has M-filtration dimension (resp. codimension) l ∈ {0, 1, . . . ,∞} if there
exists a resolution (resp. coresolution) of N by modules from F(M) and
l is the length of the shortest such resolution. For properly stratified
algebras and SSS-algebras the following filtration (co)dimensions appear
in a natural way: the Weyl or standard filtration dimension dim∆(N) for
M = {∆(λ), λ ∈ Λ}; the proper standard filtration dimension dim∆(N)
for M = {∆(λ), λ ∈ Λ}; the good or costandard filtration codimension

codim∇(N) for M = {∇(λ), λ ∈ Λ}; and the proper costandard fil-

tration codimension codim
∇

(N) for M = {∇(λ), λ ∈ Λ}. If A is an
SSS-algebra, then both dim∆(N) and codim

∇
(N) are well-defined for

all N ∈ A−mod. In [MP, Lemma 1] it is shown that dim∆(N) =
max{l|ExtlA(N,∇) 6= 0}, and codim

∇
(N) = max{l|ExtlA(∆, N) 6= 0}.

In particular, codim
∇

(N) ≤ pd(∆) for all N , whereas dim∆(N) < ∞ is
obviously equivalent to pd(M) < ∞ as P ∈ F(∆). We define dim∆(A),
dim∆(A), codim∇(A), codim

∇
(A), fdim∆(A) and fcodim∇(A) in the nat-

ural way and for an SSS-algebra we obtain codim
∇

(A) = pd(∆) = pd(T )
by [MP, Lemma 1]. For properly stratified algebras we dually have
dim∆(A) = i. d.(∇) = i. d.(C). Moreover, by [MP, Lemma 2] we also
have fdim∆(A) ≤ pd(∇) = pd(C) and fcodim∇(A) ≤ i. d.(∆) = i. d.(T ).

These filtration (co)dimensions were reinterpreted in [MO, Subsec-
tion 4.3] in terms of tilting complexes. Thus we have that dim∆(N) ≤ l
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if and only if N• ∈ Db(A) is quasi-isomorphic to a complex, T •, of tilting
modules such that T i = 0 for all i < −l.

3.2. An “old” upper bound for fdim(A)

The following upper bound for fdim(A) is stated in [MP] for properly
stratified algebras. Here we formulate the result for SSS-algebras and
present a different proof based on tilting resolutions (see also [MO, Corol-
lary 5]).

Theorem 2. Let A be an SSS-algebra. Then fdim(A) ≤ fdim∆(A) +
pd(T ).

Proof. If M ∈ P<∞(A), then pd(M) = max{l|Extl
A(M, P ) 6= 0}. We

substitute M• ∈ Db(A) by a quasi-isomorphic complex, T •, of tilting
modules satisfying T i = 0 for all i < −dim∆(M), and we substitute P
by its tilting coresolution of length pd(T ) (see Subsection 2.1). Since for
the complexes of tilting modules the homomorphisms in Db(A) can be
computed in the homotopic category, it is straightforward that pd(M) ≤
dim∆(M) + pd(T ) and the statement follows.

If A is properly stratified, as an immediate consequence we have
fdim(A) ≤ i. d.(C) + pd(T ), which is left-right symmetric and hence
works for ifdim(A) as well. If A has a duality, everything reduces to
fdim(A) ≤ 2 · pd(T ). As we have already seen in Subsection 2.3, the last
bound is exact for quite a wide class of quasi-hereditary and stratified
algebras, including Schur algebras, algebras associated with the BGG-
category O and its parabolic analogues.

3.3. fdim(A) if one can control EndA(T )

Let A be an SSS-algebra. The endomorphism algebra R = EndA(T )
of the characteristic tilting module T is called the Ringel dual of A.
The algebra EndA(T )opp is always an SSS-algebra with respect to the
opposite order on Λ, see [AHLU2]. However, R does not need to be
properly stratified, even in the case when A itself is properly strati-
fied. The algebra R comes together with the Ringel duality functor
F (−) = HomA(T,−) : A−mod → R−mod, which induces an exact equiv-
alence between the category of A-modules having a proper costandard
filtration and the category of R-modules having a proper standard filtra-
tion.

