On closed rational functions in several variables

Anatoliy P. Petravchuk and Oleksandr G. Iena

Dedicated to V.I. Sushchansky on the occasion of his 60th birthday

Abstract

Let $\mathbb{K}=\mathbb{K}$ be a field of characteristic zero. An element $\varphi \in \mathbb{K}\left(x_{1}, \ldots, x_{n}\right)$ is called a closed rational function if the subfield $\mathbb{K}(\varphi)$ is algebraically closed in the field $\mathbb{K}\left(x_{1}, \ldots, x_{n}\right)$. We prove that a rational function $\varphi=f / g$ is closed if f and g are algebraically independent and at least one of them is irreducible. We also show that a rational function $\varphi=f / g$ is closed if and only if the pencil $\alpha f+\beta g$ contains only finitely many reducible hypersurfaces. Some sufficient conditions for a polynomial to be irreducible are given.

Introduction

Closed polynomials, i.e., polynomials $f \in \mathbb{K}\left[x_{1}, \ldots, x_{n}\right]$ such that the subalgebra $\mathbb{K}[f]$ is integrally closed in $\mathbb{K}\left[x_{1}, \ldots, x_{n}\right]$, were studied by many authors (see, for example, [5], [10], [4], [1]). A rational analogue of a closed polynomial is a rational function φ such that the subfield $\mathbb{K}(\varphi)$ is algebraically closed in the field $\mathbb{K}\left(x_{1}, \ldots, x_{n}\right)$, such a rational function will be called a closed one. Although there are algorithms to determine whether a given rational function is closed (see, for example, [7]) it is interesting to study closed rational functions more detailed.

We give the following sufficient condition for a rational function to be closed. Let $\varphi=f / g \in \mathbb{K}\left(x_{1}, \ldots, x_{n}\right), f$ and g are coprime, algebraically independent and at least one of polynomials f and g is irreducible. Then φ is a closed rational function (Theorem 1).

Using some results of of J. M. Ollagnier [7] about Darboux polynomials we prove that a rational function $\varphi=f / g \in \mathbb{K}\left(x_{1}, \ldots, x_{n}\right) \backslash \mathbb{K}$ is closed

Key words and phrases: closed rational functions, irreducible polynomials.
if and only if the pencil $\alpha f+\beta g$ of hypersurfaces contains only finitely many reducible hypersurfaces (Theorem 2). We also study products of irreducible polynomials.

Notations in the paper are standard. For a rational function $F(t) \in$ $\mathbb{K}(t)$ of the form $F(t)=\frac{P(t)}{Q(t)}$ with coprime polynomials P and Q the degree is $\operatorname{deg} F=\max (\operatorname{deg} P, \operatorname{deg} Q)$. The ground field \mathbb{K} is algebraically closed of characteristic 0 .

1. Closed rational functions in several variables

Lemma 1. For a rational functions $\varphi, \psi \in \mathbb{K}\left(x_{1}, \ldots, x_{n}\right) \backslash \mathbb{K}$ the following conditions are equivalent.

1) φ and ψ are algebraically dependent over \mathbb{K};
2) the rank of Jacobi matrix $J(\varphi, \psi)=\left(\begin{array}{ccc}\frac{\partial \varphi}{\partial x_{1}} & \cdots & \frac{\partial \varphi}{\partial x_{n}} \\ \frac{\partial \psi}{\partial x_{1}} & \cdots & \frac{\partial \psi}{\partial x_{n}}\end{array}\right)$ is equal to 1;
3) for differentials $\mathrm{d} \varphi$ and $\mathrm{d} \psi$ of functions φ and ψ respectively it holds $\mathrm{d} \varphi \wedge \mathrm{d} \psi=0$;
4) there exists $h \in \mathbb{K}\left(x_{1}, \ldots, x_{n}\right)$ such that $\varphi=F(h)$ and $\psi=G(h)$ for some $F(t), G(t) \in \mathbb{K}(t)$.

Proof. The equivalence of 1) and 2) follows from [3], Ch. III, §7, Th. III. The equivalence of 2) and 3) is obvious. Since 2) clearly follows from 4), it remains to show that 1) implies 4). Let φ and ψ be algebraically dependent. Then obviously tr. $\operatorname{deg}_{\mathbb{K}} \mathbb{K}(\varphi, \psi)=1$. By Theorem of Gordan (see for example [9], p.15) $\mathbb{K}(\varphi, \psi)=\mathbb{K}(h)$ for some rational function h and therefore $\varphi=F(h)$ and $\psi=G(h)$ for some $F(t), G(t) \in \mathbb{K}(t)$.

Definition 1. We call a rational function $\varphi \in \mathbb{K}\left(x_{1}, \ldots, x_{n}\right) \backslash \mathbb{K}$ closed if the subfield $\mathbb{K}(\varphi)$ is algebraically closed in $\mathbb{K}\left(x_{1}, \ldots, x_{n}\right)$.

