Number 3. (2004). pp. $71-76$
(c) Journal "Algebra and Discrete Mathematics"

On the spectrum and spectrum multiplicities of a sum of orthogonal projections

A. A. Kyrychenko and Yu. S. Samoîlenko
Communicated by L. Turowska

Let H be a unitary (finite dimensional Hilbert) space.
It is known [1] that a self-adjoint operator on $H, A=A^{*} \geq 0$, is a sum of n orthogonal projections for some $n \in \mathbb{N}$ if and only if 1) $\operatorname{tr} A \in \mathbb{N} \cup\{0\}$, 2) $\operatorname{tr} A \geq \operatorname{dim} \operatorname{Im} A(\operatorname{Im} A=A H)$.

A known problem is the following: what are necessary and sufficient conditions on the spectrum and the spectrum multiplicities of the operator $A=A^{*}$ on a unitary space H, $\operatorname{dim} H=m<\infty$, so that A can be represented as a sum of n orthogonal projections (n is fixed), that is, what conditions should be imposed on the spectrum $\sigma(A)=\left\{0 \leq \lambda_{1}<\right.$ $\left.\ldots<\lambda_{s} \leq n\right\}, s \leq m$, and the collection of dimensions $\operatorname{dim} H_{\lambda_{j}}=m_{j}$ of the eigen spaces corresponding to the eigen values $\lambda_{s}, j=1, \ldots, s$, $\sum_{j=1}^{s} m_{j}=m$, of a self-adjoint operator A so that there exist orthogonal projections P_{1}, \ldots, P_{n} such that $A=\sum_{i=1}^{n} P_{j}, n \geq 3$. "The problem of the characterization of the sum of projections has been open for many years" (Pei Yuan Wu [2]).

However, using the fact that this problem is a particular case of the known problem to characterize the spectrum and the spectrum multiplicities of the sum of operators $A_{k}, k=1, \ldots, n$, that have given spectra and spectrum multiplicities, and making use of the solution recently proposed in $[3,4]$ of Horn's problem (see the survey [5]), we can propose an algorithmic solution of the problem on the sum of orthogonal projections.

So, what can be said about precise statements of theorems? For $n=2$, it immediately follows from the spectral theorem for a pair of self-adjoint idempotents, i.e., orthogonal projections on a Hilbert space (see for example [6] and bibl. there), that an operator $A=A^{*}$ is a sum of two orthogonal projections if and only if its spectrum is contained in the
set $\{0,1,2\} \cup \bigcup_{i}\left\{1-\varepsilon_{i}, 1+\varepsilon_{i}\right\}, 0<\varepsilon_{i}<1, i \geq 1$, and the multiplicities of the eigen values $1-\varepsilon_{i}, 1+\varepsilon_{i}$ coincide.

For $n \geq 3$, the corresponding spectral theorem for n orthogonal projections is not proved, this is a $*$-wild problem [6], so the spectral methods can be applied only with additional assumptions.

In Sections 1-3 we use methods of representation theory for obtaining a number of sufficient conditions that should be imposed on the spectrum and spectrum multiplicities of an operator $A=A^{*}$ so that it can be represented as a sum of n orthogonal projections ($n \geq 3$).

In Section 1, following [7, 8] we give a solution of the above-mentioned problem in the case where the spectrum of the operator A consists of a single point.

In [9], the authors give necessary and sufficient conditions for a selfadjoint operator A with a two-point spectrum to be a sum of three orthogonal projections (see Theorem 3 [9]), however, these conditions look rather cumbersome. In Section 2 of this paper, we use results from [7, 8] to solve this problem if the spectrum of the operator A consists of two points ε and $1+\varepsilon$. We formulate necessary and sufficient conditions on ε and multiplicities of the spectrum points ε and $1+\varepsilon$ so that A can be written as a sum of three orthogonal projections. These conditions are simpler for the above eigen values than those in the general case. In Section 3, we treat the case of n orthogonal projections, $n \geq 3$.

1. When the operator αI is a sum of n orthogonal projections

Let \mathbb{H} be a finite or infinite dimensional Hilbert space and $\Sigma_{n}=\left\{\alpha \mid \exists P_{i} \in\right.$ $\left.L(\mathbb{H}): P_{i}^{2}=P_{i}^{*}=P_{i}, \sum_{i=1}^{n} P_{i}=\alpha I\right\}$. For $n \geq 4$, introduce the following discrete sets:

$$
\begin{aligned}
& \Lambda_{n}^{(1)}=\left\{0,1+\frac{1}{n-1}, 1+\frac{1}{(n-2)-\frac{1}{n-1}}, \ldots, 1+\frac{1}{\left.(n-2)-\frac{1}{(n-2)-\frac{1}{\ddots}}, \ldots\right\}},\right. \\
& \Lambda_{n}^{(2)}=\left\{1,1+\frac{1}{n-2}, 1+\frac{1}{(n-2)-\frac{1}{n-2}}, \ldots, 1+\frac{1}{(n-2)-\frac{1}{(n-2)-\frac{1}{n-1}}}, \ldots\right\}
\end{aligned}
$$

