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Abstract. In this work first we study the properties of near-

semirings to introduce an α-radical. Then we observe the role of

near-semirings in generalized linear sequential machines, and we

test the minimality through the radical.

Introduction

Holcombe used the theory of near-rings to study linear sequential ma-
chines of Eilenberg [1, 4]. Though the picture of near-rings in linear
sequential machines is a natural extension of the syntactic semigroups,
the decomposition of linear sequential machines, which is different from
the one given by Eilenberg, enabled Holcombe to study these machines
thoroughly using near-rings [4]. Holcombe established several properties
of machines using near-rings. Indeed, he has introduced an α-radical
of affine near-rings which plays an important role to test the minimal-
ity of linear sequential machines [5]. The construction of the radical is
motivated by Theorem 4.6 of [4], which can be read as:

Let M = (Q,A,B, F,G) be a linear sequential machine. If M is min-

imal then there is no proper nonzero N -submodule K of Q such that
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G0(K) = {0}, where N is the syntactic near-ring of M and G0(q) =
G(q, 0) ∀q ∈ Q.

However, with the hypothesis of the above result, one can observe
that there is no proper nonzero N -submodule of Q (cf. Theorem 4).
This observation enables us to obtain an improvement in the α-radical.
Indeed we are able to introduce an improved α-radical for near-semirings
in a more general setup to study linear sequential machines. In order
to extend the work for near-semirings, we formulated generalized linear
sequential machines by replacing modules with semimodules in linear
sequential machines. Even in this generalization, without losing much
information, we could get all the results that have been obtained by
Holcombe for linear sequential machines. Moreover, the radical obtained
is much simpler.

This paper is organized in four sections. In Section 1, we introduce
fundamental notions in the theory of near-semirings, and prepare the
background to study sequential machines. The tools and techniques
of universal algebra [3] have been used to extend the notions of near-
rings. Following van Hoorn, we have extended some of the notions of
ideals for near-semirings, which have been defined for zero-symmetric
near-semirings [6]. Section 2 is dedicated to introduce and study the
properties of α-radicals of near-semirings. In Section 3, we generalize the
notion of linear sequential machines and study the role of near-semirings
via Holcombe’s decomposition of sequential machines, through minimiza-
tion. Finally, in Section 4 we state how the α-radical provides a necessary
condition to test the minimality of generalized linear sequential machines.

1. Near-semirings

An algebraic structure (S,+, ·) is said to be a near-semiring if

1. (S,+) is a semigroup with identity 0,

2. (S, ·) is a semigroup,

3. (x+ y)z = xz + yz ∀x, y, z ∈ S, and

4. 0s = 0 ∀s ∈ S.

Let (Γ,+) be an additive semigroup with zero. The set of all functions
f : Γ −→ Γ, denoted by M(Γ), is a near-semiring with respect to point
wise addition and composition of mappings. A near-semiring is a semiring

if + is commutative, z(x+ y) = zx+ zy ∀x, y, z ∈ S, and s0 = 0 ∀s ∈ S
[2].
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In what follows S always denotes a near-semiring and Γ denotes an
additive semigroup with zero.

The notions of homomorphism and subnear-semiring can be defined
in the usual way, respectively, as a mapping that preserves both the
operations along with zero, and a subset with zero which is closed with
respect to both the operations.

The set of all constant mappings on Γ and the set of all mappings on Γ
which fixes zero have importance in this work. In fact, they are subnear-
semirings of M(Γ). Let us define these substructures in an arbitrary
near-semiring S as follows.

Define Sc = {s ∈ S | s0 = s} and S0 = {s ∈ S | s0 = 0}. Note that Sc
and S0 are subnear-semiring of S. Moreover, ScS = Sc = SSc. In a near-
semiring S, Sc and S0 are said to be constant and zero-symmetric parts
respectively. A near-semiring S is said to be a constant near-semiring

(zero-symmetric near-semiring) if S = Sc (S = S0).

Remark 1. Sc = {s ∈ S | st = s, ∀t ∈ S}.

