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Abstract. The author studies groups with given restrictions
on norms of decomposable and Abelian non-cyclic subgroups. The
properties of non-periodic locally soluble groups, in which such
norms are non-identity and have the identity intersection, are de-
scribed.

Introduction

In group theory findings related to the study of the impact of proper-
ties of the different systems of the subgroups on the group are in focus.
This direction includes findings when the restrictions are imposed on the
different Σ-norms.

Let Σ be the system of all subgroups of G with a certain theoretical
group property. The maximal subgroup of G which normalizes every
subgroup of Σ is called Σ-norm of a group G. It is clear that the Σ-norm
of a group G coincides with the intersection of the normalizers of all
subgroups included in Σ, and contains the center of a group.

In the case when Σ-norm of a group coincides with the group, all
subgroups of Σ are normal in the group (assuming that the system Σ is
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non-empty). For the first time non-Abelian groups with such property
were considered in the second part of the XIX century by R. Dedekind,
who characterized groups, all subgroups of which are normal (nowadays
these groups are called Dedekind groups). However, the systematic study
of groups with different systems of normal subgroups were continued only
in the second part of the XX century, that slowed down the study of Σ-
norms. So, the question on the study of the properties of groups, in
which the Σ-norm is a proper subgroup, arises naturally.

For the first time such problem was formulated by R. Baer in 30s
of the previous century for the system Σ of all subgroups of a group
[1]. Such Σ-norm was called the norm N(G) of a group G and denoted
as the intersection of normalizers of all subgroups of a group G. Later
the findings of R. Baer on the norm of a group were extended on the
different systems of subgroups Σ and on the different restrictions, which
the Σ-norms satisfies (see e.g. [2]–[7]). It is clear that the norm N(G) is
contained in the other Σ-norms, which, in turn, can be regarded as its
generalizations.

In the paper, we consider the relations between the norm of decom-
posable subgroups and the norm of Abelian non-cyclic subgroups of a
group. The norm Nd

G of decomposable subgroups of a group G is the
intersection of the normalizers of all decomposable subgroups of a group
or group itself, if the system of such subgroups is empty [7]. Recall that
a subgroup of a group G is called decomposable if it can be representable
in the form of the direct product of two non-trivial factors [8].

It is clear, that in the case when Nd
G = G, all decomposable subgroups

are normal in a group G or the system of such subgroups is empty.
Non-Abelian groups with such property were studied in [8] and called
di-groups.

Obviously, the presence of decomposable subgroups in a group is di-
rectly related to the existence of decomposable Abelian subgroups, which
in most cases are non-cyclic. So, the norm Nd

G of decomposable sub-
groups of group G is closely related to the norm NA

G of Abelian non-cyclic
subgroups.

The intersection of normalizers of all non-cyclic Abelian subgroups of
a group G (provided that the system of these subgroups is non-empty)
is called the norm of non-cyclic Abelian subgroups of a group G and
denoted by NA

G (see e.g. [6, 9]). If the norm NA
G contains at least one

Abelian non-cyclic subgroup, then each such a subgroup is normal in NA
G .

Non-Abelian groups with this property were studied by F. Lyman in [10]
and called HA–group. So, the norm of Abelian non-cyclic subgroups is
Dedekind or non-Hamiltonian HA-group.

The relations between these norms has been investigated in [7, 11, 12]
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for quite broad classes of groups. In [7] it was proved that in locally finite
groups, that contain an Abelian non-cyclic subgroup, one of the ratios
holds: NA

G ⊆ Nd
G, N

A
G ⊇ Nd

G.
In particular, it was found that a periodic locally nilpotent group has

the non-Dedekind norm of decomposable subgroups if and only if it is a
locally finite p-group and Nd

G = NA
G . The same relations between norms

can be traced in an arbitrarily locally finite group with the non-Dedekind
locally nilpotent norm Nd

G of decomposable subgroups (see [11]).
In [12] the study of the relations between the norm of decomposable

subgroups and the norm of Abelian non-cyclic subgroups was continued
in the class of non-periodic locally soluble groups. It was proved the fol-
lowing. When either at least one of the norms NA

G or Nd
G is non-Dedekind

or the subgroup Nd
G is infinite, then one of the following inclusions takes

place: NA
G ⊆ Nd

G or Nd
G ⊆ NA

G .
The purpose of the article is to study the properties of locally soluble

groups in which the norm of decomposable subgroups and the norm
of Abelian non-cyclic subgroups are nonidentity and have the identity
intersection Nd

G ∩NA
G = E.