The Ringel dual R is properly stratified if and only if the module T has
a filtration with subquotients isomorphic to N(λ) = T (λ)/TraceT <λ(T (λ)),
where T<λ = ⊕µ<λT (µ) (see [FM]). In the case when R is properly



Jo
u
rn

al
 A

lg
eb

ra
 D

is
cr

et
e 

M
at

h
.82 On finitistic dimension

stratified we denote by H(λ), λ ∈ Λ, the preimage under F of the inde-
composable tilting R-module corresponding to λ, and by H the preimage
under F of the characteristic tilting R-module T (R). The module H is
called the two-step tilting module for A (since it is a tilting module for
the Ringel dual of A). The following properties of H were obtained in
[FM]:

Theorem 3. Assume that R is properly stratified and H is the two-step

tilting module for A. Then

1. H is a generalized tilting module;

2. pd(H) = fdim(A);

3. P<∞(A) coincides with the category of A-modules, which admit a

finite coresolution by modules from Add(H), in particular, P<∞(A)
is contravariantly finite.

In particular, the module H is a good test module for fdim(A) and it
completely describes P<∞(A) in the homological sense. It is also shown
in [FM] that the existence of H makes it possible to relate fdim(A) with
the projective dimension of the characteristic tilting module:

Theorem 4. Let A be a properly stratified algebra having a simple pre-

serving duality. Assume R is properly stratified. Then

1. fdim(A) = 2 · pd(T (R)).

2. fdim(A) = 2 · pd(T ), in particular, pd(T ) = pd(T (R)), if R has a

simple preserving duality itself.

3.4. A new lower bound for fdim(A)

Carefully combining the results of [MO] and [FM] one can deduce the
following lower bound for the finitistic dimension of properly stratified
algebras having a simple preserving duality.

Theorem 5. Let A be properly stratified with a simple preserving duality

?. Then we have fdim(A) ≥ 2 · fdim∆(A).

Proof. We have to produce a module from P<∞(A) of projective dimen-
sion at least 2·fdim∆(A). For this it is enough to show that any A-module
M , such that dim∆(M) = fdim∆(A), satisfies pd(M) ≥ 2 · fdim∆(A). Set
k = fdim∆(A). By [MO, Lemma 6], M• is quasi-isomorphic to a finite
complex, T •, of tilting modules, satisfying T i = 0 for all i < −k. Apply-
ing ? gives a finite complex, C•, of cotilting modules satisfying Ci = 0 for
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all i > k. Using [FM, Lemma 11] one finds a (possibly infinite) complex,
Q•, of tilting modules, which is quasi-isomorphic to C•, and which satis-
fies Qi = 0 for all i > k. Moreover, using [FM, Lemma 12] one can also
guarantee that T −k is non-trivial and is a direct summand of Qk. Using
the arguments as in [MO, Section 3] one shows that there is a non-zero
morphism from T •[−2k] to Q•, implying pd(M) ≥ 2k.

It is interesting to compare the bound, given in Theorem 5, with the
results, described in Subsection 3.3. For this we will need the following
lemma:

Lemma 1. Let A be an SSS-algebra and M ∈ F(∇) such that pd(M) <
∞. Then dim∆(M) = pd(F (M)).

Proof. Taking the minimal projective resolution P• of M and applying
[MO, Lemma 4.1] we obtain a finite complex, T •, of tilting modules,
which is quasi-isomorphic to M• ∈ Db(A). Using the arguments from
the proof of [MO, Lemma 5] one even shows that T • is quasi-isomorphic
to a finite minimal (in the sense of [MO]) complex, Q•, of tilting modules
satisfying Qi = 0, i > 0. In other words, the module M admits a finite
tilting resolution. Applying F gives a projective resolution of F (M)
and we see that the length of the minimal tilting resolution of M is
exactly pd(F (M)). From [MO, Lemma 6] it also follows that the length
of the minimal tilting resolution of M equals dim∆(M), completing the
proof.

