On wildness of idempotent generated algebras associated with extended Dynkin diagrams

Vitalij M. Bondarenko

Communicated by V. Mazorchuk

Abstract. Let Λ denote an extended Dynkin diagram with vertex set $\Lambda_{0}=\{0,1, \ldots, n\}$. For a vertex i, denote by $S(i)$ the set of vertices j such that there is an edge joining i and j; one assumes the diagram has a unique vertex p, say $p=0$, with $|S(p)|=3$. Further, denote by $\Lambda \backslash 0$ the full subgraph of Λ with vertex set $\Lambda_{0} \backslash\{0\}$. Let $\Delta=\left(\delta_{i} \mid i \in \Lambda_{0}\right) \in \mathbb{Z}^{\left|\Lambda_{0}\right|}$ be an imaginary root of Λ, and let k be a field of arbitrary characteristic (with unit element 1). We prove that if Λ is an extended Dynkin diagram of type $\tilde{D}_{4}, \tilde{E}_{6}$ or \tilde{E}_{7}, then the k-algebra $\mathcal{Q}_{k}(\Lambda, \Delta)$ with generators e_{i}, $i \in \Lambda_{0} \backslash\{0\}$, and relations $e_{i}^{2}=e_{i}, e_{i} e_{j}=0$ if i and $j \neq i$ belong to the same connected component of $\Lambda \backslash 0$, and $\sum_{i=1}^{n} \delta_{i} e_{i}=\delta_{0} 1$ has wild representation type.

1. Formulation of the main result

Throughout the paper, we keep the right-side notation. By k we will denote a fixed field of arbitrary characteristic; for a natural number n and $1 \in k$, we identify $n 1$ with n.

Let Λ be an nonoriented graph without loops and multiple edges, and let i be a vertex of Λ. Denote by $S(i)$ the set of vertices j such that there is an edge joining i and j. The vertex i is said to be outer if $|S(i)| \leq 1$, inner if $|S(i)|>1$, weakly inner if $|S(i)|=2$ and strongly inner if $|S(i)|>2$.

[^0]Now let Λ be a finite connected tree with vertex set $\Lambda_{0}=\{0,1, \ldots, n\}$. We assume that 0 is the unique strongly inner vertex, and denote by $\Lambda \backslash 0$ the full subgraph of Λ with vertex set $\Lambda_{0} \backslash\{0\}$. Given a vector $P=\left(p_{0}, p_{1} \ldots, p_{n}\right) \in \mathbb{Z}^{1+n}$, we denote by $\mathcal{Q}_{k}(\Lambda, P)$ the k-algebra with generators $e_{i}, 1 \leq i \leq n$, and relations

1) $e_{i}^{2}=e_{i}(1 \leq i \leq n)$;
2) $e_{i} e_{j}=0$ if i and $j \neq i$ belong to the same connected component of $\Lambda \backslash 0$;
3) $\sum_{i=1}^{n} p_{i} e_{i}=p_{0}$.

In this paper we study finite-dimensional representations of the algebra $\mathcal{Q}_{k}(\Lambda, P)$ with Λ being an extended Dynkin diagram. What we consider here is concerned with Yu. S. Samoilenko's investigations [1].

Before we formulate the main results of this paper, we recall some definitions.

Let Λ and Γ be algebras over a field k. A matrix representation of Λ over Γ is a homomorphism $\varphi: \Lambda \rightarrow \Gamma^{s \times s}$ of algebras, where s is a natural number and $\Gamma^{s \times s}$ the set of all $s \times s$-matrices with entries in Γ) s is called degree of φ and is denoted $\operatorname{by} \operatorname{deg} \varphi$. Two representations φ and ψ of Λ over Γ are called equivalent if $\operatorname{deg} \varphi=\operatorname{deg} \psi$ and there exists an invertible matrix α, with entries in Γ, such that $\varphi(\lambda) \alpha=\alpha \psi(\lambda)$ for every $\lambda \in \Lambda$. The indecomposability and direct sum of representations are defined in a natural way.