1. Preliminary Results

The next statements are actively used in the further research.

Lemma 1. ([7]) If a group G contains a nonidentity Nd
G-admissible sub-

group H such that Nd
G

⋂
H = E, where Nd

G is the norm of decomposable
subgroups, then Nd

G is Dedekind.

Lemma 2. ([6]) If a group G contains an Abelian non-cyclic subgroup
H such that NA

G

⋂
H = E, where NA

G is the norm of Abelian non-cyclic
subgroups, then the norm NA

G is Dedekind (Abelian, if a group is non-
periodic).

Lemma 3. ([6]) Let G be a non-periodic group, NA
G be the norm of

Abelian non-cyclic subgroups and a group G contain a nonidentity NA
G -

admissible subgroup H such that NA
G

⋂
H = E. If the norm NA

G is non-
periodic, then all infinite cyclic subgroups are normal in it.

The following statement reduces the study of groups, in which the
norms NA

G of Abelian non-cyclic subgroups and the norm Nd
G of decom-

posable subgroups are nonidentity and Nd
G ∩ NA

G = E, to the study of
non-periodic groups.

Theorem 1. If a locally soluble group G contains an Abelian non-cyclic
subgroup, the norm NA

G of Abelian non-cyclic subgroups, the norm Nd
G
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of decomposable subgroups are nonidentity and Nd
G ∩NA

G = E, then G is
a non-periodic group.

Proof. Suppose that G is a periodic group. Then it is locally finite and
either NA

G ⊇ Nd
G or NA

G ⊆ Nd
G by Theorem 1.4 [7], which contradicts

the condition of the Theorem. Thus, G is a non-periodic locally soluble
group and the Theorem is proved.

Further we will consider only non-periodic groups in which the norms
Nd

G and NA
G are nonidentity and their intersection is identity. The ex-

istence of non-periodic groups with given restrictions on the norm of
Abelian noncyclic and the norm of decomposable subgroups is confirmed
by the following examples.

Example 1. ([12], example 3.5). Let G = (〈a〉hB)h 〈c〉, where |a| = p
(p is prime, p 6= 2), B be a group, isomorphic to an additive group of
p-adic numbers, B = B1〈x〉, x2 ∈ B1, x

−1ax = a−1, [B1, 〈a〉] = E, |c| =
2, [c, a] = 1, c−1bc = b−1 for any element b ∈ B.

In this group the norm of decomposable subgroups Nd
G = 〈a〉 is a

cyclic subgroup of prime order. At the same time, the norm of non-cyclic
Abelian subgroups is non-Dedekind, NA

G = B1 h 〈c〉 and Nd
G ∩NA

G = E.

2. The main results

The aim of this section is to study the properties of non-periodic locally
soluble groups and the structure of the norms NA

G and Nd
G, provided

that Nd
G ∩ NA

G = E. The first of the following theorems characterizes
the groups with the non-Dedekind norm NA

G , respectively, the second
theorem describes groups in which the norm NA

G is the Dedekind.

Theorem 2. If a non-periodic locally soluble group G has an Abelian
non-cyclic subgroup, the norm NA

G of Abelian non-cyclic subgroups is
non-Dedekind, the norm Nd

G of decomposable subgroups is nonidentity
and Nd

G ∩NA
G = E, then the following conditions take place:

1) Z (G) = N (G) = E, where N (G) is the norm of G;
2) the norm of decomposable subgroups Nd

G = 〈c〉 is a cyclic group of
a prime odd order p;

3) the norm NA
G of Abelian non-cyclic subgroups is a group of the type

NA
G = Ah 〈b〉, where A is a group isomorphic to an additive group

of p-adic numbers (p is prime, (p, 2) = 1), |b| = 2 and b−1ab = a−1

for any element a ∈ A;
4) any infinite cyclic subgroup has a nonidentity intersection with the

norm NA
G ;
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5) a group G does not contain free Abelian subgroups of rank 2;
6) a group G does not contain finite non-cyclic Abelian subgroups;
7) a group G does not contain periodic non-cyclic locally cyclic sub-

groups;
8) the factor-group G/NA

G is periodic.

