A note on Hall S-permutably embedded subgroups of finite groups

Darya A. Sinitsa

Communicated by Communicated person

13.01.2016

ABSTRACT. Let G be a finite group. Recall that a subgroup A of G is said to permute with a subgroup B if AB = BA. A subgroup A of G is said to be S-quasinormal or S-permutable in G if A permutes with all Sylow subgroups of G. Recall also that H^{sG} is the S-permutable closure of H in G, that is, the intersection of all such S-permutable subgroups of G which contains H. We say that H is Hall S-permutably embedded in G if H is a Hall subgroup of the S-permutable closure H^{sG} of H in G.

We proof that the following conditions are equivalent: (1) Every subgroup of G is Hall S-permutably embedded in G; (2) The nilpotent residual $G^{\mathfrak{N}}$ of G is a Hall cyclic of square-free order subgroup of G; (3) $G = D \rtimes M$ is a split extension of a cyclic subgroup D of square-free order by a nilpotent group M, where M and D are both Hall subgroups of G.

Introduction

Throughout this paper, all groups are finite and G always denotes a finite group. The symbol $G^{\mathfrak{N}}$ denotes the *nilpotent residual* of G, that is, the intersection of all normal subgroups N of G with nilpotent quotient G/N.

Type your thanks here..

²⁰⁰¹ Mathematics Subject Classification: 20D10, 20D15, 20D30.

Key words and phrases: S-permutable subgroup; Hall S-permutably embedded subgroup; S-permutable closure; Sylow subgroup; supersoluble group; maximal subgroup.

Recall that a subgroup A of G is said to *permute* with a subgroup B if AB = BA. A subgroup A of G is said to be *S*-quasinormal or *S*-permutable in G if A permutes with all Sylow subgroups of G.

The S-permutable subgroups possess a series of interesting properties. For instance, the S-permutable subgroups of G form a sublattice of the lattice of all subnormal subgroups of G (Kegel [1]). This important property of S-permutable subgroups allows to introduce the concept of the S-permutable closure a subgroup. The intersection of all such Spermutable subgroups of G which contains a subgroup H of G is called the S-permutable closure of H in G and denoted by H^{sG} (see Guo and Skiba [2]).

Recall also that a subgroup H of G is said to be a *Hall normally* embedded subgroup of G [3] if H is a Hall subgroup of the normal closure H^G of H in G. By analogy with it, we say that a subgroup H of Gis called a *Hall S-permutably embedded subgroup* of G if H is a Hall subgroup of the *S*-permutable closure H^{sG} of H in G.

In the paper [4], Shirong Li and Jianjun Liu described groups G such that very subgroup of G is Hall normally embedded in G. Our main goal here is to prove the following generalization of this result.

Theorem 1. The following conditions are equivalent:

(1) Every subgroup of G is Hall S-permutably embedded in G.

(2) The nilpotent residual $G^{\mathfrak{N}}$ of G is a Hall cyclic of square-free order subgroup of G.

(3) $G = D \rtimes M$ is a split extension of a cyclic subgroup D of squarefree order by a nilpotent group M, where M and D are both Hall subgroups of G.

Corollary 1. (Shirong Li and Jianjun Liu [4, Theorem 3.4]) Every subgroup of G is Hall normally embedded in G if and only if $G = D \rtimes M$ is a split extension of a cyclic subgroup D of square-free order by a Dedekind group M, where M and D are both Hall subgroups of G.

Proofs of Theorem 1 and Corollary 1

We will need a few facts about S-permutable subgroups.

Lemma 1. (See Kegel [1] or [5, Theorem 1.2.14]) Let $H \leq K \leq G$. Then

(1) If H is S-permutable in G, then H is S-permutable in K.

(2) Suppose that H is normal in G. Then K/H is S-permutable in G/H if and only if K is S-permutable in G.

(3) If H is S-permutable in G, then H is subnormal in G.

Lemma 2. (See Kegel [1] or [5, Theorem 1.2.19]) The set of all Spermutable subgroups is a sublattice of the subnormal subgroup lattice.

We write $H^{..G}$ to denote the *subnormal closure* of H in G, that is, the intersection of all the subnormal subgroups of G which contain H (sf. [6, A, 14.13]).