It is proved in [7] that

$$
\Sigma_{n}=\left\{\Lambda_{n}^{(1)}, \Lambda_{n}^{(2)},\left[\frac{n-\sqrt{n^{2}-4 n}}{2}, \frac{n+\sqrt{n^{2}-4 n}}{2}\right], n-\Lambda_{n}^{(1)}, n-\Lambda_{n}^{(2)}\right\}
$$

for $n \geq 4$. The following result was proved in [8].

Proposition 1. The operator αI on a Hilbert space \mathbb{H}, where $\alpha=\frac{p}{q}$ is an irreducible fraction, is a sum of n orthogonal projections if and only if $\alpha \in \Sigma_{n} \cap \mathbb{Q}$ and $\operatorname{dim} \mathbb{H}=q t(t \geq 1)$.

2. When an operator with the two-point spectrum $\varepsilon, 1+\varepsilon$ is a sum of three orthogonal projections

Consider, on a unitary space H, an operator $A=A^{*}$ that has the twopoint spectrum $\sigma(A)=\{\varepsilon, 1+\varepsilon\}, \varepsilon>0$, and that can be represented as a sum of n orthogonal projections $P_{1}+\ldots+P_{n}=A$.

Lemma 2. For an operator $A=A^{*}$ that has the spectrum $\{\varepsilon, 1+\varepsilon\}$ to be a sum of n projections, it is necessary that $(1+\varepsilon) \in \Sigma_{n+1}$. In particular, for the representation $A=P_{1}+P_{2}+P_{3}$ to take place, it is necessary that $(1+\varepsilon) \in \Sigma_{4}=\left\{2,2 \pm \frac{1}{k+1}, 2 \pm \frac{1}{k+\frac{1}{2}}: k \geq 0\right\}$.

Proof. Let P be the projection onto the eigen space of the operator A corresponding to the eigen value ε. Then $P_{1}+\ldots+P_{n}=\varepsilon P+(1+\varepsilon)(I-P)$ or $P_{1}+\ldots+P_{n}+P=(1+\varepsilon) I$. This yields the claim.

Theorem 3. Let an operator $A=A^{*}$ have the two-point spectrum ε and $1+\varepsilon, \varepsilon>0$, with multiplicities $r_{1} \geq 1$ and $r_{2} \geq 1$. Then it is a sum of three orthogonal projections if and only if the following holds.

1. for $\varepsilon<1$,
(a) $\varepsilon=1-\frac{1}{k+\frac{1}{2}}$ has the multiplicity $r_{1}=k t$ and $1+\varepsilon$ has the multiplicity $r_{2}=(k+1) t$;
(b) $\varepsilon=1-\frac{1}{k+1}$ has the multiplicity $r_{1}=r^{(1)} t_{1}+r^{(2)} t_{2}$ and the multiplicity of $1+\varepsilon$ is $r_{1}=r^{(2)} t_{1}+r^{(1)} t_{2}$, where $r^{(1)}=$ $\frac{2 k+1+(-1)^{k-1}}{4}, r^{(2)}=\frac{2 k+3+(-1)^{k}}{4} ;$
2. for $\varepsilon=1$, the multiplicities r_{1}, r_{2} are arbitrary;
3. for $\varepsilon>1$, a necessary and sufficient condition is that there exists a decomposition of an operator $B=B^{*}$ that has the two-point spectrum $2-\varepsilon$ and $3-\varepsilon$ with multiplicities $r_{2} \geq 1$ and $r_{1} \geq 1$ into a sum of three orthogonal projections.

Proof. Let P be the projection onto the eigen space of the operator A corresponding to the eigen value ε. Then $P_{1}+P_{2}+P_{3}+P=(1+\varepsilon) I$.