Let Λ be a k-algebra, and $\Sigma=k\langle x, y\rangle$ be the free associative k-algebra in two noncommuting variables x and y. A representation γ of Λ over Σ is said to be strict if it satisfies the following conditions:

1) the representation $\gamma \otimes \varphi$ of Λ over k is indecomposable if a representation φ of Σ over k is indecomposable;
2) the representations $\gamma \otimes \varphi$ and $\gamma \otimes \varphi^{\prime}$ of Λ over k are nonequivalent if representations φ and φ^{\prime} of Σ over k are nonequivalent.

Following [2] a k-algebra Λ is called wild (or of wild representation type) if it has a strict representation over Σ.

Note that the matrix $(\gamma \otimes \varphi)(\lambda)$ is obtained from the matrix $\gamma(\lambda)$ by change x and y, respectively, on the matrices $\varphi(x)$ and $\varphi(y)$ (and $a \in k$ on the scalar matrix $a E_{s}$, where E_{s} is the identity matrix of dimension $s=\operatorname{deg} \varphi$).

We now formulate the main result of the paper.
Theorem. Let Λ be an extended Dynkin diagram of type $\tilde{D}_{4}, \tilde{E}_{6}$ or \tilde{E}_{7} and $\Delta \in \mathbb{Z}^{\left|\Lambda_{0}\right|}$ an imaginary root of Λ. Then the algebra $\mathcal{Q}_{k}(\Lambda, \Delta)$ is wild.

In proving the theorem we can obviously take Δ to be minimal positive, which we denote by Δ_{0}.

2. Proof of the theorem for $\Lambda=\tilde{D}_{4}$

In this case the diagram Λ and vector Δ_{0} are

By the convention indicated above 0 denotes the strongly inner vertex, and $1,2,3$ and 4 the outer vertices. Then the algebra $\mathcal{Q}_{k}\left(\Lambda, \Delta_{0}\right)$, with generators $e_{1}, e_{2}, e_{3}, e_{4}$, has the relations

$$
\begin{aligned}
& \left.1^{\prime}\right) e_{i}^{2}=e_{i}(1 \leq i \leq 4) \\
& \left.2^{\prime}\right) e_{1}+e_{2}+e_{3}+e_{4}=2
\end{aligned}
$$

Consider the following representation γ of $\mathcal{Q}_{k}\left(\Lambda, \Delta_{0}\right)$ over $\Sigma=k<x, y>$:

$$
\begin{aligned}
& \gamma\left(e_{1}\right)=\left(\begin{array}{ccccccc}
1 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & -1 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & -1 & 0 \\
0 & 0 & 0 & 0 & 1 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 1 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0
\end{array}\right), \\
& \gamma\left(e_{2}\right)=\left(\begin{array}{ccccccc}
0 & 0 & -1 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & -1 & 0 & 0 & 0 \\
0 & 0 & 1 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 1 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 1
\end{array}\right),
\end{aligned}
$$

$$
\begin{gathered}
\gamma\left(e_{3}\right)=\left(\begin{array}{ccccccc}
1 & 0 & x & y & x^{2}-x+y & x y-y & 1 \\
0 & 1 & 1 & 0 & x-1 & y & 0 \\
0 & 0 & 0 & 0 & -x+1 & -y & 0 \\
0 & 0 & 0 & 0 & -1 & 1 & 0 \\
0 & 0 & 0 & 0 & 1 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 1 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0
\end{array}\right), \\
\gamma\left(e_{4}\right)=\left(\begin{array}{ccccccc}
0 & 0 & -x+1 & -y & -x^{2}+x-y & -x y+y & -1 \\
0 & 0 & -1 & 1 & -x+1 & -y & 0 \\
0 & 0 & 1 & 0 & x & y & 0 \\
0 & 0 & 0 & 1 & 1 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 1
\end{array}\right) .
\end{gathered}
$$

In [3] the author has proved that this representation is strict.