Define Sd = {x ∈ S | x(y + z) = xy + xz ∀y, z ∈ S}. Note that Sd
is a semigroup with respect to multiplication and 0 ∈ Sd. A subnear-
semiring of S is said to be distributively generated if it is generated by
a subsemigroup of Sd. Also, observe that Sd + Sc is a semigroup with
respect to multiplication and 0 ∈ Sd + Sc.

Remark 2. If + is commutative in (S,+, ·) then Sd is closed with respect
to + and hence Sd is a subnear-semiring of S which is distributive. Also,
in this case Sd + Sc is a subnear-semiring of S.

Proposition 1. Suppose T = Td + Tc is a subsemigroup of Sd + Sc such

that dt ∈ T for all d ∈ Td and t ∈ T , where Td ⊆ Sd and Tc ⊆ Sc. If

0 ∈ T then the subnear-semiring of S generated by T ,

〈T 〉 = {

n∑

i=1

ti | ti ∈ T, n ≥ 1}.

Proof. Since 〈T 〉 is contained in any subnear-semiring of S that contains
T , and is closed with respect to addition, it is enough to observe that 〈T 〉
is closed with respect to multiplication. For di, d

′

j ∈ Td; ci, c
′

j ∈ Tc with
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1 ≤ i ≤ n, 1 ≤ j ≤ m, consider

(
n∑

i=1

(di + ci)

)



m∑

j=1

(d′j + c′j)





=
n∑

i=1



di

m∑

j=1

(d′j + c′j) + ci





=

n∑

i=1





m−1∑

j=1

(di(d
′

j + c′j)) + di(d
′

m + c′m) + ci





=
n∑

i=1





m−1∑

j=1

(di(d
′

j + c′j)) + (di + ci)(d
′

m + c′m)





Since T is a subsemigroup and TdT ⊆ T , for each 1 ≤ i ≤ n, 1 ≤ j ≤
m − 1; (di + ci)(d

′

m + c′m) and di(d
′

j + c′j) are in T . Thus the above
expression is a finite sum of elements of T , so that 〈T 〉 is closed with
respect to multiplication. Hence the result.

Corollary 1. The subnear-semiring of S generated by Sd + Sc,

〈Sd + Sc〉 = {
n∑

i=1

si | si ∈ Sd + Sc, n ≥ 1}.

Let us denote the set of endomorphisms of Γ by EndΓ. It is clear that
EndΓ is a semigroup. Note that each element of EndΓ is a distributive
element of M(Γ). Moreover, EndΓ = M(Γ)d. Indeed, if f ∈ M(Γ) is
distributive then for γ1, γ2 ∈ Γ,

f(γ1 + γ2) = f(γ̂1(γ) + γ̂2(γ)) = f(γ̂1 + γ̂2)(γ)

= (fγ̂1 + fγ̂2)(γ) = f(γ1) + f(γ2),

where γ̂1, γ̂2 are constant maps on Γ which take the values γ1, γ2 respec-
tively and γ ∈ Γ is arbitrary.

Let ConΓ be the set of all constant functions of M(Γ). ConΓ is a
subnear-semiring of M(Γ) and

M(Γ)ConΓ = ConΓ = ConΓM(Γ).

Furthermore, ConΓ = M(Γ)c (cf. Remark 1).
An element of M(Γ) is said to be an affine mapping if it is a sum of an

endomorphism and a constant map on Γ. The set of affine mappings on
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Γ, denoted by Maff(Γ), i.e. Maff(Γ) = EndΓ + ConΓ, is a subsemigroup
of M(Γ). The near-semiring generated by the semigroup EndΓ + ConΓ,
denoted by EC(Γ), is defined as the affinely generated near-semiring. It
is clear from the Corollary 1 that a typical element of EC(Γ) is of the
form

n∑

i=1

(ei + ci) for ei ∈ EndΓ, ci ∈ ConΓ.

Remark 3. If (Γ,+) is commutative, then the set of affine mappings on
Γ, Maff(Γ), is subnear-semiring of M(Γ). That is

Maff(Γ) = EC(Γ).