Proof. Let group G satisfy the conditions of the theorem. Then the first
statement of the theorem follows from the inclusions:

Z (G) ⊆ N (G) ⊆ Nd
G ∩NA

G = E.

Let’s show that the norm Nd
G of decomposable subgroups is a cyclic

group. Indeed, since Nd
G ∩ NA

G = E, the subgroup Nd
G is Dedekind by

Lemma 1. If Nd
G contains non-cyclic Abelian subgroups, then the norm

NA
G of Abelian non-cyclic subgroups is also Dedekind by Lemma 2, which

contradicts the condition. Thus, Nd
G does not contain non-cyclic Abelian

subgroups.
Since Nd

G is a Dedekind group by the proved above, Nd
G is a finite

group and its Sylow p-subgroups are cyclic for p 6= 2 and the Sylow 2-
subgroup is either a cyclic group or the quaternion group. Taking into
account the condition Z (G) = E, we make a conclusion that the order of
the norm Nd

G is not divided to 2, because otherwise Nd
G contains a central

involution. Therefore, Nd
G is a cyclic group, Nd

G = 〈c〉 and (|c| , 2) = 1.
Considering that

∣∣Nd
G

∣∣ <∞, we obtain
[
G : CG(Nd

G)
]
<∞ and xm ∈

CG

(
Nd

G

)
,m ∈ N for an arbitrary element x ∈ G, |x| = ∞. Then the

subgroup 〈xm, c〉 is Abelian non-cyclic and NA
G -admissible. If 〈x〉∩NA

G =
E, then 〈xm, c〉 ∩ NA

G = E, and the norm NA
G is Dedekind by Lemma

2, which is impossible. Therefore, NA
G is a non-periodic group, and any

infinite cyclic subgroup 〈x〉 of a group G has a nonidentity intersection
with the norm NA

G .
Since the subgroup 〈c〉 is NA

G -admissible and 〈c〉∩NA
G = E, all infinite

cyclic subgroups are normal in NA
G by Lemma 3. By the description of

such groups (see [5]) NA
G is a group of the type NA

G = A〈b〉, where A is a
non-periodic Abelian group, |b| ∈ {2, 4}, b2 ∈ A and b−1ab = a−1 for any
element a ∈ A.

Let’s prove that the norm Nd
G = 〈c〉 of decomposable subgroups is

a group of prime odd order p. Suppose that 〈c〉 ⊇ 〈c1〉 × 〈c2〉, where
|c1| = p, |c2| = q, (p, q) = 1, p and q are odd prime. Then by the condition

[Nd
G, N

A
G ] ⊆ NA

G ∩Nd
G = E,

it follows that |ac1| =∞ for any arbitrary element a ∈ A, |a| =∞. Since
the subgroup 〈ac1, c2〉 is Abelian non-cyclic, it is NA

G -admissible. Hence,
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the subgroup 〈(ac1)q〉 is also NA
G -admissible. It is clear that the element

b ∈ NA
G cannot be permutable with the element (ac1)

q , because in this
case [(ac1)

q , b] = [aq, b] = 1, which is impossible. So,

b−1(ac1)
qb = (ac1)

−q = a−qcq1 = a−qc−q1

and c2q1 = 1. We have a contradiction. Therefore, |c| = pk, where p is
prime, k ∈ N.

If k > 1, then the subgroups 〈ac〉 × 〈cpk−1〉 and 〈(ac)p〉 = 〈apcp〉 are
NA

G -admissible. Therefore, considering that |ac| = ∞ and b−1ab = a−1,
where b ∈ NA

G , we have

b−1apcpb = (apcp)−1 = a−pc−p = a−pcp.

