Number 2. (2004). pp. $17-22$
(C) Journal "Algebra and Discrete Mathematics"

Differentially trivial and rigid right semi-artinian rings

O. D. Artemovych
Communicated by M. Ya. Komarnytskyj

Abstract. We obtain a characterization of right semi-artinian rings which have only trivial derivations and prove that a rigid (i.e. has only the trivial ring endomorphisms) right semi-artinian ring R is a field or isomorphic to some $\mathbb{Z}_{p^{n}}$.
0. As usually, an additive mapping $D: R \rightarrow R$ is called a derivation of R if $D(x y)=D(x) y+x D(y)$ for all $x, y \in R$. A ring R having no non-zero derivations will be called differentially trivial. The class of differentially trivial rings is contained in the class of ideally differential rings (i.e. rings R in which every two-sided ideal is closed with respect to all derivations of R). Ideally differential rings first appear in [1] (see also [2]). Characterization theorems for differentially trivial rings R with the additive group R^{+}of finite Prüfer rank and differentially trivial left Noetherian rings was obtained by the author in [3], [4] and [5].

In this paper we study differentially trivial right semi-artinian rings. Recall that a ring R with an identity is called right semi-artinian if every non-trivial right R-module has a non-zero right socle. The main result of the present paper states as follows:

Theorem. For a right semi-artinian ring R the following conditions are equivalent:
(i) R is a differentially trivial ring;

2000 Mathematics Subject Classification: 16W20, 13N15.
Key words and phrases: Semi-artinian ring, differentially trivial ring.
(ii) R contains a set $\left\{e_{\alpha} \mid \alpha \in S\right\}$ of local idempotents e_{α} such that $e_{\alpha} R$ is either a differentially trivial field or isomorphic to some $\mathbb{Z}_{p^{n}}, R=e_{\alpha} R \oplus$ M_{α} is a ring direct sum, where M_{α} is an ideal of R and $\bigcap_{\alpha \in S} M_{\alpha}=\{0\}$.

Recall that a ring R which has only the trivial ring endomorphisms is called rigid. Our theorem we can apply to prove the following

Proposition. A right semi-artinian ring R is rigid if and only if R is either a rigid field or isomorphic to some $\mathbb{Z}_{p^{n}}$.

All rings considered here are associative and with an identity element. Throughout the paper p is a prime and $\mathbb{Z}_{p^{n}}$ the ring of integers modulo a prime power p^{n}. For convenience of the reader we recall some notation. For any ring R, we denote by $\mathcal{J}(R)$ the Jacobson radical, by $R^{\left(p^{k}\right)}$ the subring of R generated by its identity element and the set $\left\{x^{p^{k}} \mid x \in R\right\}$ $(k \in \mathbb{N})$, by $\operatorname{char}(R)$ the characteristic, by $\operatorname{Ann}(I)=\{a \in R \mid a r=r a=$ 0 for every $r \in I\}$ the annihilator of an ideal I in R, by $\operatorname{soc}(R)$ the right socle and $\Omega_{k}(R)=\left\{x \in R \mid p^{k} x=0\right\}$.

We will also use some other terminology from [6] and [7].

1. Since in any differentially trivial ring R, in particular, all inner derivations are trivial, it is commutative. Moreover by a result of Bass (see e.g. [6, Proposition 22.10A]) the Jacobson radical $\mathcal{J}(R)$ of a right semiartinian ring R is right T-nilpotent.

Lemma 1 (see [3]). A commutative domain R is differentially trivial if and only if at least one of the following two cases takes place:
(1) $\operatorname{char}(R)=0$ and the field of quotients $Q(R)$ of R is algebraic over its prime subfield;
(2) $\operatorname{char}(R)=p>0$ and $R=\left\{a^{p} \mid a \in R\right\}$.

A ring R is said to be a right Bass ring if every non-trivial right R-module has a maximal submodule (see [6] and [8]).

Lemma 2. If R is a right Bass ring with the non-zero Jacobson radical $\mathcal{J}(R)$, then $\mathcal{J}(R)^{2} \neq \mathcal{J}(R)$.