A subgroup H of G is called a *Hall subnormally embedded subgroup* of G [4, Definition 1.4] if H is a Hall subgroup of the subnormal closure $H^{..G}$ of H in G. We need also some properties of Hall subnormally embedded subgroups (see in [4, Theorem 3.3]).

Lemma 3. If every subgroup of G is Hall subnormally embedded in G, then the following statements hold:

(1) $G = D \rtimes M$, where $D = G^{\mathfrak{N}}$ is the nilpotent residual of G.

(2) D and M are Hall subgroups of G.

(3) M acts irreducibly on each Sylow subgroup of D.

Lemma 4. (1) If H is a Hall S-permutably embedded subgroup of G, then H is a Hall subnormally embedded subgroup of G.

(2) If H is a Hall S-permutably embedded subgroup of G, then H is a Hall normally embedded subgroup of G.

Proof. (1) Since every S-permutable subgroup of G is a subnormal subgroup of G by Lemma 1(3), $H^{..G} \leq H^{sG}$. Moreover, H is a Hall subgroup of H^{sG} by hypothesis, so H is a Hall subgroup of $H^{..G}$.

(2) See the proof of (1).

Lemma 5. (See Deskins [7] or [5, Theorem 1.2.14]) If the subgroup H of G is S-permutable in G, then H/H_G is nilpotent.

Lemma 6. (See [8, Lemma 2.4]) Let H be a Hall S-permutably embedded subgroup of G. Then the following statements hold:

(1) If $H \leq K \leq G$, then H is Hall S-permutably embedded in K.

(2) If $N \triangleleft G$, then HN/N is Hall S-permutably embedded in G/N.

Lemma 7. Let $G = D \rtimes M$, where D is a Hall cyclic of square-free order subgroup of G and M is a nilpotent (respectively Dedekind) subgroup of G. Then every subgroup of G is Hall S-permutably embedded (respectively Hall normally embedded) in G.

Proof. Since D is of square-free order, D is supersoluble by [9, IV, Theorem 2.8]. Moreover, since M is nilpotent, G is a soluble group. Let H be a subgroup of G. Then H is soluble. Since D is a Hall π -subgroup of G, for some π , $|H \cap D|$ is a π -number. Also,

$$|H:H\cap D|=|DH/D|$$

is a π' -number, so $D_1 = H \cap D$ is a normal Hall π -subgroup of H. Then, by the Hall theorem, D_1 has a complement M_1 in H. On the other hand, since D is soluble and D_1 is a Hall subgroup of D, D_1 has a complement D_2 in D.

Since $M \simeq G/D$ is nilpotent (respectively Dedekind), all subgroups of G/D is S-permutable (respectively normal) in G/D. Then DH/D is S-permutable (respectively normal) in G/D. Hence by Lemma 1(2), DHis S-permutable (respectively normal) in G. Therefore $H \leq H^{sG} \leq DH$ (respectively $H \leq H^G \leq DH$) and by Lemma 2 and the definition H^{sG} , H^{sG} is S-permutable (respectively normal) in G.

Now we will show that H is a Hall subgroup of H^{sG} (respectively of H^G). Since

$$|DH:H| = \frac{|D_1 D_2 H|}{|H|} = \frac{|D_2 H|}{|H|} = \frac{|D_2 ||H|}{|D_2 \cap H||H|} = |D_2|,$$

(|H|, |DH : H|) = 1. Thus H is a Hall subgroup of DH, therefore H is a Hall subgroup of H^{sG} (respectively of H^G). Hence H is Hall S-permutable embedded (respectively Hall normally embedded) in G. \Box

Lemma 8. (See [5, Theorem 1.2.16]) Let H be a p-subgroup of G, where p is a prime. Then H is S-permutable in G if and only if

$$O^p(G) \le N_G(H).$$

Now we are in position to proof the main result.

Proof. Let $D = G^{\mathfrak{N}}$. (1) \Rightarrow (2)

Assume that this is false and let G be a counterexample of minimal order.

(a) If N is a minimal normal subgroup of G, then the hypothesis holds for every quotient G/N and so Condition (2) is true for G/N.

