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Let H be a unitary (finite dimensional Hilbert) space.

It is known [1] that a self-adjoint operator on H, A = A∗ ≥ 0, is a sum
of n orthogonal projections for some n ∈ N if and only if 1) trA ∈ N∪{0},
2) trA ≥ dim ImA (Im A = AH).

A known problem is the following: what are necessary and sufficient
conditions on the spectrum and the spectrum multiplicities of the oper-
ator A = A∗ on a unitary space H, dim H = m < ∞, so that A can
be represented as a sum of n orthogonal projections (n is fixed), that is,
what conditions should be imposed on the spectrum σ(A) = {0 ≤ λ1 <

. . . < λs ≤ n}, s ≤ m, and the collection of dimensions dimHλj
= mj

of the eigen spaces corresponding to the eigen values λs, j = 1, . . . , s,∑s
j=1 mj = m, of a self-adjoint operator A so that there exist orthogonal

projections P1, . . . , Pn such that A =
∑n

i=1 Pj , n ≥ 3. “The problem of
the characterization of the sum of projections has been open for many
years” (Pei Yuan Wu [2]).

However, using the fact that this problem is a particular case of the
known problem to characterize the spectrum and the spectrum multiplic-
ities of the sum of operators Ak, k = 1, . . . , n, that have given spectra
and spectrum multiplicities, and making use of the solution recently pro-
posed in [3, 4] of Horn’s problem (see the survey [5]), we can propose an
algorithmic solution of the problem on the sum of orthogonal projections.

So, what can be said about precise statements of theorems? For
n = 2, it immediately follows from the spectral theorem for a pair of
self-adjoint idempotents, i.e., orthogonal projections on a Hilbert space
(see for example [6] and bibl. there), that an operator A = A∗ is a sum of
two orthogonal projections if and only if its spectrum is contained in the
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set {0, 1, 2} ∪ ⋃

i

{1 − εi, 1 + εi}, 0 < εi < 1, i ≥ 1, and the multiplicities

of the eigen values 1 − εi, 1 + εi coincide.

For n ≥ 3, the corresponding spectral theorem for n orthogonal pro-
jections is not proved, this is a ∗-wild problem [6], so the spectral methods
can be applied only with additional assumptions.

In Sections 1–3 we use methods of representation theory for obtaining
a number of sufficient conditions that should be imposed on the spectrum
and spectrum multiplicities of an operator A = A∗ so that it can be
represented as a sum of n orthogonal projections (n ≥ 3).

In Section 1, following [7, 8] we give a solution of the above-mentioned
problem in the case where the spectrum of the operator A consists of a
single point.

In [9], the authors give necessary and sufficient conditions for a self-
adjoint operator A with a two-point spectrum to be a sum of three or-
thogonal projections (see Theorem 3 [9]), however, these conditions look
rather cumbersome. In Section 2 of this paper, we use results from [7, 8]
to solve this problem if the spectrum of the operator A consists of two
points ε and 1 + ε. We formulate necessary and sufficient conditions on
ε and multiplicities of the spectrum points ε and 1 + ε so that A can
be written as a sum of three orthogonal projections. These conditions
are simpler for the above eigen values than those in the general case. In
Section 3, we treat the case of n orthogonal projections, n ≥ 3.

1. When the operator αI is a sum of n orthogonal

projections

Let H be a finite or infinite dimensional Hilbert space and Σn = {α| ∃Pi ∈
L(H) : P 2

i = P ∗
i = Pi,

∑n
i=1 Pi = αI}. For n ≥ 4, introduce the following

discrete sets:

Λ
(1)
n = {0, 1 + 1

n−1 , 1 + 1
(n−2)− 1

n−1

, ..., 1 + 1
(n−2)− 1

(n−2)− 1

...
−

1
n−1

, ...},

Λ
(2)
n = {1, 1 + 1

n−2 , 1 + 1
(n−2)− 1

n−2

, ..., 1 + 1
(n−2)− 1

(n−2)− 1

...
−

1
n−2

, ...}.