Proof. $\mathcal{J}(R)$, considered as a right R-module, contains some maximal submodule M and, as a consequence, $\mathcal{J}(R) / M$ is a simple R-module. Then there exists an element $j \in \mathcal{J}(R) \backslash M$ such that $(j+M) R=$ $\mathcal{J}(R) / M$. It is obvious that $(j+M) \mathcal{J}(R)$ is a submodule of $(j+M) R$. Assume that $(j+M) \mathcal{J}(R)=(j+M) R$. Then there is some element $a \in \mathcal{J}(R)$ of the nilpotency index $k(k \geq 2)$ such that $(j+M) a=j+M$, and so

$$
\overline{0}=(j+M) a^{k}=(j+M) a^{k-1}=\ldots=(j+M) a .
$$

From this it follows that $j+M=\overline{0}$, a contradiction. Hence $(j+$ $M) \mathcal{J}(R)=\{\overline{0}\}$ and therefore $\mathcal{J}(R)^{2} \leq M$. This yields that $\mathcal{J}(R)^{2} \neq$ $\mathcal{J}(R)$, as desired.

Lemma 3. If R is a right semi-artinian local ring with the non-zero Jacobson radical $\mathcal{J}(R)$, then
(1) $\operatorname{Ann}(\mathcal{J}(R)) \neq\{0\}$;
(2) $\operatorname{Ann}\left(\mathcal{J}(R)^{2}\right) \neq \operatorname{Ann}(\mathcal{J}(R))$.

Proof. (1) A right R-module $\mathcal{J}(R)$ contains a non-zero socle $\operatorname{soc}(\mathcal{J}(R))$. By Proposition 18.39 of $[6] \operatorname{soc}(\mathcal{J}(R))=\operatorname{ann}_{\mathcal{J}(R)} \mathcal{J}(R)$, where

$$
\operatorname{ann}_{\mathcal{J}(R)} \mathcal{J}(R)=\{r \in \mathcal{J}(R) \mid \mathcal{J}(R) r=\{0\}\}
$$

Since $\operatorname{Ann}(\mathcal{J}(R)) \geq \operatorname{ann}_{\mathcal{J}(R)} \mathcal{J}(R)$, we conclude that $\operatorname{Ann}(\mathcal{J}(R))$ is nonzero.
(2) If by contradiction we assume that $\operatorname{Ann}(\mathcal{J}(R))=\operatorname{Ann}\left(\mathcal{J}(R)^{2}\right)$, then by the same reason as in the part (1) the annihilator $\operatorname{Ann}(\mathcal{J}(R / \operatorname{Ann}(\mathcal{J}(R))))$ contains a non-zero element $a+\operatorname{Ann}(\mathcal{J}(R))$, whence $a \mathcal{J}(R) \leq \operatorname{Ann}(\mathcal{J}(R))$ and $a \mathcal{J}(R)^{2}=\{0\}$. But then in view of our assumption $a \in \operatorname{Ann}(\mathcal{J}(R))$ which leads to a contradiction. The lemma is proved.
2. Proof of Theorem. (\Leftarrow) Suppose that a ring R contains a set $\left\{e_{\alpha} \mid \alpha \in S\right\}$ of local idempotents e_{α} which satisfies the hypothesis of theorem. If $d: R \rightarrow R$ is some derivation, then $d(R) \subseteq M_{\alpha}$ for each $\alpha \in S$ and consequently $d(R) \subseteq \bigcap_{\alpha \in S} M_{\alpha}$. Hence d is trivial.
(\Rightarrow) Let R be a differentially trivial right semi-artinian ring. Then it is commutative and by Theorem 3.1 of [12] the quotient $\operatorname{ring} R / \mathcal{J}(R)$ is (Von Neumann) regular. Therefore $R / \mathcal{J}(R)=\operatorname{soc}(R / \mathcal{J}(R))$. By Proposition 22.10A of $[6] \bar{R}=R / \mathcal{J}(R)$ contains some minimal ideal \bar{I} and $\bar{I}=\bar{e} \bar{R}$ for an idempotent \bar{e}. This idempotent can be lifted to some idempotent e of R and so $I=e R$ is a differentially trivial local ring with the identity element e and $\mathcal{J}(I)=e \mathcal{J}(R)$ is a T-nilpotent ideal.