In this case we call Maff(Γ) as affine near-semiring.

In general, a near-semiring S is said to be affine near-semiring if there
exist a semiring E ⊆ S, and a constant near-semiring C ⊆ S such that
S = E + C.

A semigroup (Γ,+) is said to be an S-semigroup if there exists a
composition (x, γ) 7→ xγ of S × Γ −→ Γ such that for all x, y ∈ S, γ ∈ Γ,

1. (x+ y)γ = xγ + yγ,

2. (xy)γ = x(yγ), and

3. 0γ = 0Γ, where 0Γ is the zero of Γ.

It is clear that Γ is an S-semigroup with S = M(Γ). The semigroup
(S,+) of a near-semiring (S,+, ·) is an S-semigroup. We denote this
S-semigroup by S+.

A subsemigroup ∆ of an S-semigroup Γ is such that S∆ ⊆ ∆ then
we say it is an S-subsemigroup of Γ. An S-morphism of an S-semigroup
Γ is a semigroup morphism ϕ of Γ into an S-semigroup Γ′ such that
ϕ(xγ) = xϕ(γ) for all γ ∈ Γ and x ∈ S. Note that ϕ(0Γ) = 0Γ′ . Indeed,
ϕ(0Γ) = ϕ(00Γ) = 0ϕ(0Γ) = 0Γ′ .

Following van Hoorn, we extend some of the notions of ideals, which
are appropriate in this context, from zero-symmetric near-semirings to
near-semirings. For details on ideals of zero-symmetric near-semiring one
may refer [6].

An ideal of a near-semiring is defined as the kernel of a near-semiring
homomorphism. The kernel of an S-morphism is called as S-kernel of Γ.
The S-kernels of the S-semigroup S+ are called left ideals of S. A right
invariant left ideal of S is called as a weak ideal of S. Note that every
ideal of S is a weak ideal.
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Theorem 1. The annihilator A(∆) of a non-void subset ∆ of an S-

semigroup Γ is a left ideal of S+.

Proof. Since A(∆) =
⋂
{A(δ) | δ ∈ ∆}, it is enough to show that, for

δ ∈ ∆, A(δ) is an S-kernel of S+. Observe that the mapping x 7→ xδ:
S+ −→ Γ is an S-morphism whose kernel is A(δ), so that A(δ) is a left
ideal of S+. Hence A(∆) is a left ideal of S+.

Further, since A(Γ) is right invariant in S we have A(Γ) is a weak
ideal of S. Indeed, for any x ∈ S, s ∈ A(Γ), and γ ∈ Γ; (sx)γ = s(xγ) =
sγ′ = 0Γ, where γ′ = xγ ∈ Γ, so that A(Γ)S ⊆ A(Γ).

Remark 4. For γ ∈ Γ, the relation
A(γ)
≡ on S+ defined by x

A(γ)
≡ y if and

only if xγ = yγ is a congruence on S+. Kernel of
A(γ)
≡ is A(γ).

Remark 5. The relation
A(Γ)
≡ defined on the near-semiring S by s

A(Γ)
≡ s′

if and only if sγ = s′γ for all γ ∈ Γ is a congruence on S. Moreover,
A(Γ)
≡ =

⋂

γ∈Γ

A(γ)
≡ so that the kernel of

A(Γ)
≡ is A(Γ).

Thus, by identifying A(Γ) as the kernel of canonical homomorphism
from S to S/A(Γ)

≡

we have:

Theorem 2. The annihilator A(Γ) of an S-semigroup Γ is an ideal of

S.

2. The α-radical

Let (B,+) be a commutative semigroup and let S = E + C be an affine
near-semiring in which + is commutative, where E is a semiring and C
is a near-semiring of constants. A pair (S, α) is called a B-pair if

1. α : (S,+) −→ (B,+) is a semigroup morphism, and

2. E ⊆ Ker α.

In the following by ≡ϕ ≤ ≡ψ we mean, whenever ϕ(x) = ϕ(y) then
ψ(x) = ψ(y). Consequently, ≡ϕ ≤ ≡ψ =⇒ Ker ϕ ⊆ Ker ψ.

