Algebra and Discrete Mathematics Number 3. **(2004).** pp. 1 – 11 (c) Journal "Algebra and Discrete Mathematics"

On wildness of idempotent generated algebras associated with extended Dynkin diagrams

RESEARCH ARTICLE

Vitalij M. Bondarenko

Communicated by V. Mazorchuk

ABSTRACT. Let Λ denote an extended Dynkin diagram with vertex set $\Lambda_0 = \{0, 1, \ldots, n\}$. For a vertex *i*, denote by S(i) the set of vertices *j* such that there is an edge joining *i* and *j*; one assumes the diagram has a unique vertex *p*, say p = 0, with |S(p)| = 3. Further, denote by $\Lambda \setminus 0$ the full subgraph of Λ with vertex set $\Lambda_0 \setminus \{0\}$. Let $\Delta = (\delta_i | i \in \Lambda_0) \in \mathbb{Z}^{|\Lambda_0|}$ be an imaginary root of Λ , and let *k* be a field of arbitrary characteristic (with unit element 1). We prove that if Λ is an extended Dynkin diagram of type \tilde{D}_4 , \tilde{E}_6 or \tilde{E}_7 , then the *k*-algebra $\mathcal{Q}_k(\Lambda, \Delta)$ with generators e_i , $i \in \Lambda_0 \setminus \{0\}$, and relations $e_i^2 = e_i, e_i e_j = 0$ if *i* and $j \neq i$ belong to the same connected component of $\Lambda \setminus 0$, and $\sum_{i=1}^n \delta_i e_i = \delta_0 1$ has wild representation type.

1. Formulation of the main result

Throughout the paper, we keep the right-side notation. By k we will denote a fixed field of arbitrary characteristic; for a natural number n and $1 \in k$, we identify n1 with n.

Let Λ be an nonoriented graph without loops and multiple edges, and let *i* be a vertex of Λ . Denote by S(i) the set of vertices *j* such that there is an edge joining *i* and *j*. The vertex *i* is said to be outer if $|S(i)| \leq 1$, inner if |S(i)| > 1, weakly inner if |S(i)| = 2 and strongly inner if |S(i)| > 2.

²⁰⁰⁰ Mathematics Subject Classification: 16G60; 15A21, 46K10, 46L05.

Key words and phrases: *idempotent, extended Dynkin diagram, representation, wild type.*

Now let Λ be a finite connected tree with vertex set $\Lambda_0 = \{0, 1, \ldots, n\}$. We assume that 0 is the unique strongly inner vertex, and denote by $\Lambda \setminus 0$ the full subgraph of Λ with vertex set $\Lambda_0 \setminus \{0\}$. Given a vector $P = (p_0, p_1 \ldots, p_n) \in \mathbb{Z}^{1+n}$, we denote by $\mathcal{Q}_k(\Lambda, P)$ the k-algebra with generators $e_i, 1 \leq i \leq n$, and relations

1) $e_i^2 = e_i \ (1 \le i \le n);$

2) $e_i e_j = 0$ if i and $j \neq i$ belong to the same connected component of $\Lambda \setminus 0$;

3) $\sum_{i=1}^{n} p_i e_i = p_0.$

In this paper we study finite-dimensional representations of the algebra $\mathcal{Q}_k(\Lambda, P)$ with Λ being an extended Dynkin diagram. What we consider here is concerned with Yu. S. Samoilenko's investigations [1].

Before we formulate the main results of this paper, we recall some definitions.

Let Λ and Γ be algebras over a field k. A matrix representation of Λ over Γ is a homomorphism $\varphi : \Lambda \to \Gamma^{s \times s}$ of algebras, where s is a natural number and $\Gamma^{s \times s}$ the set of all $s \times s$ -matrices with entries in Γ) s is called degree of φ and is denoted by deg φ . Two representations φ and ψ of Λ over Γ are called equivalent if deg $\varphi = \deg \psi$ and there exists an invertible matrix α , with entries in Γ , such that $\varphi(\lambda)\alpha = \alpha\psi(\lambda)$ for every $\lambda \in \Lambda$. The indecomposability and direct sum of representations are defined in a natural way.