Let H/N be any subgroup of G/N. Then H is Hall S-permutably embedded in G by hypothesis. Hence H/N is Hall S-permutably embedded in G/N by Lemma 6(2). Therefore the hypothesis holds for G/N. Hence, since

$$|G/N| < |G|,$$

the choice of G implies that Condition (2) is true for G/N.

(b) G is is soluble.

Assume that this is false. Claim (a) implies that G/N is soluble for every minimal normal subgroup N of G, so N is the unique minimal normal subgroup of G and N is non-abelian. Hence $N \nleq \Phi(G)$. Let Xbe a maximal subgroup of G such that $N \nleq X$. Then G = NX.

Let p be a prime dividing the order of G. Then there exist a Sylow psubgroup N_p of N and a Sylow p-subgroup X_p of X such that $P = N_p X_p$ is a Sylow *p*-subgroup of G. We have that either $P = X_p$ and then X contains a Sylow p-subgroup of G or there exists a maximal subgroup Kof P such that X_p is contained in K. Suppose the second possibility is true. By hypothesis, K is Hall S-permutably embedded in G. Hence we can find a subgroup B of G such that B is S-permutable in G and K is a Sylow *p*-subgroup of *B*. Suppose that $B_G = 1$. Then *B* is a nilpotent group by Lemma 5. Moreover, B is subnormal in G by Lemma 1(3). This implies that B is contained in F(G). But F(G) = 1 because N is non-abelian. Therefore $X_p = 1$ and $P = N_p$ is a Sylow *p*-subgroup of G. We see that in this case P is cyclic of order p. In order to prove it, let A be a maximal subgroup of $P = N_p$. Then A is Hall S-permutably embedded in G. Hence A is a Sylow p-subgroup of some S-permutable subgroup W of G. Since F(G) = 1 and W is subnormal in G, in the case $A \neq 1$ we have $W_G \neq 1$. Then $N \leq W_G$ and so $A \cap N = A$ is a Sylow *p*-subgroup of N. In particular |A| = |P|, a contradiction. Consequently, $W_G = 1$ and so A = 1. This is to say that P is a cyclic group of order p.

Assume that $B_G \neq 1$. Then N is contained in B. Now $K \cap N$ is a Sylow p-subgroup of N and so

$$|K \cap N| = |N_p|$$

and

$$K = X_p(K \cap N_p).$$

On the other hand, $K \cap N$ is a normal subgroup of K and then $X_p(K \cap N)$ is a subgroup of K containing $X_p(K \cap N_p)$. This implies that

$$K = X_p(K \cap N) = X_p(K \cap N_p)$$

Moreover, $P \cap N = N_p$ and so

$$X_p \cap N = X_p \cap N_p.$$

Then

$$|K| = (|X_p||K \cap N|)/|X_p \cap N| = |X_p||N_p|/(|X_p \cap N_p|) = |P|,$$

a contradiction.

Therefore we have proved that if p divides the order of G, then it follows that either X contains a Sylow p-subgroup of G or N contains a Sylow p-subgroup of G. In the second case, this Sylow p-subgroup should be cyclic of order p.

Denote $\pi = \pi(N)$. Since G/N is supersoluble by Claim (a), it follows that

$$G/N = XN/N \cong X/(N \cap X)$$

is supersoluble. In particular, $X/(N \cap X)$ is soluble. Let H be a subgroup of G such that $H/(N \cap X)$ is a Hall π -subgroup of $X/N \cap X$. Suppose that NH is a proper subgroup of G. Then by Lemma 6(1) that the hypothesis of the theorem holds in NH. By the minimal choice of G, it follows that NH is supersoluble, a contradiction. Hence we have G = NH and G is a π -group. Suppose that for each prime $p \in \pi$, the Sylow *p*-subgroups of Nare Sylow *p*-subgroups of G. Then G = N and, by the above argument, every Sylow subgroup of G is cyclic. By [9, IV, 2.9], G is soluble, a contradiction.

(c) G is supersoluble.