An S-semigroup Γ is said to be an (S, α)-semigroup if

A(0Γ)
≡ ≤ ≡α,

where ≡α is the congruence induced by the morphism α.
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Theorem 3. Let Γ be an (S, α)-semigroup and ≡ be a congruence of S

such that ≡ ≤
A(Γ)
≡ . Then there exists an ᾱ : S/≡ −→ B such that Γ is

an (S/≡, ᾱ)-semigroup.

Proof. Since ≡ ≤
A(Γ)
≡ , by setting [x]γ = xγ ∀[x] ∈ S/≡, γ ∈ Γ, one can

observe that it is well-defined, and consequently, Γ is S/≡-semigroup.

Define ᾱ : S/≡ −→ B by

ᾱ([x]) = α(x),

for all [x] ∈ S/≡. Suppose [x] = [x′], i.e. x ≡ x′, then since ≡ ≤
A(Γ)
≡ and

A(Γ)
≡ =

⋂

γ∈Γ

A(γ)
≡ , we have ≡ ≤

A(0Γ)
≡ . Thus ≡ ≤ ≡α, so that α(x) = α(x′).

Hence, ᾱ is well-defined. Moreover, ᾱ is a semigroup morphism.

It is clear that S/≡ is an affine near-semiring. To show the rest of the
result, i.e. (S/≡, ᾱ) forms a B-pair, it is enough to show that semiring
part of S/≡ is in Ker ᾱ. If [x] is in semiring part of S/≡, then [x][0] = [0],
i.e. [x0] = [0].

[x0] = [0] =⇒ x0 ≡ 0 =⇒ x0
A(Γ)
≡ 0 =⇒ (x0)γ = 0γ ∀γ ∈ Γ.

In particular, (x0)0Γ = 00Γ, i.e. x0Γ = 00Γ. Which implies x
A(0Γ)
≡ 0, so

that α(x) = α(0). Hence, ᾱ([x]) = ᾱ([0]) as desired.

Corollary 2. Let (S, α) be a B-pair and Γ an (S, α)-semigroup, then Γ
is an (S/A(Γ)

≡

, ᾱ)-semigroup.

Let S be a near-semiring. An S-semigroup Γ is said to be zero-

generated if

Γ = S0Γ.

Theorem 4. If an S-semigroup Γ is zero-generated, then Γ has no proper

S-subsemigroups.

Proof. Suppose there exists a proper S-subsemigroup ∆ of Γ. Note that
0Γ ∈ ∆, as it is a subsemigroup of Γ. Since Γ is zero-generated, for
γ ∈ Γ \ ∆, there exists s ∈ S, such that γ = s0Γ. But since ∆ is an
S-subsemigroup, s0Γ ∈ ∆ for all s ∈ S. A contradiction to γ 6∈ ∆.

Note that Γ = S0Γ if and only if Γ = Sc0Γ. In particular, if S = E+C,
an affine near-semiring, then Γ = S0Γ if and only if Γ = C0Γ.
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An (S, α)-semigroup is zero-generated if it is zero-generated as S-
semigroup. Given a zero-generated (S, α)-semigroup Γ we define the
function ψ : Γ −→ B by ψ(γ) = α(c), where γ = c0Γ, for c ∈ C.
Thus we have:

Proposition 2. ψ : Γ −→ B is a semigroup morphism.

Proof. Let γ = c0Γ = c′0Γ, for c, c′ ∈ C. Then c
A(0Γ)
≡ c′, which implies

α(c) = α(c′), as
A(0Γ)
≡ ≤ ≡α. Hence ψ is well-defined, and since α is a

semigroup morphism, we have ψ is a semigroup morphism.

An (S, α)-semigroup Γ is said to be B-minimal if Γ is zero-generated
and ≡ψ, the congruence induced by ψ, is the identity relation.

Theorem 5. Let (S, α) be a B-pair and Γ an (S, α)-semigroup. Suppose

≡ is congruence of S such that ≡ ≤
A(Γ)
≡ . Then the (S/≡, ᾱ)-semigroup

Γ is B-minimal if and only if the (S, α)-semigroup Γ is B-minimal.