Let Λ be a k-algebra, and $\Sigma = k \langle x, y \rangle$ be the free associative k-algebra in two noncommuting variables x and y. A representation γ of Λ over Σ is said to be strict if it satisfies the following conditions:

1) the representation $\gamma \otimes \varphi$ of Λ over k is indecomposable if a representation φ of Σ over k is indecomposable;

2) the representations $\gamma \otimes \varphi$ and $\gamma \otimes \varphi'$ of Λ over k are nonequivalent if representations φ and φ' of Σ over k are nonequivalent.

Following [2] a k-algebra Λ is called wild (or of wild representation type) if it has a strict representation over Σ .

Note that the matrix $(\gamma \otimes \varphi)(\lambda)$ is obtained from the matrix $\gamma(\lambda)$ by change x and y, respectively, on the matrices $\varphi(x)$ and $\varphi(y)$ (and $a \in k$ on the scalar matrix aE_s , where E_s is the identity matrix of dimension $s = \deg \varphi$).

We now formulate the main result of the paper.

Theorem. Let Λ be an extended Dynkin diagram of type \tilde{D}_4 , \tilde{E}_6 or \tilde{E}_7 and $\Delta \in \mathbb{Z}^{|\Lambda_0|}$ an imaginary root of Λ . Then the algebra $\mathcal{Q}_k(\Lambda, \Delta)$ is wild. In proving the theorem we can obviously take Δ to be minimal positive, which we denote by Δ_0 .

2. Proof of the theorem for $\Lambda = \tilde{D_4}$

In this case the diagram Λ and vector Δ_0 are

By the convention indicated above 0 denotes the strongly inner vertex, and 1, 2, 3 and 4 the outer vertices. Then the algebra $Q_k(\Lambda, \Delta_0)$, with generators e_1, e_2, e_3, e_4 , has the relations

1') $e_i^2 = e_i \ (1 \le i \le 4);$

2')
$$e_1 + e_2 + e_3 + e_4 = 2$$
.

Consider the following representation γ of $\mathcal{Q}_k(\Lambda, \Delta_0)$ over $\Sigma = k < x, y >$:

In [3] the author has proved that this representation is strict.

3. Proof of the theorem for $\Lambda = \tilde{E}_6$

In this case the diagram Λ and vector Δ_0 are

We assume that the vertices 1, 3, 5 are outer, the vertices 2, 4, 6 are weakly inner (the vertex 0 is strongly inner), and the edges join the vertices 1 and 2, 3 and 4, 5 and 6, and consequently 0 with 2, 4, 6. Then the algebra $Q_k(\Lambda, \Delta_0)$, with generators e_1, e_2, \ldots, e_6 , has the relations

1') $e_i^2 = e_i \ (1 \le i \le 6);$ 2') $e_1e_2 = e_2e_1 = 0, \ e_3e_4 = e_4e_3 = 0, \ e_5e_6 = e_6e_5 = 0;$ 3') $e_1 + e_3 + e_5 + 2(e_2 + e_4 + e_6) = 3.$

Consider the following representation γ of $\mathcal{Q}_k(\Lambda, \Delta_0)$ over $\Sigma = k < x, y >$:

$\gamma(e_6) =$	/ 1	0	1	1	-2	-1	1	
	0	0	0	0	0	x - 1	y	
	0	0	0	0	0	1	-1	
$\gamma(e_6) =$	0	0	0	0	0	0	0	.
	0	0	0	0	0	0	0	
	0	0	0	0	0	1	0	
	0 /	0	0	0	0	0	1 /	

We will prove that the representation γ is strict.

Let φ and φ' be representations of Σ over k having the same degree: deg $\varphi = \deg \varphi' = d$. The representation $\gamma \otimes \varphi$ (respectively, $\gamma \otimes \varphi'$) is uniquely defined by the matrices $A_s = (\gamma \otimes \varphi)(e_s)$ (respectively, $A'_s = (\gamma \otimes \varphi')(e_s)$), where $s = 1, 2, \ldots, 6$. It is natural to consider these matrices as block matrices with blocks $(A_s)_{ij}$ and $(A'_s)_{ij}$ of degree d $(i, j = 1, 2, \ldots, 7)$. Then $\operatorname{Hom}(\gamma \otimes \varphi, \gamma \otimes \varphi') = \{T \in k^{7d \times 7d} \mid A_s T = TA'_s \text{ for each } s = 1, 2, \ldots, 6\}.$

Lemma 1. Let $T = (T_{ij})$, i, j = 1, 2, ..., 7, be a block matrix (over k) with blocks T_{ij} of degree d, belonging to $\operatorname{Hom}(\gamma \otimes \varphi, \gamma \otimes \varphi')$. Then $T_{ij} = 0$ if $i \neq j$ and $(i, j) \neq (1, 6), (1, 7)$, and $T_{11} = T_{22} = ... = T_{77}$.