1) Let $\operatorname{char}(I)=\operatorname{char}(I / \mathcal{J}(I))$. Assume that $\mathcal{J}(I)$ is non-zero. By Lemma $2 \mathcal{J}(I)^{2} \neq \mathcal{J}(I)$. Writting B for $I / \mathcal{J}(I)^{2}$ we see that $\mathcal{J}(B) \neq$ $\{\overline{0}\}$. From the proof of Theorem 27 of [9, Chapter VIII, §12]), Hensel's Lemma (see e.g. [10, Chapter 10, Exercises 9 and 10]) and Corollary 2 of $[9$, Chapter VIII, $\S 7]$ it holds that B contains a subfield D such that $B=\mathcal{J}(B)+D$ is a group direct sum of the additive groups $\mathcal{J}(B)^{+}$and D^{+}. As a consequence, for any element $\bar{b}=b+\mathcal{J}(I)^{2}$ of B there are unique elements $\bar{i}=i+\mathcal{J}(I)^{2} \in \mathcal{J}(B)$ and $\bar{d}=d+\mathcal{J}(I)^{2} \in D$ such that
$\bar{b}=\bar{i}+\bar{d}$. Then the map $\delta: B \rightarrow B$ given by $\delta(\bar{b})=\bar{i}(\bar{b} \in B)$ gives a nonzero derivation δ of B. This implies that the rule $\theta(b)=w i(b \in I)$, with a fixed element w of $\operatorname{Ann}\left(\mathcal{J}(I)^{2}\right) \backslash \operatorname{Ann}(\mathcal{J}(I))$ (see Lemma 3), determines a non-zero derivation θ of I, a contradiction. Hence $\mathcal{J}(I)=\{0\}$.
2) Now let I be a ring of characteristic $p^{k}(k \geq 2)$ and $\Omega_{s}=\Omega_{s}(I)$ $(1 \leq s \leq k)$. Suppose that $\bar{I}=I / \Omega_{k-1}(I)$ has a non-zero derivation d. Then for any element $i \in I$ there exists an element $i_{1} \in I$ such that $d\left(i+\Omega_{k-1}\right)=i_{1}+\Omega_{k-1}$. Since $p i_{1} \neq 0$ for some i_{1}, the rule $\mu(i)=p i_{1}(i \in I)$ determines a non-zero derivation μ of I which gives a contradiction. This means that \bar{I} is a differentially trivial ring. However $\operatorname{char}(\bar{I} / \mathcal{J}(\bar{I}))=\operatorname{char}(\bar{I}), \mathcal{J}(\bar{I})$ is right T-nilpotent and so \bar{I} is a field. Since I is a local ring, we conclude that $\mathcal{J}(I)=\Omega_{k-1}$.

Assume that $\delta: I / \operatorname{Ann}\left(\Omega_{1}\right) \rightarrow I / \operatorname{Ann}\left(\Omega_{1}\right)$ is a non-zero derivation. Then for every $i \in I$ there is an element $a_{i} \in I$ such that $\delta\left(i+\operatorname{Ann}\left(\Omega_{1}\right)\right)=$ $a_{i}+\operatorname{Ann}\left(\Omega_{1}\right)$, where $a_{i_{0}} w_{0} \neq 0$ for some $i_{0} \in I$ and $w_{0} \in \Omega_{1}$. Then the rule $\mu(i)=w_{0} a_{i}(i \in I)$ gives a non-zero derivation μ of I, a contradiction. Hence $I / \operatorname{Ann}\left(\Omega_{1}\right)$ is differentially trivial.

We see that $p I \leq \operatorname{Ann}\left(\Omega_{1}\right)$ and from the part 1) $\mathcal{J}(I) \leq \operatorname{Ann}\left(\Omega_{1}\right)$, i.e. $\Omega_{1} \mathcal{J}(I)=\{0\}$. Moreover $p \Omega_{2} \mathcal{J}(I) \leq \Omega_{1} \mathcal{J}(I)=\{0\}$ yields that $\Omega_{2} \mathcal{J}(I) \leq \Omega_{1}$. Now by induction on t we can prove that $\Omega_{t+1} \mathcal{J}(I) \leq \Omega_{t}$ for all $t(t=1,2,, \ldots, k-1)$. As a consequence,

$$
\begin{aligned}
\mathcal{J}(I)^{k}=I \mathcal{J}(I)^{k}=\Omega_{k} \mathcal{J}(I)^{k} & =\left(\Omega_{k} \mathcal{J}(I)\right) \mathcal{J}(I)^{k-1} \leq \\
& \leq \Omega_{k-1} \mathcal{J}(I)^{k-1} \leq \cdots \leq \Omega_{1} \mathcal{J}(I)=\{0\}
\end{aligned}
$$