Corollary 2. Let A be properly stratified and assume that R is also

properly stratified. Then pd(T (R)) = fdim∆(A).

Proof. By Lemma 1 we have pd(T (R)) = dim∆(H). Further, let M ∈
P<∞(A) be such that l = dim∆(M) = fdim∆(A). By Theorem 3, we
have a short exact sequence M ↪→ H1 � K, where H1 ∈ Add(H) and
K ∈ P<∞(A). In particular, dim∆(H1) and dim∆(K) do not exceed
dim∆(M). Applying HomA(−,∇) we obtain that Extl

A(H1,∇) surjects
onto Extl

A(M,∇) 6= 0 and hence dim∆(H1) = l by [MP, Lemma 1]. This
implies dim∆(H) = l and completes the proof.

An immediate corollary of Theorem 4 and Corollary 2 is:

Corollary 3. Let A be properly stratified having a simple preserving

duality. Assume that R is also properly stratified. Then fdim(A) =
2 · fdim∆(A).
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4. A counterexample

In [MP, Conjecture 1] it was conjectured that the finitistic dimension
of a properly stratified algebra having a simple preserving duality always
equals twice the projective dimension of the characteristic tilting module.
As we saw above this is true under assumptions that R is properly strati-
fied and has a simple preserving duality, which includes, in particular, the
cases of quasi-hereditary algebras, and properly stratified algebras whose
tilting modules are also cotilting. Unfortunately, in the full generality
the statement of the conjecture is wrong. As a counter example one can
consider the following algebra (the first counter example was constructed
by the author, computed by Birge Huisgen-Zimmermann, and simplified
by Steffen König).

Let A be the path algebra of the quiver

•1

α

''
x 77

•2

β

gg y
gg

modulo the relations αβ = x2 = y2 = xβ = αx = 0. The map α 7→ β,
β 7→ α extends to an anti-involution on A and hence gives rise to a duality
on A−mod.

The radical filtrations of the projective, standard, and proper stan-
dard modules look as follows:
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P (1)

1
α

��?
??

??x

����
��

�

1 2
y

��?
??

??β

����
��

�

1 2
β

����
��

�

1

P (2) = ∆(2)

2
y

��?
??

??β

����
��

�

1 2
β

����
��

�

1

∆(1)

1
x

��
1

∆(2)

2
β

��
1

∆(1)

1

.

It follows that A is properly stratified. Since A has a duality, the
socle filtrations of injective, costandard and proper costandard modules
are duals of the radical filtrations of the corresponding projective, stan-
dard and proper standard modules above. The indecomposable tilting
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A-modules have the following radical filtration:

T (2)

1
x

����
�� α

��?
??

?

1 2
β

����
��

y

��?
??

? 1
α

����
�� x

��?
??

?

1 2
β

����
��

1

1

T (1) = ∆(1)

1
x ��
1

.

Neither T (2) nor ∆(1) are projective, which implies that fdim(A) ≥ 1.
Further it is easy to see that there are the following minimal projective
resolutions of tilting modules: 0 → P (2) → P (1) → T (1) → 0 and
0 → P (2) → P (1) ⊕ P (1) → T (2) → 0, and hence pd(T ) = 1. It is also
easy to see that any injection between tilting modules is an isomorphism.
This and [MO, Lemma 6] implies fdim∆(A) = 0. Hence, by Theorem 2
we obtain fdim(A) ≤ fdim∆(A) + pd(T ) = 1 and thus fdim(A) = 1. In
particular, in this example we have 2 · fdim∆(A) = 0 < fdim(A) = 1 <
2 · pd(T ) = 2.

The example together with Theorem 2 motivates to make the follow-
ing correction to [MP, Conjecture 1]:

Corrected conjecture. Let A be a properly stratified algebra with a

simple preserving duality. Then fdim(A) = fdim∆(A) + pd(T ).