It is proved in [7] that

Σn = {Λ(1)
n , Λ(2)

n , [
n −

√
n2 − 4n

2
,
n +

√
n2 − 4n

2
], n − Λ(1)

n , n − Λ(2)
n }

for n ≥ 4. The following result was proved in [8].
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Proposition 1. The operator αI on a Hilbert space H, where α = p
q

is
an irreducible fraction, is a sum of n orthogonal projections if and only
if α ∈ Σn ∩ Q and dim H = qt (t ≥ 1).

2. When an operator with the two-point spectrum ε, 1 + ε

is a sum of three orthogonal projections

Consider, on a unitary space H, an operator A = A∗ that has the two-
point spectrum σ(A) = {ε, 1 + ε}, ε > 0, and that can be represented as
a sum of n orthogonal projections P1 + . . . + Pn = A.

Lemma 2. For an operator A = A∗ that has the spectrum {ε, 1+ε} to be
a sum of n projections, it is necessary that (1+ ε) ∈ Σn+1. In particular,
for the representation A = P1 +P2 +P3 to take place, it is necessary that
(1 + ε) ∈ Σ4 = {2, 2 ± 1

k+1 , 2 ± 1
k+ 1

2

: k ≥ 0}.

Proof. Let P be the projection onto the eigen space of the operator A

corresponding to the eigen value ε. Then P1+. . .+Pn = εP+(1+ε)(I−P )
or P1 + . . . + Pn + P = (1 + ε)I. This yields the claim.

Theorem 3. Let an operator A = A∗ have the two-point spectrum ε and
1 + ε, ε > 0, with multiplicities r1 ≥ 1 and r2 ≥ 1. Then it is a sum of
three orthogonal projections if and only if the following holds.

1. for ε < 1,

(a) ε = 1 − 1
k+ 1

2

has the multiplicity r1 = kt and 1 + ε has the

multiplicity r2 = (k + 1)t;

(b) ε = 1 − 1
k+1 has the multiplicity r1 = r(1)t1 + r(2)t2 and the

multiplicity of 1 + ε is r1 = r(2)t1 + r(1)t2, where r(1) =
2k+1+(−1)k−1

4 , r(2) = 2k+3+(−1)k

4 ;

2. for ε = 1, the multiplicities r1, r2 are arbitrary;

3. for ε > 1, a necessary and sufficient condition is that there exists a
decomposition of an operator B = B∗ that has the two-point spec-
trum 2 − ε and 3 − ε with multiplicities r2 ≥ 1 and r1 ≥ 1 into a
sum of three orthogonal projections.

Proof. Let P be the projection onto the eigen space of the operator A

corresponding to the eigen value ε. Then P1 + P2 + P3 + P = (1 + ε)I.

It was shown in [7] that irreducible quadruples of orthogonal projec-
tions p1, p2, p3, p4 such that p1+p2+p3+p4 = (1+ε)I, where ε < 1, exist
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only in the following cases. 1) ε = 1 − 1
k+ 1

2

and the space has dimension

2k + 1; here dim Im p4 = k. So orthogonal projections P1, P2, P3, P such
that P1 + P2 + P3 + P = (1 + ε)I exist only on a space of dimension
(2k + 1)t, t ≥ 1 and dim Im P = kt, whence (1.a) of the theorem follows.
2) ε = 1− 1

k+1 and the dimension of the space is k + 1; here dim Im p4 =

r(1) = 2k+1+(−1)k−1

4 or dim Im p4 = r(2) = 2k+3+(−1)k

4 . So orthogonal
projections P1, P2, P3, P such that P1 +P2 +P3 +P = (1+ ε)I exist only
on the space of dimension (k + 1)t, t ≥ 1 and dim Im P = r(1)t1 + r(2)t2,
here t1 + t2 = t, ti ≥ 0, which gives (1.b).

For ε = 1 the claim is obvious.
If ε > 1 and A = A∗, with the spectrum containing the two points ε

and 1+ ε of multiplicities r1 ≥ 1 and r2 ≥ 1, is a sum of three orthogonal
projections A = P1 + P2 + P3, then the operator B = P⊥

1 + P⊥
2 + P⊥

3 =
(I − P1) + (I − P2) + (I − P3) = 3I − A, where P⊥

i = I − Pi, is a sum
of three orthogonal projections and has spectrum consisting of the two
points 2 − ε and 3 − ε of multiplicities r2 ≥ 1 and r1 ≥ 1, which gives
(3).