It was shown in [7] that irreducible quadruples of orthogonal projections $p_{1}, p_{2}, p_{3}, p_{4}$ such that $p_{1}+p_{2}+p_{3}+p_{4}=(1+\varepsilon) I$, where $\varepsilon<1$, exist
only in the following cases. 1) $\varepsilon=1-\frac{1}{k+\frac{1}{2}}$ and the space has dimension $2 k+1$; here $\operatorname{dim} \operatorname{Im} p_{4}=k$. So orthogonal projections P_{1}, P_{2}, P_{3}, P such that $P_{1}+P_{2}+P_{3}+P=(1+\varepsilon) I$ exist only on a space of dimension $(2 k+1) t, t \geq 1$ and $\operatorname{dim} \operatorname{Im} P=k t$, whence (1.a) of the theorem follows. 2) $\varepsilon=1-\frac{1}{k+1}$ and the dimension of the space is $k+1$; here $\operatorname{dim} \operatorname{Im} p_{4}=$ $r^{(1)}=\frac{2 k+1+(-1)^{k-1}}{4}$ or $\operatorname{dim} \operatorname{Im} p_{4}=r^{(2)}=\frac{2 k+3+(-1)^{k}}{4}$. So orthogonal projections P_{1}, P_{2}, P_{3}, P such that $P_{1}+P_{2}+P_{3}+P=(1+\varepsilon) I$ exist only on the space of dimension $(k+1) t, t \geq 1$ and $\operatorname{dim} \operatorname{Im} P=r^{(1)} t_{1}+r^{(2)} t_{2}$, here $t_{1}+t_{2}=t, t_{i} \geq 0$, which gives (1.b).

For $\varepsilon=1$ the claim is obvious.
If $\varepsilon>1$ and $A=A^{*}$, with the spectrum containing the two points ε and $1+\varepsilon$ of multiplicities $r_{1} \geq 1$ and $r_{2} \geq 1$, is a sum of three orthogonal projections $A=P_{1}+P_{2}+P_{3}$, then the operator $B=P_{1}^{\perp}+P_{2}^{\perp}+P_{3}^{\perp}=$ $\left(I-P_{1}\right)+\left(I-P_{2}\right)+\left(I-P_{3}\right)=3 I-A$, where $P_{i}^{\perp}=I-P_{i}$, is a sum of three orthogonal projections and has spectrum consisting of the two points $2-\varepsilon$ and $3-\varepsilon$ of multiplicities $r_{2} \geq 1$ and $r_{1} \geq 1$, which gives (3).

3. When an operator with the two-point spectrum ε and $1+\varepsilon$ is a sum of n orthogonal projection

Let $\Phi^{+}(\alpha)=1+\frac{1}{n-1-\alpha}$ and

$$
\Phi^{+(k)}(\alpha)=\Phi\left(\Phi^{+(k-1)}(\alpha)\right), k \geq 1, \Phi^{+(0)}(\alpha)=\alpha
$$

then $\Lambda_{n}^{(1)}=\bigcup_{k \geq 0} \Phi^{+(k)}(0), \Lambda_{n}^{(2)}=\bigcup_{k \geq 0} \Phi^{+(k)}(1)$. Let $1+\varepsilon=\frac{p}{q}$ be an irreducible fraction.

Theorem 4. An operator $A=A^{*}$ with the two-point spectrum ε and $1+\varepsilon$, where $1+\varepsilon \in\left(0, \frac{(n+1)-\sqrt{(n+1)^{2}-4(n+1)}}{2}\right) \cup\left(\frac{(n+1)+\sqrt{(n+1)^{2}-4(n+1)}}{2}, n+1\right)$, of multiplicities $r_{1} \geq 1$ and $r_{2} \geq 1$ is a sum of n orthogonal projections if and only if the following holds.

1. $(1+\varepsilon) \in \Lambda_{n+1}^{1} \backslash\{0\}$ and has multiplicity $r_{2}=\left(q-\frac{p}{n+1}\right) t$, and ε has multiplicity $r_{1}=\frac{p}{n+1} t$;
2. $(1+\varepsilon) \in \Lambda_{n+1}^{2}$ and has multiplicity $r_{2}=\left(q-r^{(1)}\right) t_{1}+\left(q-r^{(2)}\right) t_{2}$, and ε has multiplicity $r_{1}=r^{(1)} t_{1}+r^{(2)} t_{2}$, where $r^{(1)}=\frac{p+(-1)^{k-1}}{n+1}$, $r^{(2)}=r^{(1)}+(-1)^{k}$ and $k: \Phi^{+(k)}(1)=1+\varepsilon, t_{i} \geq 0$;
3. for $1+\varepsilon \in\left(\frac{(n+1)+\sqrt{(n+1)^{2}-4(n+1)}}{2}, n+1\right)$, a necessary and sufficient condition for existence of the operator A is that there exists an
operator $B=B^{*}$, having the two-point spectrum $n-\varepsilon-1, n-\varepsilon$ of multiplicities $r_{2} \geq 1$ and $r_{1} \geq 1$, that can be represented as a sum of n orthogonal projections.

Proof. Let P be the projection onto the eigen space of the operator A corresponding to the eigen value ε. Then $P_{1}+\ldots+P_{n}+P=(1+\varepsilon) I$.

It was shown in [7] that irreducible orthogonal projections such that $p_{1}+p_{2}+\ldots+p_{n}+p_{n+1}=(1+\varepsilon) I$, where $1+\varepsilon<\frac{(n+1)-\sqrt{(n+1)^{2}-4(n+1)}}{2}$, exist only in the following cases.