Proof. If the (S, α)-semigroup Γ is zero-generated then so is the (S/≡, ᾱ)-
semigroup Γ and conversely. Also, the function ψ′ : Γ −→ B defined by ᾱ
equals the function ψ : Γ −→ B defined by α. Thus, (S, α)-semigroup Γ
is B-minimal if and only if it is B-minimal as an (S/≡, ᾱ)-semigroup.

Now we define α-radical of a near-semiring as follows:

Given a B-pair (S, α) an α-radical of S, denoted by Rα(S), is defined
as the intersection of annihilators of all B-minimal (S, α)-semigroups, i.e.

Rα(S) =
⋂

Γ∈B

A(Γ),

where B is the class of all B-minimal (S, α)-semigroups.

Remark 6. Rα(S) is an ideal of the near-semiring S.

Define the congruence relation
Rα(S)
≡ on S by x

Rα(S)
≡ y if and only if

x
A(Γ)
≡ y for all Γ ∈ B, so that the kernel of

Rα(S)
≡ is Rα(S).

Theorem 6. Let (S, α) be a B-pair and ≡ a congruence of S such that

≡ ≤
Rα(S)
≡ . Then we have

Rᾱ(S/≡) ⊆ (Rα(S))/≡.
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Proof. Let Γ be a B-minimal (S, α)-semigroup, so that Rα(S) ⊆ A(Γ).
We have seen that Γ is a B-minimal (S/≡, ᾱ)-semigroup. Let [x] ∈ S/≡
be such that [x]Γ = (0Γ) then xΓ = (0Γ) and so x ∈ A(Γ). Thus the
annihilator of Γ in S/≡ is contained in A(Γ)/≡. If we write A(Γ)∗ to
denote the annihilator of Γ in S/≡ then

Rᾱ(S/≡) ⊆
⋂

Γ∈B

A(Γ)∗,

where B is the class of B-minimal (S, α)-semigroups, and each A(Γ)∗ ⊆
A(Γ)/≡ so

Rᾱ(S/≡) ⊆
⋂

Γ∈B

(A(Γ)/≡)

= (
⋂

Γ∈B

A(Γ))/≡ = (Rα(S))/≡.

Corollary 3. Rᾱ(S/Rα(S)
≡

) = [0], the zero of S/Rα(S)
≡

.

This is a justification for calling Rα(S) an α-radical of S. In the
following we observe that α-radical is not always zero. In order to observe
this, first we extend the notion of the radical J(2,0) of zero-symmetric
near-semirings, introduced by van Hoorn [7], to near-semirings, then we
prove that J(2,0)(S) ⊆ Rα(S) for any α. Since many examples are known
where J(2,0)(S) is nonzero, it is clear that Rα(S) is not always zero.

An S-semigroup Γ 6= {0Γ} is said to be essentially minimal or of type

(2, 0) if SΓ 6= {0Γ} and the only S-subsemigroups of Γ are S0Γ and Γ.
The radical J(2,0)(S) of a near-semiring S is defined as the intersection
of the annihilators of all S-semigroups of type (2, 0).

Theorem 7. Let (S, α) be a B-pair. Then J(2,0)(S) ⊆ Rα(S) for any α.

Proof. From Theorem 4 one can ascertain that every B-minimal (S, α)-
semigroup is essentially minimal, and so

J(2,0)(S) =
⋂

Γ∈C

A(Γ) ⊆
⋂

Γ∈B

A(Γ) = Rα(S),

where C is the class of essentially minimal S-semigroups, and B is the
class of B-minimal (S, α)-semigroups.
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3. Generalized linear sequential machines

Let R be a semiring. A generalized linear sequential machine over R is a
quintuple M = (Q,A,B, F,G), where

Q,A,B are R-semimodules,
F : Q×A −→ Q and G : Q×A −→ B are R-homomorphisms.
In what follows M always stands for a generalized linear sequential

machine (Q,A,B, F,G) over a semiring R.
We call Q as the set of states, A as the input alphabet and B as the

output alphabet. Let A∗, B∗ be the free monoids generated by the sets
A,B, respectively. The empty word Λ will be regarded as a member of
both A∗ and B∗.