Then c−p = cp and c2p = 1, which is impossible. Therefore, Nd
G = 〈c〉,

where |c| = p, p 6= 2.
Let’s specify the structure of the subgroup A ⊆ NA

G . Assume that
A is a mixed group and T (A) is its periodic part. Since Nd

G ∩NA
G = E,

the group G contains an indecomposable non-cyclic Abelian subgroup H
which is not Nd

G-admissible. Clearly, H cannot be a complete group, be-
cause otherwise H ⊆ CG

(
Nd

G

)
, which contradicts its choice. Therefore,

H is the incomplete non-cyclic Abelian torsion-free group of rank 1.
Since [〈a〉, H] ⊆ T (A)∩H = E for an arbitrary non-identity element

a ∈ T (A), the subgroup 〈a〉×H is Abelian decomposable and, therefore,
Nd

G-admissible. Then by the condition

[Nd
G, H] ⊆ Nd

G ∩ (〈a〉 ×H) = E,

the subgroup H is also Nd
G-admissible, which is impossible. Thus, A is

an Abelian torsion-free group. Since b2 ∈ A, |b| = 2 and NA
G = A h 〈b〉,

where b−1ab = a−1 for an arbitrary element a ∈ A.
Suppose that the group A contains a free abelian subgroup 〈a1〉×〈a2〉,

where |a1| = |a2| = ∞. Since H is a non-periodic Abelian torsion-
free group of rank 1 and NA

G ∩ H 6= E by the proved, at least one of
the subgroups 〈a1〉 or 〈a2〉 has an identity intersection with H. Let
〈a1〉 ∩ H = E. Considering that H is a NA

G -admissible subgroup, let
a−11 h1a1 = h2, where h1, h2 ∈ H. Then by the condition A ∩ H 6= E
we have hk1 ∈ A for some positive integer k. Thus, a−11 hk1a1 = hk1 = hk2
h1 = h2 and [〈a1〉, H] = E.

It is clear that the subgroup 〈am1 〉 × H is Nd
G-admissible for an ar-

bitrary positive integer number m. Therefore, H =
⋂∞

m=1(〈am1 〉 ×H) is
also Nd

G-admissible subgroup, which contradicts the choice of H. So, the
subgroup A does not contain free Abelian subgroups of rank 2 and is an
Abelian torsion-free group of rank 1.



T. Lukashova 7

Let us consider the group

G1 = NA
G ×Nd

G = Ah 〈b〉 × 〈c〉,

where A is a torsion-free group of rank 1, |b| = 2, b−1ab = a−1 for any
element a ∈ A and |c| = p, p 6= 2. Since NA

G is a subgroup of the norm
NA

G1
of Abelian non-cyclic subgroups of the group G1 and c ∈ Z(G1),

we have G1 = NA
G1

and G1 is a HA-group. By the description of such
groups (see, e.g. [10]) A is an infinite cyclic group or a group isomorphic
to an additive group of p-adic numbers.

Assume that A = 〈a〉 is an infinite cyclic group. Then
(
NA

G

)′
=

〈a2〉 C G, C = CG(〈a2〉) C G and [G : C] ≤ 2. Since b /∈ C, we have
G = C h 〈b〉, where |b| = 2. By the results of [13] the centralizer C
contains all elements of infinite order of a group G and all its Abelian
non-cyclic subgroups. Moreover, the periodic part T (C) of the subgroup
C is normal in G and C/T (C) is an Abelian torsion-free group of rank
1. Therefore, in this case the commutant C ′ is periodic and C ′ ⊆ T (C).

As [Nd
G, N

A
G ] = E, it follows that Nd

G = 〈c〉 ⊆ T (C). Taking into ac-
count the non-Dedekindness of the norm NA

G and Lemma 2, we conclude
that T (C) does not contain Abelian non-cyclic subgroups, so |T (C)| <
∞. Let u be a non-identity element of T (C). Since the group 〈u, a2〉 =
〈u〉 × 〈a2〉 and its characteristic subgroup 〈u〉 are NA

G -admissible,

[〈u〉, NA
G ] ⊆ NA

G ∩ 〈u〉 = E.

Hence, [T (C), NA
G ] = E and [u, b] = 1 for an arbitrary element u ∈ T (C).