3. Proof of the theorem for $\Lambda=\tilde{E}_{6}$

In this case the diagram Λ and vector Δ_{0} are

We assume that the vertices $1,3,5$ are outer, the vertices $2,4,6$ are weakly inner (the vertex 0 is strongly inner), and the edges join the vertices 1 and 2,3 and 4,5 and 6 , and consequently 0 with $2,4,6$. Then the algebra $\mathcal{Q}_{k}\left(\Lambda, \Delta_{0}\right)$, with generators $e_{1}, e_{2}, \ldots, e_{6}$, has the relations
$\left.1^{\prime}\right) e_{i}^{2}=e_{i}(1 \leq i \leq 6) ;$
$\left.2^{\prime}\right) e_{1} e_{2}=e_{2} e_{1}=0, e_{3} e_{4}=e_{4} e_{3}=0, e_{5} e_{6}=e_{6} e_{5}=0$;
$\left.3^{\prime}\right) e_{1}+e_{3}+e_{5}+2\left(e_{2}+e_{4}+e_{6}\right)=3$.
Consider the following representation γ of $\mathcal{Q}_{k}\left(\Lambda, \Delta_{0}\right)$ over $\Sigma=k<x, y>$:

$$
\begin{aligned}
& \gamma\left(e_{1}\right)=\left(\begin{array}{ccccccc}
1 & 0 & 2 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 2 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 2 \\
0 & 0 & 0 & 0 & 0 & 1 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 1
\end{array}\right) \\
& \gamma\left(e_{2}\right)=\left(\begin{array}{ccccccc}
0 & 0 & -2 & 0 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 1 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0
\end{array}\right), \\
& \gamma\left(e_{3}\right)=\left(\begin{array}{ccccccc}
0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 1 & 0 & -x & -y & 2 & 0 \\
0 & 0 & 1 & -1 & 0 & 0 & 2 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0
\end{array}\right), \\
& \gamma\left(e_{4}\right)=\left(\begin{array}{ccccccc}
0 & 0 & 0 & -1 & 1 & 1 & -1 \\
0 & 0 & 0 & x & y & -x & -y \\
0 & 0 & 0 & 1 & 0 & -1 & 0 \\
0 & 0 & 0 & 1 & 0 & -1 & 0 \\
0 & 0 & 0 & 0 & 1 & 0 & -1 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0
\end{array}\right), \\
& \gamma\left(e_{5}\right)=\left(\begin{array}{ccccccc}
0 & 0 & 0 & 0 & 2 & 0 & 0 \\
0 & 0 & 0 & -x & -y & 0 & 0 \\
0 & 0 & 0 & -1 & 0 & 0 & 0 \\
0 & 0 & 0 & 1 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 1 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0
\end{array}\right),
\end{aligned}
$$

$$
\gamma\left(e_{6}\right)=\left(\begin{array}{ccccccc}
1 & 0 & 1 & 1 & -2 & -1 & 1 \\
0 & 0 & 0 & 0 & 0 & x-1 & y \\
0 & 0 & 0 & 0 & 0 & 1 & -1 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 1 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 1
\end{array}\right)
$$

We will prove that the representation γ is strict.
Let φ and φ^{\prime} be representations of Σ over k having the same degree: $\operatorname{deg} \varphi=\operatorname{deg} \varphi^{\prime}=d$. The representation $\gamma \otimes \varphi$ (respectively, $\left.\gamma \otimes \varphi^{\prime}\right)$ is uniquely defined by the matrices $A_{s}=(\gamma \otimes \varphi)\left(e_{s}\right)$ (respectively, $\left.A_{s}^{\prime}=\left(\gamma \otimes \varphi^{\prime}\right)\left(e_{s}\right)\right)$, where $s=1,2, \ldots, 6$. It is natural to consider these matrices as block matrices with blocks $\left(A_{s}\right)_{i j}$ and $\left(A_{s}^{\prime}\right)_{i j}$ of degree $d(i, j=1,2, \ldots, 7)$. Then $\operatorname{Hom}\left(\gamma \otimes \varphi, \gamma \otimes \varphi^{\prime}\right)=\left\{T \in k^{7 d \times 7 d} \mid A_{s} T=\right.$ $T A_{s}^{\prime}$ for each $\left.s=1,2, \ldots, 6\right\}$.