Proof. Denote by I, II, ..., VI the matrix equalities $A_1T = TA'_1$, $A_2T = TA'_2$, ..., $A_6T = TA'_6$, respectively. The (matrix) equality $(A_sT)_{ij} = (TA'_s)_{ij}$, $i, j \in \{1, 2, ..., 7\}$, induced by an equality $A_sT = TA'_s$, is denoted by I(i, j) for s = 1, II(i, j) for s = 2, ..., VI(i, j) for s = 6.

It is easy to see that I(2,1) implies $T_{21} = 0$; I(3,1) implies $T_{31} = 0$; I(6,4) implies $T_{64} = 0$; I(6,5) implies $T_{65} = 0$; I(7,4) implies $T_{74} = 0$; I(7,5) implies $T_{75} = 0$; II(2,4) implies $T_{24} = 0$; II(2,5) implies $T_{25} = 0$; II(2, 6) implies $T_{26} = 0$; II(2, 7) implies $T_{27} = 0$; II(3, 4) implies $T_{34} = 0$; II(3,5) implies $T_{35} = 0$; II(3,6) implies $T_{36} = 0$; II(3,7) implies $T_{37} = 0$; III(1,2) implies $T_{12} = 0$; III(1,3) implies $T_{13} = 0$; III(4,2) implies $T_{42} =$ 0; III(4,3) implies $T_{43} = 0$; III(5,2) implies $T_{52} = 0$; III(5,3) implies $T_{53} = 0$; III(6,2) implies $T_{62} = 0$; III(6,3) implies $T_{63} = 0$; III(7,2) implies $T_{72} = 0$; III(7,3) implies $T_{73} = 0$; V(4,6) implies $T_{46} = 0$; V(4,7) implies $T_{47} = 0$; V(5,6) implies $T_{56} = 0$; V(5,7) implies $T_{57} = 0$; I(1,4) and $T_{34} = 0$ imply $T_{14} = 0$; I(1, 5) and $T_{35} = 0$ imply $T_{15} = 0$; IV(6, 4), $T_{62} = 0, T_{63} = 0$ and $T_{64} = 0$ imply $T_{61} = 0$; IV(7, 4), $T_{72} = 0, T_{73} = 0$ and $T_{74} = 0$ imply $T_{71} = 0$; IV(4, 1) and $T_{61} = 0$ imply $T_{41} = 0$; IV(5, 1) and $T_{71} = 0$ imply $T_{51} = 0$; VI(1,2), $T_{12} = 0$, $T_{42} = 0$, $T_{52} = 0$, $T_{62} = 0$ and $T_{72} = 0$ imply $T_{32} = 0$; V(3,5), $T_{31} = 0$, $T_{32} = 0$ and $T_{35} = 0$ imply $T_{45} = 0$; IV(3,7), $T_{31} = 0$, $T_{32} = 0$, $T_{35} = 0$ and $T_{47} = 0$ imply $T_{67} = 0$; IV(1,4), VI(1,4), $T_{12} = 0$, $T_{13} = 0$, $T_{14} = 0$, $T_{34} = 0$, $T_{64} = 0$ and $T_{74} = 0$ imply $T_{54} = 0$; IV(5,6), $T_{51} = 0$, $T_{52} = 0$, $T_{53} = 0$, $T_{54} = 0$ and $T_{56} = 0$ imply $T_{76} = 0$; IV(2, 5), IV(5, 7), VI(2, 7), $T_{21} = 0$, $T_{25} = 0$, $T_{27} = 0$, $T_{45} = 0$, $T_{51} = 0$, $T_{52} = 0$, $T_{57} = 0$, $T_{65} = 0$, $T_{67} = 0$ and $T_{75} = 0$ imply $T_{23} = 0$.

So $T_{ij} = 0$ when $i \neq j$ and $(i, j) \neq (1, 6), (1, 7)$. Then it follows from IV(1, 4), IV(1, 5), IV(1, 6), IV(1, 7), III(3, 4), III(2, 4) and VI(2, 6) that $T_{11} = T_{22} = \ldots = T_{77}$.