Suppose that T (C) contains an involution z. Then subgroup 〈b〉×〈z〉
is Abelian non-cyclic and, therefore, NA

G -admissible. Thus,

〈b〉 = NA
G ∩ (〈b〉 × 〈z〉) C NA

G ,

which is impossible. So, 2 /∈ π(T (C).
Let us prove that T (C) = Nd

G. Suppose for a contradiction that there
exists an element u ∈ T (C)\〈c〉. Since T (C) does not contain non-cyclic
Abelian subgroups, then |u| 6= p and the element c is contained in each
cyclic p-subgroup of the composite order. Therefore, if |u| = pk > p, k ∈
N, then 〈c〉 ⊆ 〈u〉 and [u, c] = 1. Now let (|u|, p) = 1. Thus,

[u, c] ∈ (〈c〉 ∩ (〈u〉 × 〈a2〉)) = E

and again [u, c] = 1. Since the subgroup 〈ua2〉×〈c〉 is Abelian non-cyclic
and therefore NA

G -admissible, we conclude that the subgroup 〈ua2〉p =
〈upa2p〉 is also NA

G -admissible. Then by the condition [b, a] 6= 1 we have
that [b, upa2p] 6= 1 and

b−1upa2pb = (upa2p)−1 = u−pa−2p.
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On the other hand, b−1upa2pb = upa−2p, because [u, b] = 1. Therefore,
u−p = up and u2p = 1, which is impossible. So, T (C) = Nd

G = 〈c〉, where
|c| = p, p 6= 2.

Let C1 = CC(Nd
G) be the centralizer of the subgroup Nd

G = 〈c〉 in
C. Since C ′ ⊆ 〈c〉, the group C1 is Abelian with the complementary
subgroup 〈c〉, e.g., C1 = 〈c〉 × Y , where Y is an Abelian torsion-free
group of rank 1. By the proved above C contains all elements of infinite
order of a group. Therefore, H ⊆ C, where H is a non-cyclic Abelian
torsion-free subgroup that is not Nd

G-admissible, and C1 6= C.

By the cyclicity of the factor group C/C1 and the previous consid-
erations, we obtaine that the subgroup Y is non-cyclic. Suppose that it
contains an infinite sequence of subgroups

〈y1〉 ⊂ 〈y2〉 ⊂ ... ⊂ 〈yn〉 ⊂ ...,

where yn = y
kn+1

n+1 , (kn+1, p) = 1 for all n ∈ N. Then the isolator I (see
[14]) of the subgroup 〈cy1〉 is non-cyclic and hence, I is a NA

G -admissible
subgroup. Therefore,

b−1(cy1)b ∈ (I ∩ (〈c〉 × 〈cy1〉)) = 〈cy1〉.

Since 〈y1〉 ∩ 〈a〉 6= E and b−1y1b = y−11 , then b−1cy1b = (cy1)
−1 =

c−1y−11 = cy−11 and c2 = 1, which is impossible. So, Y does not contain
such chains and hence is a group isomorphic to an additive group of
p-adic numbers.

Let’s prove that the subgroup 〈c〉 is complemented in C. By the
proved above we have 1 6= [C : C1] = k, where k|(p − 1). Since we can
uniquely find the root of k degree for each element of the subgroup 〈c〉
and 〈c〉 is complemented in its centralizer, it is also complemented in C
(Theorem 1, [15]), e.g. C = 〈c〉hD, where D is an incomplete Abelian
group of rank 1.

It is obvious, that the group G = (〈c〉 h D) h 〈b〉 does not con-
tain periodic Abelian non-cyclic subgroups, all mixed Abelian subgroups
belong to the group 〈c〉 h D, contain 〈c〉 and are normal in G. More-
over, all tortion-free Abelian non-cyclic subgroups are contained either
in the subgroup D or in subgroups g−1Dg, g ∈ G, conjugated to this
subgroup. Then the normalizer of each Abelian non-cyclic subgroup of
rank 1 contains a subgroup Y C G and, as a consequence, the norm NA

G

contains this subgroup, which contradicts the assumption of its struc-
ture. Therefore, A cannot be an infinite cyclic group. So, NA

G = Ah 〈b〉,
where A is a group isomorphic to an additive group of p-adic numbers,
(p, 2) = 1, |b| = 2 and b−1ab = a−1 for any element a ∈ A.
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By the proved above, every infinite cyclic subgroup has a nonidentity
intersection with the norm NA

G . On the other hand, the norm NA
G does

not contain free Abelian subgroups of rank 2. So, the group G also does
not contain such subgroups. A similar statement holds for non-cyclic
Abelian subgroups of finite order. Indeed, if a group G contains finite
Abelian non-cyclic subgroups, then their intersection with NA

G , is a finite
subgroup normal in NA

G , which is impossible, or is an identity subgroup,
which contradicts Lemma 2.