For x ∈ A∗, we define the function Fx : Q −→ Q, called the next state

function induced by x, by

FΛ(q) = q,
Fxa(q) = F (Fx(q), a) for x ∈ A∗, a ∈ A.

Proposition 3. For x = a1a2...an ∈ A∗,

Fx = Fn0 + (Fn−1
0 q̄a1 + Fn−2

0 q̄a2 + ...+ F0q̄an−1 + q̄an),

where q̄a : Q −→ Q is the constant map given by q̄a(p) = Fa(0Q) ∀p ∈ Q.

Proof. We prove this result by induction on the length of the string x.
Let a ∈ A and q ∈ Q.

Fa(q) = F (q, a) = F (q, 0) + F (0Q, a)

= F0(q) + Fa(0Q).

Therefore Fa = F0 + q̄a, so that the result is true for n = 1. Assume the
result is true for n = k − 1, i.e.

Fa1a2...ak−1
= F k−1

0 + (F k−2
0 q̄a1 + F k−3

0 q̄a2 + ...+ F0q̄ak−2
+ q̄ak−1

).

Now,

Fa1a2...ak
= Fak

Fa1a2...ak−1

= (F0 + q̄ak
)Fa1a2...ak−1

= F0Fa1a2...ak−1
+ q̄ak

Fa1a2...ak−1

= F0(F
k−1
0 + (F k−2

0 q̄a1 + F k−3
0 q̄a2 + ...+ F0q̄ak−2

+ q̄ak−1
)) + q̄ak

= F k0 + F k−1
0 q̄a1 + F k−2

0 q̄a2 + ...+ F0q̄ak−1
+ q̄ak

.

Hence the result by induction.
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Note that the function F0 : Q −→ Q is an R-endomorphism of Q.
Thus we have:

Corollary 4. For x ∈ A∗ the function Fx is an affine function of Q.

The set of all affine functions of Q, Maff(Q), is a near-semiring under
pointwise addition and composition of mappings (cf. Remark 3). Con-
sider the syntactic monoid M of M, i.e. M = {Fx | x ∈ A∗}, a submonoid
of Maff(Q). Note that Md = {Fn0 | n ≥ 1}, the endomorphism part of
M .

Proposition 4. MdM ⊆M .

Proof. Let Fn0 ∈ Md and Fx ∈ M with x = a1a2 . . . ak. Choose y =

a1a2 . . . ak

n times
︷ ︸︸ ︷

00 . . . 0 ∈ A∗. Then by Proposition 3,

Fy = Fn+k
0 + (Fn+k−1

0 q̄a1 + Fn+k−2
0 q̄a2 + ...+ Fn+1

0 q̄an−1 + Fn0 q̄an

+Fn−1
0 q̄0 + Fn−2

0 q̄0 + . . .+ q̄0)

= Fn+k
0 + (Fn+k−1

0 q̄a1 + Fn+k−2
0 q̄a2 + ...+ Fn+1

0 q̄an−1 + Fn0 q̄an)

= Fn0 (F k0 + (F k−1
0 q̄a1 + F k−2

0 q̄a2 + ...+ F0q̄an−1 + q̄an))

= Fn0 Fx.

Thus, for any n ≥ 1 and x ∈ A∗, Fn0 Fx ∈M .

The subnear-semiring of Maff(Q), generated by M is defined as the
syntactic near-semiring of M, denoted by SM.

Remark 7.

1. Every nonzero element of SM can be written as
n∑

i=1

mi for mi ∈M

(cf. Propositions 1 and 4).