Thus $\mathcal{J}(I)^{k}=\{0\}$.
Let $B=I / \mathcal{J}(I)^{2}$. Since $B / \mathcal{J}(B) \cong I / \mathcal{J}(I)$ and $I / \mathcal{J}(I)$ is a differentially trivial ring, $B / \mathcal{J}(B)=(B / \mathcal{J}(B))^{\left(p^{k}\right)}$ for all $k \in \mathbb{N}$ by Lemma 1. Hence $B=\mathcal{J}(B)+D$, where D is the subring of B generated by an identity element and the set $\left\{x^{p^{2}} \mid x \in B\right\}$. Writting D_{1} for an image of D in $B / p B$ we see that D and D_{1} are differentially trivial. Since $D_{1} \cong$ $D /(D \cap p B)$ and $\operatorname{char}\left(D_{1}\right)=p$, we deduce that $\mathcal{J}(D)=D \cap p B=p D$. This gives that D is an Artinan ring and $D \cong \mathbb{Z}_{p^{2}}$ by Lemma 2.8 of [3]. Hence $I=A+\mathcal{J}(I)$, where $A \cong \mathbb{Z}_{p^{n}}$.

In view of Corollary 27.9 from [11] $\mathcal{J}(I)^{+}=A_{1}+T$ is a group direct sum of a cyclic subgroup A_{1} isomorphic $p A$ and some subgroup T. Certainly T is an ideal of I. Since $I^{+}=A+T$ is a group direct sum, each element i of I can be uniquelly written in the form $i=a+g$ with $a \in A$ and $g \in T$. Let ρ be a fixed element of $\operatorname{Ann}\left(T^{2}\right) \backslash \operatorname{Ann}(T)$. It is not hard to check that the rule $\chi(i)=\rho g(i \in I)$ determines a non-zero derivation χ in R, a contradiction. Hence $I \cong \mathbb{Z}_{p^{n}}$ for some $n \in \mathbb{N}$.
3) Combining previous remarks, we see that R contains a set $\left\{e_{\alpha} \mid \alpha \in\right.$ $S\}$ of local idempotents e_{α} such that $e_{\alpha} R$ is a differentially trivial field or isomorphic to some $\mathbb{Z}_{p^{n}}, R=e_{\alpha} R \oplus M_{\alpha}$ is a ring direct sum, where M_{α} is an ideal of $R \quad(\alpha \in S)$. If $\alpha \neq \beta$, then $M_{\alpha}+M_{\beta}=R$ and so $\bigcap_{\alpha \in S} M_{\alpha}=\{0\}$.

From Theorem 3.1 of [12] and our theorem it follows
Corollary 4. R is a differentially trivial right semi-artinian ring if and only if $R / \mathcal{J}(R)=\operatorname{soc}(R / \mathcal{J}(R))$ and R contains a set $\left\{e_{\alpha} \mid \alpha \in S\right\}$ of local idempotents e_{α} such that $e_{\alpha} R$ is a differentially trivial field or isomorphic to some $\mathbb{Z}_{p^{n}}$, $R=e_{\alpha} R \oplus M_{\alpha}$ is a ring direct sum, where M_{α} is an ideal of R and $\bigcap_{\alpha \in S} M_{\alpha}=\{0\}$.
3. Proof of Proposition. (\Leftarrow) is obvious.
(\Rightarrow) Let R be a rigid right semi-artinian ring. Suppose that R is not a field. Theorem 2.2 of [13] implies that R contains only trivial idempotents and consequently every minimal ideal of R is nilpotent. Hence $\mathcal{J}(R)$ is non-zero. If D is any non-zero derivation of R and $t D(R)=\{0\}$ for every non-zero nilpotent element t of nilpotency index $<n-1$ and $w D(R) \neq$ $\{0\}$ for some non-zero nilpotent element w of nilpotency index n, then the rule $\sigma(r)=r+w D(r)(r \in R)$ determines a non-trivial endomorphism σ of R, a contradiction. Therefore without loss of generality we may assume that