Suppose that G contains a periodic non-cyclic locally cyclic subgroup
P . If P contains an infinite subgroup which has the identity intersection
with the norm NA

G , then the norm NA
G is Dedekind by Lemma 2, which

is impossible. So, P is a quasicyclic subgroup and P ∩NA
G 6= E. But in

this case (P ∩ NA
G ) C NA

G , which contradicts the structure of the norm
NA

G . Therefore, the group G does not contain periodic non-cyclic locally
cyclic subgroups.

Finally, since the intersection 〈x〉 ∩ NA
G is nonidentity for an arbi-

trary element x ∈ G, |x| = ∞, the factor-group G/NA
G is periodic. The

Theorem is proved.

Theorem 3. If a non-periodic locally soluble group G has an Abelian
non-cyclic subgroup, the norm NA

G of Abelian non-cyclic subgroups is
Dedekind, NA

G 6= E, Nd
G 6= E and Nd

G ∩NA
G = E, then:

1) Z (G) = N (G) = E;
2) the norm NA

G of Abelian non-cyclic subgroups is an Abelian torsion-
free group of rank 1;

3) the norm Nd
G of decomposable subgroups is a cyclic group, Nd

G =
〈c〉, (|c|, 2) = 1.

Proof. The first statement is proved in the same way as in Theorem 2.
By the condition Nd

G∩NA
G = E and Lemma 1 we have that the norm Nd

G

is Dedekind. Moreover, the group G contains a non-primary, not NA
G -

admissible cyclic subgroup 〈g〉 and an indecomposable Abelian non-cyclic
subgroup H, which is not Nd

G-admissible.
Suppose that the norm Nd

G is non-periodic and an element c ∈ Nd
G

such that |c| = ∞ exists. Since the subgroup 〈g〉 is Nd
G-admissible, the

subgroup 〈g, ck〉 = 〈g〉 × 〈ck〉 is Abelian non-cyclic for some positive
integer k, and therefore NA

G -admissible. So, the subgroup 〈g〉 is also NA
G -

admissible, which contradicts its choice. Therefore, the norm Nd
G is a

periodic Dedekind group.
Assume that Nd

G does not satisfy the minimal condition for Abelian
subgroups. Then the intersection CG(g)∩Nd

G contains non-cyclic Abelian
subgroups A1 and A2 such that (A1 ∪A2)∩〈g〉 = E. Since the subgroups
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A1 × 〈g〉 and A2 × 〈g〉 are non-cyclic Abelian, they are NA
G -admissible.

So, the group
〈g〉 = (A1 × 〈g〉) ∩ (A2 × 〈g〉)

is also NA
G -admissible, which is impossible. This contradiction shows

that Nd
G is a group with the minimal condition for Abelian subgroups.

Moreover, since the subgroup Nd
G is Dedekind it follows from Corollary

4.2 [16] that Nd
G is a finite extension of the direct product of a finite

number of quasicyclic subgroups.
Let denote the subgroup generated by elements of the prime order

of the norm Nd
G by ω(Nd

G). By the proved above
∣∣ω(Nd

G)
∣∣ < ∞, so [G :

CG(ω(Nd
G))] < ∞. If an indecomposable non-cyclic Abelian subgroup

H, which is not Nd
G-admissible, is complete, then H ⊆ CG(ω(Nd

G)) and
the group B = H · ω(Nd

G) is Abelian. If B is decomposable, then it is
Nd

G-admissible. But in this case the subgroup

B|ω(Nd
G)| = H|ω(Nd

G)| = H

is also Nd
G-admissible, which contradicts its choice. Thus, B is a non-

decomposable Abelian group and as a consequence, H is a quasicyclic
p-group. So, ω(Nd

G) ⊆ H and
∣∣ω(Nd

G)
∣∣ = p. Since Nd

G is Dedekind and
contains an only one subgroup of prime order by the proved above, it is
either a cyclic or a quasicyclic p-group. In both cases we conclude that
H ⊆ CG(Nd

G). Therefore, the subgroup H is Nd
G-admissible, which is

impossible. Hence, H is an incomplete non-cyclic Abelian torsion-free
group of rank 1.