Lemma 1. Let $T=\left(T_{i j}\right), i, j=1,2, \ldots, 7$, be a block matrix (over k) with blocks $T_{i j}$ of degree d, belonging to $\operatorname{Hom}\left(\gamma \otimes \varphi, \gamma \otimes \varphi^{\prime}\right)$. Then $T_{i j}=0$ if $i \neq j$ and $(i, j) \neq(1,6),(1,7)$, and $T_{11}=T_{22}=\ldots=T_{77}$.

Proof. Denote by I, II, ..., VI the matrix equalities $A_{1} T=T A_{1}^{\prime}, A_{2} T=$ $T A_{2}^{\prime}, \ldots, A_{6} T=T A_{6}^{\prime}$, respectively. The (matrix) equality $\left(A_{s} T\right)_{i j}=$ $\left(T A_{s}^{\prime}\right)_{i j}, i, j \in\{1,2, \ldots, 7\}$, induced by an equality $A_{s} T=T A_{s}^{\prime}$, is denoted by $\mathrm{I}(i, j)$ for $s=1, \mathrm{II}(i, j)$ for $s=2, \ldots, \mathrm{VI}(i, j)$ for $s=6$.

It is easy to see that $\mathrm{I}(2,1)$ implies $T_{21}=0 ; \mathrm{I}(3,1)$ implies $T_{31}=0$; $\mathrm{I}(6,4)$ implies $T_{64}=0 ; \mathrm{I}(6,5)$ implies $T_{65}=0 ; \mathrm{I}(7,4)$ implies $T_{74}=0$; $\mathrm{I}(7,5)$ implies $T_{75}=0 ; \mathrm{II}(2,4)$ implies $T_{24}=0 ; \mathrm{II}(2,5)$ implies $T_{25}=0$; II $(2,6)$ implies $T_{26}=0 ; \mathrm{II}(2,7)$ implies $T_{27}=0 ; \mathrm{II}(3,4)$ implies $T_{34}=0$; $\mathrm{II}(3,5)$ implies $T_{35}=0 ; \mathrm{II}(3,6)$ implies $T_{36}=0 ; \mathrm{II}(3,7)$ implies $T_{37}=0$; $\operatorname{III}(1,2)$ implies $T_{12}=0 ; \operatorname{III}(1,3)$ implies $T_{13}=0 ; \operatorname{III}(4,2)$ implies $T_{42}=$ 0; $\operatorname{III}(4,3)$ implies $T_{43}=0 ; \operatorname{III}(5,2)$ implies $T_{52}=0 ; \operatorname{III}(5,3)$ implies $T_{53}=0 ; \operatorname{III}(6,2)$ implies $T_{62}=0 ; \operatorname{III}(6,3)$ implies $T_{63}=0 ; \operatorname{III}(7,2)$ implies $T_{72}=0 ; \operatorname{III}(7,3)$ implies $T_{73}=0 ; \mathrm{V}(4,6)$ implies $T_{46}=0 ; \mathrm{V}(4,7)$ implies $T_{47}=0 ; \mathrm{V}(5,6)$ implies $T_{56}=0 ; \mathrm{V}(5,7)$ implies $T_{57}=0 ; \mathrm{I}(1,4)$ and $T_{34}=0$ imply $T_{14}=0 ; \mathrm{I}(1,5)$ and $T_{35}=0$ imply $T_{15}=0 ; \operatorname{IV}(6,4)$, $T_{62}=0, T_{63}=0$ and $T_{64}=0$ imply $T_{61}=0 ; \operatorname{IV}(7,4), T_{72}=0, T_{73}=0$ and $T_{74}=0$ imply $T_{71}=0 ; \operatorname{IV}(4,1)$ and $T_{61}=0$ imply $T_{41}=0 ; \operatorname{IV}(5,1)$ and $T_{71}=0$ imply $T_{51}=0 ; \mathrm{VI}(1,2), T_{12}=0, T_{42}=0, T_{52}=0, T_{62}=0$ and $T_{72}=0$ imply $T_{32}=0 ; \mathrm{V}(3,5), T_{31}=0, T_{32}=0$ and $T_{35}=0$ imply $T_{45}=0 ; \operatorname{IV}(3,7), T_{31}=0, T_{32}=0, T_{35}=0$ and $T_{47}=0$ imply $T_{67}=0 ; \operatorname{IV}(1,4), \mathrm{VI}(1,4), T_{12}=0, T_{13}=0, T_{14}=0, T_{34}=0, T_{64}=0$ and $T_{74}=0$ imply $T_{54}=0 ; \operatorname{IV}(5,6), T_{51}=0, T_{52}=0, T_{53}=0, T_{54}=0$
and $T_{56}=0$ imply $T_{76}=0 ; \operatorname{IV}(2,5), \operatorname{IV}(5,7), \operatorname{VI}(2,7), T_{21}=0, T_{25}=0$, $T_{27}=0, T_{45}=0, T_{51}=0, T_{52}=0, T_{57}=0, T_{65}=0, T_{67}=0$ and $T_{75}=0$ imply $T_{23}=0$.