1) $1+\varepsilon=\frac{p}{q} \in \Lambda_{n+1}^{1}$ and the space has dimension q and $\operatorname{dim} \operatorname{Im} p_{n+1}=$ $\frac{p}{n+1}$. So orthogonal projections P_{1}, \ldots, P_{n}, P such that $P_{1}+\ldots+P_{n}+P=$ $(1+\varepsilon) I$ exist only on the space of dimension $q t, t \geq 1$ and $\operatorname{dim} \operatorname{Im} P=$ $\frac{p}{n+1} t$, whence (1) of the theorem follows.
2) $1+\varepsilon=\frac{p}{q}=\Phi^{+(k)}(1) \in \Lambda_{n+1}^{2}$ and the dimension of the space is q; here $\operatorname{dim} \operatorname{Im} p_{n+1}=r^{(1)}=\frac{p+(-1)^{k-1}}{n+1}$ or $\operatorname{dim} \operatorname{Im} p_{n+1}=r^{(2)}=r^{(1)}+(-1)^{k}$. So orthogonal projections P_{1}, \ldots, P_{n}, P such that $P_{1}+\ldots+P_{n}+P=$ $(1+\varepsilon) I$ exist only on the space of dimension $q t, t \geq 1$ and $\operatorname{dim} \operatorname{Im} P=$ $r^{(1)} t_{1}+r^{(2)} t_{2}$, here $t_{1}+t_{2}=t, t_{i} \geq 0$, which gives (2).

If $1+\varepsilon>\frac{(n+1)+\sqrt{(n+1)^{2}-4(n+1)}}{2}$ and $A=A^{*}$, with the spectrum containing the two points ε and $1+\varepsilon$ of multiplicities $r_{1} \geq 1$ and $r_{2} \geq 1$, is a sum of n orthogonal projections $A=P_{1}+\ldots+P_{n}$, then the operator $B=P_{1}^{\perp}+\ldots+P_{n}^{\perp}=\left(I-P_{1}\right)+\ldots+\left(I-P_{n}\right)=n I-A$, where $P_{i}^{\perp}=I-P_{i}$, is a sum of n orthogonal projections and has spectrum consisting of the two points $n-1-\varepsilon$ and $n-\varepsilon$ of multiplicities $r_{2} \geq 1$ and $r_{1} \geq 1$, which gives (3).

The authors express their deep gratitude to S. A. Kruglyak and S. V. Popovich for useful discussions on sums of orthogonal projections.

References

[1] Fillmore P. A. On sums of projections // J. Func. Anal. - 1969. - v. 4. p. 146-152.
[2] Wu P.Y. Additive combination of special operators // Func. Anal. and Oper. Theory, Banach Center Publ. - 1994. - N 30. - p. 337-361.
[3] Klyachko A. A. Stable bundles, representation theory and Hermitian operators // Sel. Math., New ser. - 1998. - v. 4. - p. 419-445.
[4] Knutson A., Tao T. The honeycomb model of $G L_{n}(C)$) tensor products I: Proof of the saturation conjecture // J. Amer. Math. Soc. - 1999. - v. 12. - p. 10551090.
[5] Fulton W. Eigenvalues, invariant factors, highest weights and Shubert calculus // Bull. Amer. Math. Soc. (New Ser.). - 2000. - v. 37, N 3. - p. 209-249.
[6] Ostrovsky冗̆ V.L., Samollenko Yu. S. Introduction to the theory of representations of finitely presented $*$-algebras. I. Representations by bounded operators $/ /$ Rev. Math. \& Math. Phys. - 1999. - v. 11. - p. 1-261.
[7] Kruglyak S., Rabanovich V., Samoillenko Yu. On sums of projections $/ /$ Funct. Anal. Appl. - 2002. - v. 36, N 3. - p. 20-35.
[8] Kruglyak S., Rabanovich V., Samoilenko Yu. Decomposition of a scalar matrix into a sum of orthogonal projections // Linear Alg. Appl. - 2003. - v. 370. p. 217-225.
[9] Kyrychenko A.A., Kruglyak S.A. On a spectrum of a sum of projections // Bull. Kyiv Univ. Series: Phys.-Math. science - 2003. - N $1 .-$ p. 24-31.

Contact information

A. A. Kyrychenko Department of Functional Analysis, Institute of Mathematics of the Ukrainian Academy of Sciences, 3 Tereshchenkivs'ka st., 01601, Kyiv, Ukraine

Yu. S. Samoǐlenko Department of Functional Analysis, Institute of Mathematics of the Ukrainian Academy of Sciences, 3 Tereshchenkivs'ka st., 01601, Kyiv, Ukraine
E-Mail: yurii_sam@imath.kiev.ua

Received by the editors: 20.04.2004 and final form in 25.09.2004.