Let’s prove that the norm NA
G of Abelian non-cyclic subgroups is a

torsion-free Abelian group. Indeed, otherwise, there exists a nonidentity
element x ∈ NA

G , |x| <∞. Then, taking into account that the norm NA
G

is Dedekind and the subgroup H is NA
G -admissible, we have

[〈x〉, H] ⊆ T (NA
G ) ∩H = E,

where T (NA
G ) is the periodic part of the subgroup NA

G . Therefore, the
subgroup 〈x〉 ×H is decomposable Abelian and, as a consequence, Nd

G-
admissible. But in this case

[Nd
G, H] ⊆ Nd

G ∩ (〈x〉 ×H) = E.

Hence, H is Nd
G-admissible subgroup, which contradicts its choice. So,

NA
G is an Abelian torsion-free group.

If NA
G ∩H = E, then [NA

G , H] = E and for any element a ∈ NA
G , |a| =

∞ the subgroup 〈a〉 × H is Abelian decomposable and, hence, Nd
G-

admissible. But then [Nd
G, H] ⊆ Nd

G ∩ (〈a〉 ×H) = E, which is impossi-
ble, because in this case H will be Nd

G-admissible subgroup. Therefore,
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NA
G ∩H 6= E, and for an arbitrary element h ∈ H there exists a non-zero

integer k such that hk ∈ NA
G .

Suppose that the norm NA
G contains a free Abelian subgroup 〈a1〉 ×

〈a2〉, where |a1| = |a2| = ∞. Then by the proved at least one of the
subgroups 〈a1〉 or 〈a2〉 has the identity intersection with H. Let 〈a1〉 ∩
H = E. Since H is a NA

G -admissible subgroup, then a−11 h1a1 = h2, where
h1, h2 ∈ H. Moreover, by the condition NA

G ∩H 6= E we have hk1 ∈ NA
G

for some integer k 6= 0. Hence, a−11 hk1a1 = hk1 = hk2, and h1 = h2.
Therefore, [〈a1〉, H] = E and the subgroup 〈am1 〉 × H is Nd

G-admissible
for an arbitrary natural m. Thus, the subgroup H =

⋂∞
m=1(〈am1 〉 ×H)

is also Nd
G-admissible, which contradicts its choice. So, the norm NA

G

does not contain free abelian subgroups of rank 2 and is an Abelian
torsion-free group of rank 1.

Let 〈g〉 be a non-primary subgroup, which is not NA
G -admissible. It is

clear that at least one of its Sylow p-subgroups is also not NA
G -admissible.

Let it be a subgroup 〈g〉p, where p is prime. Since the factor-group
G/CG(NA

G ) is isomorphic to a subgroup of automorphisms of an Abelian
torsion-free group of rank 1 with the periodic part of order 2 ([17], p.
294], we conclude that 〈g〉p = 〈g〉2 = 〈ḡ〉 is a 2-group.

Let’s prove that all Sylow p-subgroups of Nd
G are cyclic. Suppose

that Nd
G contains an elementary Abelian subgroup N of order p2, p 6= 2.

Since

[N, 〈ḡ〉] ⊆ (Nd
G)p ∩ 〈ḡ〉 = E,

where
(
Nd

G

)
p

is a Sylow p-subgroup of the norm Nd
G, the subgroup N×〈ḡ〉

is an Abelian non-cyclic and 〈ḡ〉 is NA
G -admissible as its characteristic

subgroup, which is impossible. Therefore, any Sylow p-subgroup of the
norm Nd

G for p 6= 2 contains a unique subgroup of prime order, so, it is
a cyclic or a quasicyclic p-group.

Suppose that the norm Nd
G contains quasicyclic p–subgroup P for

some prime p 6= 2. Then P × 〈ḡ〉 is Abelian non-cyclic, and hence,
NA

G -admissible group. Thus, the subgroup 〈ḡ〉 is NA
G -admissible, which

contradicts its choice. So, any Sylow p-subgroup of the norm Nd
G is cyclic

for p 6= 2.