So $T_{i j}=0$ when $i \neq j$ and $(i, j) \neq(1,6),(1,7)$. Then it follows from $\operatorname{IV}(1,4), \operatorname{IV}(1,5), \operatorname{IV}(1,6), \operatorname{IV}(1,7), \operatorname{III}(3,4), \operatorname{III}(2,4)$ and $\operatorname{VI}(2,6)$ that $T_{11}=T_{22}=\ldots=T_{77}$.

It follows from the lemma that a matrix $T \neq\left(T_{i j}\right)$ belonging to $\operatorname{Hom}\left(\gamma \otimes \varphi, \gamma \otimes \varphi^{\prime}\right)$ satisfies the following conditions:
a) T is invertible if and only if $T_{0}=T_{11}=T_{22}=\ldots=T_{77}$ is invertible;
b) $\varphi(x) T_{0}=T_{0} \varphi^{\prime}(x)$ and $\varphi(y) T_{0}=T_{0} \varphi^{\prime}(y)$.
(In fact it follows from the lemma that the equalities I-VI are equivalent to the equalities $b)$).

Therefore the representation γ satisfies the condition 2) (of the definition of a strict representation).

It remains to prove that γ satisfies the condition 1) or, in other words, φ is decomposable if so is $\gamma \otimes \varphi$. We will denote by 0_{s} and E_{s} the $s \times s$ zero and identity matrices, respectively.

Denote by $\operatorname{Hom}(\varphi, \varphi)$ the algebra of endomorphisms of φ, i.e.

$$
\operatorname{Hom}(\varphi, \varphi)=\left\{S \in k^{d \times d} \mid \varphi(x) S=S \varphi(x), \varphi(y) S=S \varphi(y)\right\}
$$

Decomposability of $\gamma \otimes \varphi$ implies that the k-algebra $\operatorname{Hom}(\gamma \otimes \varphi, \gamma \otimes \varphi$) (of endomorphisms of $\gamma \otimes \varphi$) contains an idempotent $T \neq 0_{7 d}, E_{7 d}$ (see, for example, $[4, \mathrm{ch} . \mathrm{V}])$. Then, by the lemma, the matrix $T_{0}=T_{11}=T_{22}=$ $\ldots=T_{77}$ is an idempotent; moreover, $T_{0} \neq 0_{d}, E_{d}$, because otherwise it would follow from the equality $T^{2}=T$ that $T=T_{0} \oplus T_{0} \oplus \ldots \oplus T_{0}$, where T_{0} occurs 7 times, or in other words $T=0_{7 d}$ or $T=E_{7 d}$, respectively. Since T_{0} belong to the algebra $\operatorname{Hom}(\varphi, \varphi)=\left\{S \in k^{d \times d} \mid \varphi(x) S=\right.$ $S \varphi(x), \varphi(y) S=S \varphi(y)\}$ (see the condition b)), the representation φ is decomposable (see again [4, ch.V]).