It follows from the lemma that a matrix $T = (T_{ij})$ belonging to $\operatorname{Hom}(\gamma \otimes \varphi, \gamma \otimes \varphi')$ satisfies the following conditions:

a) T is invertible if and only if $T_0 = T_{11} = T_{22} = \ldots = T_{77}$ is invertible;

b) $\varphi(x)T_0 = T_0\varphi'(x)$ and $\varphi(y)T_0 = T_0\varphi'(y)$.

(In fact it follows from the lemma that the equalities I-VI are equivalent to the equalities b)).

Therefore the representation γ satisfies the condition 2) (of the definition of a strict representation).

It remains to prove that γ satisfies the condition 1) or, in other words, φ is decomposable if so is $\gamma \otimes \varphi$. We will denote by 0_s and E_s the $s \times s$ zero and identity matrices, respectively.

Denote by $\operatorname{Hom}(\varphi, \varphi)$ the algebra of endomorphisms of φ , i.e.

$$\operatorname{Hom}(\varphi,\varphi) = \{ S \in k^{d \times d} \, | \, \varphi(x)S = S\varphi(x), \varphi(y)S = S\varphi(y) \}.$$

Decomposability of $\gamma \otimes \varphi$ implies that the k-algebra $\operatorname{Hom}(\gamma \otimes \varphi, \gamma \otimes \varphi)$ (of endomorphisms of $\gamma \otimes \varphi$) contains an idempotent $T \neq 0_{7d}, E_{7d}$ (see, for example, [4, ch.V]). Then, by the lemma, the matrix $T_0 = T_{11} = T_{22} =$ $\dots = T_{77}$ is an idempotent; moreover, $T_0 \neq 0_d, E_d$, because otherwise it would follow from the equality $T^2 = T$ that $T = T_0 \oplus T_0 \oplus \ldots \oplus T_0$, where T_0 occurs 7 times, or in other words $T = 0_{7d}$ or $T = E_{7d}$, respectively. Since T_0 belong to the algebra $\operatorname{Hom}(\varphi, \varphi) = \{S \in k^{d \times d} \mid \varphi(x)S =$ $S\varphi(x), \varphi(y)S = S\varphi(y)\}$ (see the condition b)), the representation φ is decomposable (see again [4, ch.V]).

4. Proof of the theorem for $\Lambda = \tilde{E}_7$

In this case the diagram Λ and vector Δ_0 are

We assume that the vertices 1, 4, 7 are outer, the vertices 2, 3, 5, 6 are weakly inner (the vertex 0 is strongly inner), and the edges join the

vertices 1 and 2, 2 and 3, 4 and 5, 5 and 6, and consequently 0 with 3, 6, 7. Then the algebra $\mathcal{Q}_k(\Lambda, \Delta_0)$, with generators e_1, e_2, \ldots, e_7 , has the relations

1') $e_i^2 = e_i \ (1 \le i \le 7);$

2') $e_1e_2 = e_2e_1 = 0$, $e_2e_3 = e_3e_2 = 0$, $e_1e_3 = e_3e_1 = 0$, $e_4e_5 = e_5e_4 = 0$, $e_5e_6 = e_6e_5 = 0$, $e_4e_6 = e_6e_4 = 0$;

3') $e_1 + e_4 + 2(e_2 + e_5 + e_7) + 3(e_3 + e_6) = 4.$

Consider the following representation γ of $\mathcal{Q}_k(\Lambda, \Delta_0)$ over $\Sigma = k < x, y >$:

	/ 0	0	0 (0 (3	3	9	9	
	1		0 (0	0	0	ů O	
		0	0 0		0	0	0	0	
		0							
		0	0 (-1	0	-3	0	
$\gamma(e_4) =$	0	0	0 (0	-1	0	-3 ,	
	0	0	0 (1	0	3	0	
	0	0	0 () ()	0	1	0	3	
$\gamma(e_4) =$	0	0	0 () ()	0	0	0	0	
	$\int 0$	0	0 () ()	0	0	0	0 /	
						2			
	/ 1	0	1 0	0	9	-	-12	0.)	
$\gamma(e_5) =$	$\begin{pmatrix} 1 \\ 0 \end{pmatrix}$	0	1 0		-3	-3		-9	
		0	0 0		0	0	x	y	
	0	0	0 0	0	0	0 0	3	0 0	
	0	0	0 0		0		0	0	
$\gamma(e_5) =$	0	0 0 0 0	0 0		0	0	0	0 ,	
	0	0		0	0	0	-3	0	
	0	0	0 0	0	0	0	0	-3	
	0	0	0 0	0	0	0	1	0	
	$\int 0$	0	0 0	0	0	0	0	1 /	
(0	0	-1	-0	1	0	1	3	3	
$\gamma(e_6) = \begin{pmatrix} 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0$	1	0	-1	0	-1	0	-x		
	0	1	0	-1	0	-1		-	
	0		0	$-1 \\ 0$	0	$-1 \\ 0$			
	0	0	1				0		
$\gamma(e_6) = \begin{bmatrix} 0 \\ 0 \end{bmatrix}$	0	0	0	0	0	0	0		,
0	0	0	0	0	0	0	0		
0	0	0	0	0	0	0	0		
0	0	0	0	0	0	0	0		
$\setminus 0$	0	0	0	0	0	0	0	0 /	
6	5								
	Y	/ 1	0	0 0	0		0 0	`	
	í (′ 1	0 (0 0		0 0	0 0		
		0	0 (0 0		0 0	0 0		
		0	0 ($\begin{array}{ccc} 0 & 0 \\ 0 & 1 \end{array}$	0 (0 0	0 0		
		0	0 (0 (0 0	0 0		
$\gamma(e_7)$) =	0	0 (0 0	1 (0 0	0 0		
		0	0 (0 0	0 (0 0	0 0		
7		0	0 (0 0	0 (0 0	0 0		
γ(e ₇		Ο	0 (0 0	0 (0 0	$1 \ 0$		
		0	0 .	0 0	0 0		÷ 0		
			0 0	0 0		0 0	0 1)	

We will prove that the representation γ is strict.

Let φ and φ' be representations of Σ over k having the same degree: deg $\varphi = \deg \varphi' = d$. The representation $\gamma \otimes \varphi$ (respectively, $\gamma \otimes \varphi'$) is uniquely defined by the matrices $A_s = (\gamma \otimes \varphi)(e_s)$ (respectively, $A'_s = (\gamma \otimes \varphi')(e_s)$), where s = 1, 2, ..., 7. It is natural to consider these matrices as block matrices with blocks $(A_s)_{ij}$ and $(A'_s)_{ij}$ of degree d (i, j = 1, 2, ..., 9). Then $\operatorname{Hom}(\gamma \otimes \varphi, \gamma \otimes \varphi') = \{T \in k^{9d \times 9d} | A_s T = TA'_s \text{ for each } s = 1, 2, ..., 7\}.$

Lemma 2. Let $T = (T_{ij})$, i, j = 1, 2, ..., 9, be a block matrix (over k) with blocks T_{ij} of degree d, belonging to $\operatorname{Hom}(\gamma \otimes \varphi, \gamma \otimes \varphi')$. Then $T_{ij} = 0$ if $i \neq j$ and $(i, j) \neq (1, 8), (1, 9)$, and $T_{11} = T_{22} = \ldots = T_{99}$.

Proof. Denote by I, II, ..., VII the matrix equalities $A_1T = TA'_1, A_2T = TA'_2, \ldots, A_7T = TA'_7$, respectively. The (matrix) equality $(A_sT)_{ij} = (TA'_s)_{ij}, i, j \in \{1, 2, \ldots, 9\}$, induced by an equality $A_sT = TA'_s$, is denoted by I(i, j) for s = 1, II(i, j) for $s = 2, \ldots$, VII(i, j) for s = 7.