Let us consider the Sylow 2-subgroup
(
Nd

G

)
2

of the norm Nd
G. If(

Nd
G

)
2
∩ 〈ḡ〉 = E, then for an arbitrary element c ∈

(
Nd

G

)
2

the subgroup

〈c, ḡ〉 = 〈c〉 × 〈ḡ〉 is Abelian non-cyclic, and therefore, is NA
G -admissible.

Then [〈ḡ〉, NA
G ] ⊆ (〈c〉 × 〈ḡ〉) ∩ NA

G = E, which is impossible. Thus,(
Nd

G

)
2
∩ 〈ḡ〉 6= E.

Let’s denote the lower layer of the Sylow 2-subgroup
(
Nd

G

)
2

by M
and consider the group G2 = 〈ḡ〉M . Let M be a non-cyclic group. Then
by the condition 〈ḡ〉 C G2 we have [〈ḡ〉,M ] ⊆ M ∩ 〈ḡ〉 = 〈c1〉, where
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c1 ∈ M, |c1| = 2. As 〈ḡ〉 = CG2(〈ḡ〉), it follows M = 〈c1〉 × 〈c2〉 and
[〈ḡ〉, 〈c2〉] = 〈c1〉. Then by M C G, [G : CG(M)] = 2 and ḡ /∈ CG(M), we
conclude that G = CG (M) 〈ḡ〉. However, in this case c1 ∈ Z(G), which is
impossible. Therefore, the lower layer of

(
Nd

G

)
2

contains one involution,

which again contradicts the condition Z(G) = E. So, 2 /∈ π(Nd
G) and

Nd
G = 〈c〉, (|c|, 2) = 1. The Theorem is proved.

The following example confirms the existence of groups satisfying the
conditions of Theorem 3 and generalizes Example 3.4 of [12]. Let’s note
that the order of the norm of decomposable subgroups in this case can
be a composite number (unlike the groups satisfying the conditions of
Theorem 2).

Example 2. Let G = (〈a〉 h B) h 〈c〉, where |a| = m > 1, (m, 2) = 1,
B is a group isomorphic to an additive group of q-adic fractions, q is
prime, (q, 2m) = 1, B = B1〈x〉, x2 ∈ B1, x

−1ax = a−1, [B1, 〈a〉] = E,
|c| = 2, [c, a] = 1 and c−1bc = b−1 for any element b ∈ B.

In this group, all periodic decomposable subgroups have the order 2d,
d|m, d > 1 and are groups of the form 〈a

m
d
scbk1〉, where b1 ∈ B1, (s, d) =

1, k ∈ {0, 1}. Thus, all nonperiodic decomposable subgroups are mixed
and contained in the group B1 × 〈a〉 and, hence, they are normal in G.
Since NG(〈a

m
d
scbk1〉) = 〈acbk1〉, we conclude that Nd

G = 〈a〉.
Let’s determine the norm NA

G of non-cyclic Abelian subgroups of
the group G. It is obvious that G does not contain periodic non-cyclic
Abelian subgroups but all mixed Abelian subgroups contain 〈a

m
d
s〉, and

are subgroups of the group B1 × 〈a〉. It is easy to prove that all these
subgroups are normal in G. Further, all non-cyclic Abelian subgroups
of rank 1 are contained either in the subgroup B or in the subgroups
g−1Bg, g ∈ G, conjugate to this subgroup, or in the group B1 × 〈a〉.
Let’s consider an infinite sequence of subgroups in B1:

〈y1〉 ⊂ 〈y2〉 ⊂ ... ⊂ 〈yn〉 ⊂ ...,

where yn = y
kn+1

n+1 , (kn+1,m) = 1 for all n ∈ N.
It is easy to prove that the isolator I of the subgroup 〈ay1〉 is non-

cyclic because the root of the element a of any power co-prime for m
exists. Moreover, NG(I) = B1 × 〈a〉. Since NG(B) = B h 〈c〉, we
conclude that NA

G = B1 is a torsion-free Abelian group of rank 1 and
Nd

G ∩NA
G = E.
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