Assume that this is false. Then, since the class of all supersoluble groups is a saturated formation, Claim (a) implies that G has a unique minimal normal subgroup, say N, and $N \nleq \Phi(G)$. Moreover, since by Claim (b) G is soluble,

$$N = O_p(G) = C_G(N)$$

is a non-cyclic abelian p-group for some prime p. Let P be a Sylow subgroup of G containing N. Let A be a maximal subgroup of P not containing N. Since A is Hall S-permutably embedded in G, we can find an S-permutable subgroup of G, B say, such that A is a Sylow psubgroup of B. From the fact that N is not contained in A, we have $B_G = 1$. By Lemma 5, we know that B is nilpotent. So B is contained in F(G) = N because B is subnormal in G. Therefore if A is a maximal subgroup of P, we have either A is contained in N or N is contained in A. Since N is not contained in $\Phi(P)$, it follows that there exists a maximal subgroup A of P such that $A \leq N$. Moreover A is S-permutable in G because A = B. Since A is normal in P and normalized by $O^p(G)$ by Lemma 8, we have that A is a normal subgroup of G and so either A = 1or A = N because N is a minimal normal subgroup of G. In the first case P is cyclic and in the second one N is the unique maximal subgroup of P. In both cases P is cyclic. So N is cyclic and G is supersoluble, contradiction.

Since G is supersoluble, D is nilpotent. Moreover, by Lemmas 3(1),(2) and 4(1), D is a Hall subgroup of G.

Since D is nilpotent, each Sylow subgroup of D is normal in D and therefore each Sylow subgroup of D is characteristic in D. Hence each Sylow subgroup of D is normal in G. Let $V \neq 1$ be a Sylow subgroup of D and let R be a minimal normal subgroup of G contained in V. Then $1 < R \leq V$. Since *M* acts irreducible on each Sylow subgroup of *D* by Lemmas 3(3) and 4(1), R = V. Therefore, since *G* is supersoluble, |R| = |V| is a prime. Hence *D* is a cyclic group of square-free order.

 $(2) \Rightarrow (3)$ Since D is a Hall subgroup of G, D has a complement M in G by the Schur-Zassenhuas theorem. Finally, since

$$M \simeq G/D = G/G^{\mathfrak{N}},$$

M is a Hall nilpotent subgroup of G.

 $(3) \Rightarrow (1)$ This directly follows from Lemma 7. The theorem is proved.

Finally, we proof Corollary 1.

Proof. Necessity. In view of Lemma 4(2), Theorem 1 and [5, 1.4], it is enough to show that G is a T-group. Let H be a subnormal subgroup of G. Then H is subnormal in H^G by [6, 14.8]. Then, since H is a Hall subgroup of H^G by hypothesis, H is characteristic in H^G . Hence H is a normal subgroup of G, so G is a T-group.

Sufficiency. This directly follows from Lemma 7. The corollary is proved.

References

- O. Kegel, Sylow-Gruppen and Subnormalteiler endlicher Gruppen, Math. Z., 78 (1962), 205–221.
- [2] W. Guo, A.N. Skiba, Finite groups with given s-embedded and n-embedded subgroups. Journal of Algebra 321 (2009), 2843–2860.
- [3] S.R. Li, J. He, G.P. Nong, and L.Q. Zhou, On Hall normally embedded subgroups of finite groups, *Comm. Algebra* 37 (9), (2009), 3360–3367.
- [4] S.R. Li, J.J. Liu, On Hall subnormally embedded and generalized nilpotent groups, Journal of Algebra 388, (2013), 1–9.
- [5] A. Ballester-Bolinches, R. Esteban-Romero, M. Asaad, Products of Finite Groups, Berlin-New York, Walter de Gruyter, 2010.
- [6] K. Doerk, T. Hawkes, *Finite Soluble Groups*, Walter de Gruyter, Berlin-New York, 1992.
- [7] W.E. Deskins, On quasinormal subgroups of finite groups, Math. Z., 82 (1963), 125–132.
- [8] J. Lio, S. Li CLT-groups with Hall S-quasinormally embedded subgroups, Ukr. Math. Journal, 66 (2014), 1281–1287.
- [9] B. Huppert, Endliche Gruppen I, Springer-Verlag, Berlin-Heidelberg-New York, 1967.

CONTACT INFORMATION

D. A. Sinitsa Department of Mathematics, Francisk Skorina Gomel State University, Sovetskaya str., 104, Gomel, 246019, Republic of Belarus *E-Mail:* lindela@mail.ru *URL:*