$$
\begin{equation*}
\mathcal{J}(R) D(R)=\{0\} \tag{1}
\end{equation*}
$$

for any derivation D of R.
Suppose that $\rho: R / \operatorname{Ann}(\mathcal{J}(R)) \longrightarrow R / \operatorname{Ann}(\mathcal{J}(R))$ is a non-zero derivation of
$R / \operatorname{Ann}(\mathcal{J}(R))$. Then for every element $u \in R$ there exists an element $v_{u} \in R$ such that

$$
\begin{equation*}
\rho(u+\operatorname{Ann}(\mathcal{J}(R)))=v_{u}+\operatorname{Ann}(\mathcal{J}(R)) \tag{2}
\end{equation*}
$$

Since for some $u_{0} \in R$ there exists an element $v_{u_{0}} \notin \operatorname{Ann}(\mathcal{J}(R))$ such that

$$
\begin{equation*}
m_{0} v_{u_{0}} \neq 0 \tag{3}
\end{equation*}
$$

for some element $m_{0} \in \mathcal{J}(R)$, we obtain that a map $\theta: R \longrightarrow R$ given by $\theta(u)=m_{0} v_{u}(u \in R)$, with m_{0} and u_{1} as in (2) and (3), determines a non-zero derivation θ in R. Then in view of (1) $\theta(a) \theta(b)=0$ for all elements $a, b \in R$ and so the rule $\beta(a)=a+\theta(a)(a \in R)$, determines a non-trivial ring endomorphism β of R, a contradiction. This shows that the quotient ring $R / \operatorname{Ann}(\mathcal{J}(R))$ is differentially trivial and therefore $D(R) \subseteq \operatorname{Ann}(\mathcal{J}(R))$. Inasmuch as $\operatorname{Ann}(\mathcal{J}(R)) \leq \mathcal{J}(R),(D(R))^{2}=\{0\}$
for each derivation D of R. So the rule $\delta(r)=r+D(r)(r \in R)$ determines a non-trivial ring endomorphism δ of R, a contradiction. Hence R is a differentially trivial ring and we can apply Theorem to complete the proof.

References

[1] M. Ya. Komarnytsky and O. D. Artemovych, On ideally differential rings, Visnyk of Lviv University, 21(1983), 35-40. (in Ukrainian)
[2] O. D. Artemovych, Ideally differential and perfect rigid rings, Dopovidi AN of Ukraine, (1985), no. 4, 3-5. (in Ukrainian)
[3] O. D. Artemovych, Differentially trivial and rigid rings of finite rank, Periodica Math. Hungar., 36(1998), 1-16.
[4] O. D. Artemovych, Differentially trivial left Noetherian rings, Comment. Math. Univ. Carolinae, 40(1999), 201-208.
[5] O. D. Artemovych, Differentially trivial Noetherian semiperfect rings, Math. Pannonica, 13(2002), 207-216.
[6] C. Faith, Algebra II. Ring theory, Springer-Verlag, Berlin Heidelberg New York, 1976.
[7] J. Lambek, Lectures on rings and modules, Blaisdell Publ. Co., Waltham Toronto London, 1966.
[8] A. A. Tuganbaev, Rings over which each module possesses a maximal submodule, Mat. Zametki, 61 (1997), no. 3, 407-415 (in Russian) (English translated in Math. Notes, 61 (1997), no. 3, 333-339).
[9] O. Zariski and P. Samuel, Commutative algebra. Vol. II, D.Van Nostrand C.,1960.
[10] M. F. Atiyah and I. G. Macdonald, Introduction to commutative algebra, AddisonWesley Publ. Co., Reading, 1969.
[11] L. Fuchs, Infinite abelian groups. Vol.II, Academic Press, New York London, 1970.
[12] C. Năstăsescu et N. Popescu, Anneaux semi-artinies, Bull. Soc. Math. France, 96 (1968), 357-368.
[13] C. J. Maxson, Rigid rings, Proc. Edinburgh Math. Soc., 21 (1979), 95-101.

Contact information

O. D. Artemovych Department of Algebra and Logic, Faculty of Mechanics and Mathematics, Ivan Franko National University of Lviv, 1 University St, Lviv 79000 UKRAINE E-Mail: artemovych@franko.lviv.ua

Received by the editors: 08.04.2004 and final form in 01.06.2004.