2. The state set Q of M is an S-semigroup with S = SM.

3. SM is an affine near-semiring.

For q ∈ Q, the sequential function defined by q, fq : A∗ −→ B∗ is
defined inductively as

fq(Λ) = Λ,
fq(a) = G(q, a),
fq(xa) = fq(x)fFx(q)(a) for x ∈ A∗, a ∈ A.
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For a ∈ A and q ∈ Q note that

fq(a) = G(q, a) = G(q, 0) +G(0Q, a)

= G0(q) +Ga(0Q),

by adapting the notation of the state function Fx.
Let M = (Q,A,B, F,G) and M′ = (Q′, A,B, F ′, G′) be generalized

linear sequential machines. A generalized linear sequential machine mor-

phism, denoted by ϕ : M −→ M′, is an R-homomorphism ϕ : Q −→ Q′

such that

ϕ(Fa(q)) = F ′

a(ϕ(q)),

Ga(q) = G′

a(ϕ(q)) for q ∈ Q, a ∈ A.

Remark 8. For x ∈ A∗, ϕ(Fx(q)) = F ′

x(ϕ(q)).

The following result establishes the interrelation between M and SM.

Theorem 8. If ϕ : M −→ M′ is a surjective generalized linear sequential

machine morphism, then there exists a near-semiring homomorphism ψ :
SM −→ SM′ such that, for q ∈ Q, s ∈ SM,

ϕ(sq) = ψ(s)(ϕ(q)).

Furthermore, for q ∈ Q, fq = f ′
ϕ(q).

Proof. Let M and M ′ be the syntactic monoids of M and M′ respectively.
By a standard result in automata theory, there exists a monoid morphism
η : M −→ M ′ such that ϕ(mq) = η(m)ϕ(q) for q ∈ Q,m ∈ M. Define a
zero fixing mapping ψ : SM −→ SM′ by

ψ(
k∑

i=1

mi) =
k∑

i=1

η(mi), for mi ∈M.

For mi,m
′

j ∈ M , assume
k∑

i=1

mi =
l∑

j=1

m′

j . That means, they are equal

at every point of Q. By applying the morphism ϕ, we will arrive at

(
k∑

i=1

η(mi))(ϕ(q)) = (
l∑

j=1

η(m′

j))(ϕ(q)) for all q ∈ Q. But since ϕ is

surjective, we get
k∑

i=1

η(mi) =
l∑

j=1

η(m′

j). Thus, ψ is well-defined. Also,

it can be easily observed that ψ is a near-semiring homomorphism.



Jo
u
rn

al
 A

lg
eb

ra
 D

is
cr

et
e 

M
at

h
.42 Near-semirings in linear sequential machines

For q ∈ Q, s =
k∑

i=1

mi ∈ SM, we have

ϕ(sq) = ϕ(

k∑

i=1

miq) =

k∑

i=1

ϕ(miq)

=
k∑

i=1

η(mi)(ϕ(q)) =

(
k∑

i=1

η(mi)

)

(ϕ(q))

= ψ(s)(ϕ(q)).

Now we show by an induced argument that for q ∈ Q, f ′
ϕ(q) = fq. For

a ∈ A, fq(a) = Ga(q) = G′

a(ϕ(q)) = f ′
ϕ(q)(a). Further, for x ∈ A∗; a ∈ A,

fq(xa) = fq(x)fFx(q)(a)

= f ′ϕ(q)(x)f
′

ϕ(Fx(q))(a)

= f ′ϕ(q)(x)f
′

F ′

x(ϕ(q))(a), by Remark 8

= f ′ϕ(q)(xa).

Thus fq(x) = f ′
ϕ(q)(x) for all x ∈ A∗.

In the following we discuss the role of syntactic near-semiring SM in
the minimization of M.

Define the relation ∼ on Q by

q ∼ q′ if and only if G0F
n
0 (q) = G0F

n
0 (q′) for all n ≥ 0.

Theorem 9. For q, q′ ∈ Q, if q ∼ q′ then fq = fq′ .