3. When an operator with the two-point spectrum ε and

1 + ε is a sum of n orthogonal projection

Let Φ+(α) = 1 + 1
n−1−α

and

Φ+(k)(α) = Φ(Φ+(k−1)(α)), k ≥ 1, Φ+(0)(α) = α,

then Λ
(1)
n =

⋃

k≥0

Φ+(k)(0), Λ
(2)
n =

⋃

k≥0

Φ+(k)(1). Let 1 + ε = p
q

be an

irreducible fraction.

Theorem 4. An operator A = A∗ with the two-point spectrum ε and 1+ε,

where 1 + ε ∈ (0,
(n+1)−

√
(n+1)2−4(n+1)

2 ) ∪ (
(n+1)+

√
(n+1)2−4(n+1)

2 , n + 1),
of multiplicities r1 ≥ 1 and r2 ≥ 1 is a sum of n orthogonal projections
if and only if the following holds.

1. (1+ ε) ∈ Λ1
n+1 \{0} and has multiplicity r2 = (q− p

n+1)t, and ε has
multiplicity r1 = p

n+1 t;

2. (1 + ε) ∈ Λ2
n+1 and has multiplicity r2 = (q − r(1))t1 + (q − r(2))t2,

and ε has multiplicity r1 = r(1)t1 + r(2)t2, where r(1) = p+(−1)k−1

n+1 ,

r(2) = r(1) + (−1)k and k : Φ+(k)(1) = 1 + ε, ti ≥ 0;

3. for 1+ε ∈ (
(n+1)+

√
(n+1)2−4(n+1)

2 , n+1), a necessary and sufficient
condition for existence of the operator A is that there exists an
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operator B = B∗, having the two-point spectrum n− ε− 1, n− ε of
multiplicities r2 ≥ 1 and r1 ≥ 1, that can be represented as a sum
of n orthogonal projections.

Proof. Let P be the projection onto the eigen space of the operator A

corresponding to the eigen value ε. Then P1 + . . . + Pn + P = (1 + ε)I.

It was shown in [7] that irreducible orthogonal projections such that

p1 + p2 + . . .+ pn + pn+1 = (1+ ε)I, where 1+ ε <
(n+1)−

√
(n+1)2−4(n+1)

2 ,
exist only in the following cases.

1) 1+ε = p
q
∈ Λ1

n+1 and the space has dimension q and dim Im pn+1 =
p

n+1 . So orthogonal projections P1, . . . , Pn, P such that P1+. . .+Pn+P =
(1 + ε)I exist only on the space of dimension qt, t ≥ 1 and dim Im P =

p
n+1 t, whence (1) of the theorem follows.

2) 1 + ε = p
q

= Φ+(k)(1) ∈ Λ2
n+1 and the dimension of the space is q;

here dim Im pn+1 = r(1) = p+(−1)k−1

n+1 or dim Im pn+1 = r(2) = r(1)+(−1)k.
So orthogonal projections P1, . . . , Pn, P such that P1 + . . . + Pn + P =
(1 + ε)I exist only on the space of dimension qt, t ≥ 1 and dim Im P =
r(1)t1 + r(2)t2, here t1 + t2 = t, ti ≥ 0, which gives (2).

If 1 + ε >
(n+1)+

√
(n+1)2−4(n+1)

2 and A = A∗, with the spectrum
containing the two points ε and 1 + ε of multiplicities r1 ≥ 1 and r2 ≥ 1,
is a sum of n orthogonal projections A = P1 + . . .+Pn, then the operator
B = P⊥

1 +. . .+P⊥
n = (I−P1)+. . .+(I−Pn) = nI−A, where P⊥

i = I−Pi,
is a sum of n orthogonal projections and has spectrum consisting of the
two points n− 1− ε and n− ε of multiplicities r2 ≥ 1 and r1 ≥ 1, which
gives (3).

The authors express their deep gratitude to S. A. Kruglyak and
S. V. Popovich for useful discussions on sums of orthogonal projections.
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