4. Proof of the theorem for $\Lambda=\tilde{E}_{7}$

In this case the diagram Λ and vector Δ_{0} are

We assume that the vertices $1,4,7$ are outer, the vertices $2,3,5,6$ are weakly inner (the vertex 0 is strongly inner), and the edges join the
vertices 1 and 2,2 and 3,4 and 5,5 and 6 , and consequently 0 with $3,6,7$. Then the algebra $\mathcal{Q}_{k}\left(\Lambda, \Delta_{0}\right)$, with generators $e_{1}, e_{2}, \ldots, e_{7}$, has the relations

$$
\left.1^{\prime}\right) e_{i}^{2}=e_{i}(1 \leq i \leq 7)
$$

$\left.2^{\prime}\right) e_{1} e_{2}=e_{2} e_{1}=0, e_{2} e_{3}=e_{3} e_{2}=0, e_{1} e_{3}=e_{3} e_{1}=0, e_{4} e_{5}=e_{5} e_{4}=$ $0, e_{5} e_{6}=e_{6} e_{5}=0, e_{4} e_{6}=e_{6} e_{4}=0$;

$$
\left.3^{\prime}\right) e_{1}+e_{4}+2\left(e_{2}+e_{5}+e_{7}\right)+3\left(e_{3}+e_{6}\right)=4
$$

Consider the following representation γ of $\mathcal{Q}_{k}\left(\Lambda, \Delta_{0}\right)$ over $\Sigma=k<x, y>:$

$$
\gamma\left(e_{1}\right)=\left(\begin{array}{ccccccccc}
0 & 0 & 1 & 0 & -3 & 0 & 0 & 3 & 0 \\
0 & 1 & 0 & -3 & 0 & 0 & 0 & x & y \\
0 & 0 & 1 & 0 & -3 & 0 & 0 & 3 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0
\end{array}\right)
$$

$$
\gamma\left(e_{2}\right)=\left(\begin{array}{ccccccccc}
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 3 & 0 & -3 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 3 & 0 & -3 & 0 & 0 \\
0 & 0 & 0 & 1 & 0 & -1 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 1 & 0 & -1 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0
\end{array}\right)
$$

$$
\gamma\left(e_{3}\right)=\left(\begin{array}{ccccccccc}
0 & 0 & 0 & 0 & 0 & 1 & 0 & 1 & 0 \\
0 & 0 & 0 & 0 & 0 & 3 & 0 & 3 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 3 & 0 & 3 \\
0 & 0 & 0 & 0 & 0 & 1 & 0 & 1 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 1 & 0 & 1 \\
0 & 0 & 0 & 0 & 0 & 1 & 0 & 1 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 1 & 0 & 1 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0
\end{array}\right)
$$

$$
\left.\begin{array}{r}
\gamma\left(e_{4}\right)=\left(\begin{array}{ccccccccc}
0 & 0 & 0 & 0 & 0 & 3 & 3 & 9 & 9 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & -1 & 0 & -3 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & -1 & 0 & -3 \\
0 & 0 & 0 & 0 & 0 & 1 & 0 & 3 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 1 & 0 & 3 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0
\end{array}\right), \\
\gamma\left(e_{5}\right)=\left(\begin{array}{ccccccccc}
1 & 0 & 1 & 0 & 0 & -3 & -3 & -12 & -9 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & x & y \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 3 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & -3 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & -3 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 1 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 1
\end{array}\right), \\
\gamma\left(e_{6}\right)=\left(\begin{array}{llllllllll}
\\
0 & -1 & 0 & 1 & 0 & 1 & 3 & 3 \\
0 & 1 & 0 & -1 & 0 & -1 & 0 & -x-3 & -y \\
0 & 1 & 0 & -1 & 0 & -1 & -3 & -3 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0
\end{array}\right) \\
\hline
\end{array}\right)
$$