It is easy to see that VII(i,j) implies $T_{ij} = 0$ for each $(i,j) \in$ $\{1,4,5,8,9\} \times \{2,3,6,7\}$ and each $(i,j) \in \{2,3,6,7\} \times \{1,4,5,8,9\};$ II(1,4) and $T_{12} = 0$ imply $T_{14} = 0$; II(1,5) and $T_{13} = 0$ imply $T_{15} = 0$; II(4,1) and $T_{61} = 0$ imply $T_{41} = 0$; II(4,8) and $T_{68} = 0$ imply $T_{48} = 0$; II(4,9) and $T_{69} = 0$ imply $T_{49} = 0$; II(5,1) and $T_{71} = 0$ imply $T_{51} = 0$; II(5,8) and $T_{78} = 0$ imply $T_{58} = 0$; II(5,9) and $T_{79} = 0$ imply $T_{59} = 0$; II(8,4) and $T_{82} = 0$ imply $T_{84} = 0$; II(8,5) and $T_{83} = 0$ imply $T_{85} = 0$; II(9,4) and $T_{92} = 0$ imply $T_{94} = 0$; II(9,5) and $T_{93} = 0$ imply $T_{95} = 0$; III(6,2) and $T_{82} = 0$ imply $T_{62} = 0$; III(6,3) and $T_{83} = 0$ imply $T_{63} = 0$; III(7,2) and $T_{92} = 0$ imply $T_{72} = 0$; III(7,3) and $T_{93} = 0$ imply $T_{73} = 0$; III(6,1) and $T_{61} = 0$ imply $T_{81} = 0$; III(1,9), $T_{13} = 0$, $T_{15} = 0$, $T_{17} = 0$ and $T_{69} = 0$ imply $T_{89} = 0$; III(6,9), $T_{63} = 0$, $T_{65} = 0$, $T_{69} = 0$ and $T_{89} = 0$ imply $T_{67} = 0$; III(7,1) and $T_{71} = 0$ imply $T_{91} = 0$; IV(2,6), $T_{21} = 0$ and $T_{24} = 0$ imply $T_{26} = 0$; IV(2,7), $T_{21} = 0$ and $T_{25} = 0$ imply $T_{27} = 0$; IV(3,6), $T_{31} = 0$ and $T_{34} = 0$ imply $T_{36} = 0$; IV(3,7), $T_{31} = 0$ and $T_{35} = 0$ imply $T_{37} = 0$; VI(1, 2), $T_{12} = 0$, $T_{52} = 0$, $T_{72} = 0$, $T_{82} = 0$ and $T_{92} = 0$ imply $T_{32} = 0$; VI(2,7), $T_{21} = 0$, $T_{27} = 0$, $T_{47} = 0$, $T_{67} = 0$, $T_{87} = 0$ and $T_{97} = 0$ imply $T_{23} = 0$; VI(2,5), $T_{21} = 0$, $T_{23} = 0$, $T_{25} = 0$, $T_{65} = 0, T_{85} = 0$ and $T_{95} = 0$ imply $T_{45} = 0$; VI(1,4), $T_{12} = 0, T_{34} = 0$, $T_{74} = 0, T_{84} = 0$ and $T_{94} = 0$ imply $T_{54} = 0$; II(5,6), $T_{52} = 0, T_{54} = 0$ and $T_{56} = 0$ imply $T_{76} = 0$; III(5,8), $T_{51} = 0$, $T_{52} = 0$, $T_{54} = 0$, $T_{56} = 0$ and $T_{78} = 0$ imply $T_{98} = 0$.

So $T_{ij} = 0$ when $i \neq j$ and $(i, j) \neq (1, 8), (1, 9)$. Then it follows from III(1, 6), III(1, 8), III(5, 7), III(5, 9), VI(1, 3), VI(1, 5) VI(2, 4) and VI(2, 6). that $T_{11} = T_{22} = \ldots = T_{99}$. The final part of the proof is analogous to that in the case $\Lambda = \tilde{E}_6$ (see Section 3).

References

- Ostrovskyi V., Samoilenko Yu. Introduction to the Theory of Representations of Finitely Presented *-Algebras.I. Representations by bounded operators. The Gordon and Breach Publishing Group. 1999.
- [2] Drozd, Yu. A., Tame and wild matrix problems, Lecture Notes in Math. 831, vol. 2, Springer, Berlin, 1980, 242-258.
- Bondarenko, V. M., On certain wild algebras generated by idempotents, Methods Funct. Anal. Topology 5, no. 3 (1999), 1-3.
- [4] Pierce R.S. Associative Algebras. Springer-Verlag. 1982.

CONTACT INFORMATION

V. M. Bondarenko

Institute of Mathematics, Ukrainian National Academy of Sciences, 3 Tereshchenkivs'ka, Kyiv, 01601, Ukraine *E-Mail:* vit-bond@imath.kiev.ua

Received by the editors: 26.04.2004 and final form in 05.10.2004.

d final form in 05.10.2004.