Proof. We prove this by induction on length of x ∈ A∗. Since fq(a) =
G0(q) +Ga(0Q); fq′(a) = G0(q

′) +Ga(0Q); and G0(q) = G0(q
′) from the

hypothesis, we have fq(a) = fq′(a) for all a ∈ A. If fq(x) = fq′(x), where
x = a1a2 . . . an, then fq(xa) = fq(x)fFx(q)(a), and

fFx(q)(a) = G(Fx(q), a) = G0(Fx(q)) +Ga(0Q)

= G0(F
n
0 (q) +

n∑

i=1

Fn−i0 q̄ai
(q)) +Ga(0Q)

= G0F
n
0 (q) +

n∑

i=1

G0F
n−i
0 (qai

) +Ga(0Q).

Similarly,

fFx(q)(a) = G0F
n
0 (q′) +

n∑

i=1

G0F
n−i
0 (qai

) +Ga(0Q),
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so that

fq(xa) = fq(x)fFx(q)(a) = fq′(x)fFx(q′)(a) = fq′(xa).

Theorem 10. The relation ∼ is a congruence relation on Q.

Proof. Since Fn0 : Q −→ Q is a composition of R-homomorphism F0

with itself for n times, we have Fn0 is an R-homomorphism ∀n. Also,
since G0 : Q −→ B is an R-homomorphism, we get G0F

n
0 : Q −→ B an

R-homomorphism ∀n. Hence the relation ∼ is a congruence on Q, as it
is the intersection of induced congruences of G0F

n
0 for all n.

A machine M is said to be reduced if the relation ∼ defined on Q is
trivial, i.e. q ∼ q′ =⇒ q = q′ for all q, q′ ∈ Q. Thus we have:

Corollary 5. The generalized linear sequential machine Mr = (Q′, A,B,
F ′, G′) is a reduced machine of M, where Q′ = Q/ ∼, F ′([q], a) =
[F (q, a)], and G′([q], a) = [G(q, a)], for all q ∈ Q, a ∈ A.

As in Eilenberg’s work [1], we assume 0Q ∈ Q to be the initial state of
M. A generalized linear sequential machine M = (Q,A,B, F,G) is called
accessible if given any q ∈ Q there exists x ∈ A∗ such that Fx(0Q) = q,
i.e. any state is reachable from the initial state 0Q.

Remark 9. If M is accessible then the S-semigroup Q is zero generated,
i.e.

SM0Q ⊇M0Q = Q.

Consequently, the S-semigroup Q has no proper S-subsemigroups.

A generalized linear sequential machine M is called minimal if it is
accessible and reduced. In the following section we obtain a necessary
condition to test the minimality of M using an α-radical of SM.

4. The radical applied to machines

Assume that M = (Q,A,B, F,G) is a generalized linear sequential ma-
chine over a semiring R. Let S = SM be the syntactic near-semiring of
M. We have observed that S is an affine near-semiring, say S = E + C,
and Q an S-semigroup. Furthermore, G defines an R-homomorphism
G0 : Q −→ B. Define α : S −→ B by

α(s) = G0(s0Q) ∀s ∈ S.
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Note that, α is a semigroup morphism and α(e) = G0(e0Q) = G0(0Q) = 0
∀e ∈ E, so that (S, α) is B-pair. Moreover, Q is an (S, α)-semigroup,
because ∀s, t ∈ S,

s
A(0Q)
≡ t =⇒ s0Q = t0Q =⇒ G0(s0Q) = G0(t0Q)

=⇒ α(s) = α(t) =⇒ s ≡α t.

Now we examine the α-radical Rα(S), which is the intersection of anni-
hilators of all B-minimal (S, α)-semigroups.

If M is minimal, then the state set Q, which is an (S, α)-semigroup,
is zero-generated and the equivalence relation ∼ is trivial. Consequently,
Q is B-minimal. But the annihilator of Q,

A(Q) = {s ∈ S | sq = 0 ∀q ∈ Q}

= {s ∈ S | s = 0} = (0)

so that the α-radical of S,

Rα(S) =
⋂

Γ∈B

A(Γ) ⊆ A(Q) = (0),

where B is the class of B-minimal (S, α)-semigroups. Thus Rα(S) = (0).
This can be summarized as follows:

Theorem 11. If M is minimal then Rα(S) = (0).

The converse of Theorem 11 is not necessarily true, as there exist
non-minimal machines with a zero radical [5].
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