We will prove that the representation γ is strict.
Let φ and φ^{\prime} be representations of Σ over k having the same degree: $\operatorname{deg} \varphi=\operatorname{deg} \varphi^{\prime}=d$. The representation $\gamma \otimes \varphi$ (respectively, $\left.\gamma \otimes \varphi^{\prime}\right)$ is uniquely defined by the matrices $A_{s}=(\gamma \otimes \varphi)\left(e_{s}\right)$ (respectively, $\left.A_{s}^{\prime}=\left(\gamma \otimes \varphi^{\prime}\right)\left(e_{s}\right)\right)$, where $s=1,2, \ldots, 7$. It is natural to consider these matrices as block matrices with blocks $\left(A_{s}\right)_{i j}$ and $\left(A_{s}^{\prime}\right)_{i j}$ of degree $d(i, j=1,2, \ldots, 9)$. Then $\operatorname{Hom}\left(\gamma \otimes \varphi, \gamma \otimes \varphi^{\prime}\right)=\left\{T \in k^{9 d \times 9 d} \mid A_{s} T=\right.$ $T A_{s}^{\prime}$ for each $\left.s=1,2, \ldots, 7\right\}$.

Lemma 2. Let $T=\left(T_{i j}\right), i, j=1,2, \ldots, 9$, be a block matrix (over k) with blocks $T_{i j}$ of degree d, belonging to $\operatorname{Hom}\left(\gamma \otimes \varphi, \gamma \otimes \varphi^{\prime}\right)$. Then $T_{i j}=0$ if $i \neq j$ and $(i, j) \neq(1,8),(1,9)$, and $T_{11}=T_{22}=\ldots=T_{99}$.

Proof. Denote by I, II, ..., VII the matrix equalities $A_{1} T=T A_{1}^{\prime}, A_{2} T=$ $T A_{2}^{\prime}, \ldots, A_{7} T=T A_{7}^{\prime}$, respectively. The (matrix) equality $\left(A_{s} T\right)_{i j}=$ $\left(T A_{s}^{\prime}\right)_{i j}, i, j \in\{1,2, \ldots, 9\}$, induced by an equality $A_{s} T=T A_{s}^{\prime}$, is denoted by $\mathrm{I}(i, j)$ for $s=1, \mathrm{II}(i, j)$ for $s=2, \ldots, \mathrm{VII}(i, j)$ for $s=7$.