Remark that for algebras having a simple preserving duality we always
have fdim∆(A) ≤ pd(T ) = codim

∇
(A), see [MP].

5. A bound for ifdim(A) in the case of an SSS-algebra

Up to this point all the results mentioned were about the projectively
defined finitistic dimension. A natural question is: what can one say
about the injectively defined version? In the case of an algebra having a
(simple preserving) duality the answer is very easy: the injectively and
the projectively defined finitistic dimensions obviously coincide. But what
can be said in the general case? This question is still more or less open,
see Section 6. Here we just present an easy upper bound for the case,
when we have enough information about the Ringel dual of the algebra.
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Theorem 6. Let A be and SSS-algebra and assume that R is properly

stratified. Then ifdim(A) ≤ fdim(A) ≤ fdim∆(A) + pd(T ).

Proof. Because of Theorem 2 it is enough to prove that ifdim(A) ≤
fdim(A). To do this we will show that for any M with i. d.(M) = k < ∞
we have Extk

A(H, M) 6= 0. From the definition of H(λ) it follows that
there is an injection ∇(λ) ↪→ H(λ), and hence there is an injection
L ↪→ H with cokernel, K say. Applying HomA(−, M) to the short exact
sequence L ↪→ H � K and using i. d.(M) = k we get a surjection of
Extk

A(H, M) onto Extk
A(L, M) 6= 0. This completes the proof.

6. Some comments and questions

Summarizing the results of the paper we can say the following: if A is
a properly stratified algebra having a simple preserving duality, then we
have the following bounds for fdim(A):

2 · fdim∆(A) ≤ fdim(A) ≤ fdim∆(A) + pd(T ) ≤ 2 · pd(T ). (1)

Most of the components of (1) have equivalent reformulations in other
homological terms for A or for the Ringel dual R of A. In many cases,
for example for quasi-hereditary algebras, we know that all inequalities
in (1) are in fact equalities. We also know that the first and the third
inequalities can be strict. This gives rise to the following question:

1. Let A be an SSS-algebra. How different can pd(T ) and fdim∆(A)
be? The same for properly stratified algebras and for properly
stratified algebras with duality.

2. Describe the class of SSS-algebras with properly stratified Ringel
duals, satisfying pd(T ) = pd(T (R)) (remark that the last condition
immediately makes all inequalities of (1) into equalities). The same
for properly stratified algebras and for properly stratified algebras
with duality.

We saw that the module H, which appears in the case when R is
properly stratified, can be used as a test module for fdim(A). It was
shown in [FM] that EndA(H)opp is always an SSS-algebra. Hence, very
natural questions are:

3. Find, in terms of A−mod, necessary and sufficient conditions for
EndA(H) to be properly stratified.

4. Is there any relation between fdim(A) and fdim(EndA(H))?
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As we have already mentioned, much less is know about the injectively
defined finitistic dimension, so even the following very general question
is not answered:

5. Let A be an SSS-algebra or a properly stratified algebra. Can one
use tilting modules to estimate or compute ifdim(A)?
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[AHLU2] I.Ágoston, D.Happel, E.Lukács, L.Unger, Standardly stratified algebras
and tilting. J. Algebra 226 (2000), no. 1, 144–160.

[AR] M.Auslander, I.Reiten, Applications of contravariantly finite subcategories.
Adv. Math. 86 (1991), no. 1, 111–152.

[CPS] E.Cline, B.Parshall, L.Scott, Stratifying endomorphism algebras. Mem.
Amer. Math. Soc. 124 (1996), no. 591, viii+119 pp.

[Dl1] V.Dlab, Properly stratified algebras. C. R. Acad. Sci. Paris Ser. I Math.
331 (2000), no. 3, 191–196.

[Dl2] V.Dlab, Quasi-hereditary algebras revisited. Representation theory of
groups, algebras, and orders (Constanţa, 1995). An. Ştiinţ. Univ. Ovid-
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