It is easy to see that $\operatorname{VII}(i, j)$ implies $T_{i j}=0$ for each $(i, j) \in$ $\{1,4,5,8,9\} \times\{2,3,6,7\}$ and each $(i, j) \in\{2,3,6,7\} \times\{1,4,5,8,9\} ;$ $\mathrm{II}(1,4)$ and $T_{12}=0$ imply $T_{14}=0 ; \mathrm{II}(1,5)$ and $T_{13}=0$ imply $T_{15}=0 ;$ $\mathrm{II}(4,1)$ and $T_{61}=0$ imply $T_{41}=0 ; \operatorname{II}(4,8)$ and $T_{68}=0$ imply $T_{48}=0 ;$ $\mathrm{II}(4,9)$ and $T_{69}=0$ imply $T_{49}=0 ; \mathrm{II}(5,1)$ and $T_{71}=0$ imply $T_{51}=0 ;$ $\mathrm{II}(5,8)$ and $T_{78}=0$ imply $T_{58}=0 ; \operatorname{II}(5,9)$ and $T_{79}=0$ imply $T_{59}=0 ;$ $\mathrm{II}(8,4)$ and $T_{82}=0$ imply $T_{84}=0 ; \mathrm{II}(8,5)$ and $T_{83}=0$ imply $T_{85}=0 ;$ $\mathrm{II}(9,4)$ and $T_{92}=0$ imply $T_{94}=0 ; \operatorname{II}(9,5)$ and $T_{93}=0$ imply $T_{95}=0 ;$ $\operatorname{III}(6,2)$ and $T_{82}=0$ imply $T_{62}=0 ; \operatorname{III}(6,3)$ and $T_{83}=0$ imply $T_{63}=0 ;$ $\operatorname{III}(7,2)$ and $T_{92}=0$ imply $T_{72}=0 ; \operatorname{III}(7,3)$ and $T_{93}=0$ imply $T_{73}=0 ;$ $\operatorname{III}(6,1)$ and $T_{61}=0$ imply $T_{81}=0 ; \operatorname{III}(1,9), T_{13}=0, T_{15}=0, T_{17}=0$ and $T_{69}=0$ imply $T_{89}=0 ; \operatorname{III}(6,9), T_{63}=0, T_{65}=0, T_{69}=0$ and $T_{89}=0$ imply $T_{67}=0 ; \operatorname{III}(7,1)$ and $T_{71}=0$ imply $T_{91}=0 ; \operatorname{IV}(2,6)$, $T_{21}=0$ and $T_{24}=0$ imply $T_{26}=0 ; \operatorname{IV}(2,7), T_{21}=0$ and $T_{25}=0$ imply $T_{27}=0 ; \operatorname{IV}(3,6), T_{31}=0$ and $T_{34}=0$ imply $T_{36}=0 ; \operatorname{IV}(3,7), T_{31}=0$ and $T_{35}=0$ imply $T_{37}=0 ; \operatorname{VI}(1,2), T_{12}=0, T_{52}=0, T_{72}=0, T_{82}=0$ and $T_{92}=0$ imply $T_{32}=0 ; \mathrm{VI}(2,7), T_{21}=0, T_{27}=0, T_{47}=0, T_{67}=0$, $T_{87}=0$ and $T_{97}=0$ imply $T_{23}=0 ; \mathrm{VI}(2,5), T_{21}=0, T_{23}=0, T_{25}=0$, $T_{65}=0, T_{85}=0$ and $T_{95}=0$ imply $T_{45}=0 ; \mathrm{VI}(1,4), T_{12}=0, T_{34}=0$, $T_{74}=0, T_{84}=0$ and $T_{94}=0$ imply $T_{54}=0 ; \operatorname{II}(5,6), T_{52}=0, T_{54}=0$ and $T_{56}=0$ imply $T_{76}=0 ; \operatorname{III}(5,8), T_{51}=0, T_{52}=0, T_{54}=0, T_{56}=0$ and $T_{78}=0$ imply $T_{98}=0$.

So $T_{i j}=0$ when $i \neq j$ and $(i, j) \neq(1,8),(1,9)$. Then it follows from $\operatorname{III}(1,6), \operatorname{III}(1,8), \operatorname{III}(5,7), \operatorname{III}(5,9), \operatorname{VI}(1,3), \operatorname{VI}(1,5) \operatorname{VI}(2,4)$ and $\mathrm{VI}(2,6)$. that $T_{11}=T_{22}=\ldots=T_{99}$.

The final part of the proof is analogous to that in the case $\Lambda=\tilde{E}_{6}$ (see Section 3).

References

[1] Ostrovskyi V., Samoilenko Yu. Introduction to the Theory of Representations of Finitely Presented $*$-Algebras.I. Representations by bounded operators. The Gordon and Breach Publishing Group. 1999.
[2] Drozd, Yu. A., Tame and wild matrix problems, Lecture Notes in Math. 831, vol. 2, Springer, Berlin, 1980, 242-258.
[3] Bondarenko, V. M., On certain wild algebras generated by idempotents, Methods Funct. Anal. Topology 5, no. 3 (1999), 1-3.
[4] Pierce R.S. Associative Algebras. Springer-Verlag. 1982.

Contact information

V. M. Bondarenko Institute of Mathematics, Ukrainian National Academy of Sciences, 3 Tereshchenkivs'ka, Kyiv, 01601, Ukraine
E-Mail: vit-bond@imath.kiev.ua

Received by the editors: 26.04 .2004
and final form in 05.10.2004.

[^0]: 2000 Mathematics Subject Classification: 16G60; 15A21, 46K10, 46L05.
 Key words and phrases: idempotent, extended Dynkin diagram, representation, wild type.