A rational function $\tilde{\psi}$ is called generative for a rational function ψ if $\tilde{\psi}$ is closed and $\psi \in \mathbb{K}(\tilde{\psi})$.
Lemma 2. 1) For a rational function $\varphi \in \mathbb{K}\left(x_{1}, \ldots, x_{n}\right) \backslash \mathbb{K}$ the following conditions are equivalent.
a) φ is closed;
b) $\mathbb{K}(\varphi)$ is a maximal element in the partially ordered (by inclusion) set of subfields of $\mathbb{K}\left(x_{1}, \ldots, x_{n}\right)$ of the form $\mathbb{K}(\psi), \psi \in \mathbb{K}\left(x_{1}, \ldots, x_{n}\right) \backslash \mathbb{K}$.
c) φ is non-composite rational function, i.e., from the equality $\varphi=$ $F(\psi)$, for some rational functions $\psi \in \mathbb{K}\left(x_{1}, \ldots, x_{n}\right) \backslash \mathbb{K}$ and $F(t) \in \mathbb{K}(t)$, it follows that $\operatorname{deg} F=1$.
2) For every rational function $\varphi \in \mathbb{K}\left(x_{1}, \ldots, x_{n}\right) \backslash \mathbb{K}$ there exists a generative rational function $\tilde{\varphi}$. If $\tilde{\varphi}_{1}$ and $\tilde{\varphi}_{2}$ are two generative rational
functions for φ, then $\tilde{\varphi}_{2}=\frac{a \tilde{\varphi}_{1}+b}{c \tilde{\varphi}_{1}+d}$ for some $a, b, c, d \in \mathbb{K}$ such that $a d-b c \neq$ 0 .

Proof. 1) a) $\Rightarrow \mathrm{b})$. Suppose that the rational function φ is closed and $\mathbb{K}(\varphi) \subseteq \mathbb{K}(\psi)$ for some $\psi \in \mathbb{K}\left(x_{1}, \ldots, x_{n}\right)$. The element ψ is algebraic over over $\mathbb{K}(\varphi)$ and therefore by the definition of closed rational functions we have $\psi \in \mathbb{K}(\varphi)$. Thus $\mathbb{K}(\varphi)$ is a maximal element in the set of all onegenerated subfields of $\mathbb{K}\left(x_{1}, \ldots, x_{n}\right)$.
b) \Rightarrow a). If $\mathbb{K}(\varphi)$ is a maximal one-generated subfield of $\mathbb{K}\left(x_{1}, \ldots, x_{n}\right)$, then $\mathbb{K}(\varphi)$ is algebraically closed in $\mathbb{K}\left(x_{1}, \ldots, x_{n}\right)$. Indeed, if f is algebraic over $\mathbb{K}(\varphi)$, then $\operatorname{tr} . \operatorname{deg}_{\mathbb{K}}(\varphi, f)=1$ and by Theorem of Gordan $\mathbb{K}(\varphi, f)=$ $\mathbb{K}(\psi)$ for some rational function ψ. But then $\mathbb{K}(\psi)=\mathbb{K}(\varphi)$ and $f \in \mathbb{K}(\varphi)$.

The equivalence of b) and c) is obvious.
2) The subfield $\mathbb{K}(\varphi)$ is contained in some maximal one-generated subfield $\mathbb{K}(\tilde{\varphi})$, which is algebraically closed in $\mathbb{K}\left(x_{1}, \ldots, x_{n}\right)$ by the part 1) of this Lemma. Therefore $\tilde{\varphi}$ is a generative rational function for φ.

Let $\tilde{\varphi}_{1}$ and $\tilde{\varphi}_{2}$ be two generative rational functions for φ. Then $\tilde{\varphi}_{1}$ and $\tilde{\varphi}_{2}$ are algebraic over the field $\mathbb{K}(\varphi)$ and therefore $\operatorname{tr} . \operatorname{deg}_{\mathbb{K}} \mathbb{K}\left(\varphi, \tilde{\varphi}_{1}, \tilde{\varphi}_{2}\right)=$ 1. In particular, then the rational functions $\tilde{\varphi}_{1}$ and $\tilde{\varphi}_{2}$ are algebraically dependent.

By Lemma 1 one obtains $\tilde{\varphi}_{1} \in \mathbb{K}(\psi), \tilde{\varphi}_{2} \in \mathbb{K}(\psi)$ for some rational function ψ. Since both $\tilde{\varphi}_{1}$ and $\tilde{\varphi}_{2}$ are closed, we get $\mathbb{K}\left(\tilde{\varphi}_{1}\right)=\mathbb{K}(\psi)=$ $\mathbb{K}\left(\tilde{\varphi}_{2}\right)$. But there exists a fractional rational transformation θ of the field $\mathbb{K}(\psi)$ such that $\theta\left(\tilde{\varphi}_{2}\right)=\tilde{\varphi}_{1}$. Therefore, $\tilde{\varphi}_{2}=\frac{a \tilde{\varphi}_{1}+b}{c \tilde{\varphi}_{1}+d}$, for some $a, b, c, d \in$ $\mathbb{K}, a d-b c \neq 0$.

Remark 1. Note that algebraically dependent rational functions have the same set of generative functions. This follows from Lemma 1 and Lemma 2.

Remark 2. Let $f \in \mathbb{K}\left[x_{1}, \ldots, x_{n}\right] \backslash \mathbb{K}$. By Lemma 3 from [1], the subfield $\mathbb{K}(f)$ is algebraically closed if and only if the polynomial f is closed. So, the polynomial f is closed if and only if f is closed as a rational function.

Theorem 1. Let polynomials $f, g \in \mathbb{K}\left[x_{1}, \ldots, x_{n}\right]$ be coprime and algebraically independent. If at least one of them is irreducible, then the rational function $\varphi=\frac{f}{g}$ is closed.

Proof. Without loss of generality we can assume that f is irreducible. By Lemma 2 there exists a generative rational function $\psi=\frac{p}{q}$ for φ, where p and q are coprime polynomials. Then $\varphi=\frac{P(\psi)}{Q(\psi)}$ for some coprime polynomials $P(t), Q(t) \in \mathbb{K}[t]$.

Let $P(t)=a_{0}\left(t-\lambda_{1}\right) \ldots\left(t-\lambda_{m}\right)$ and $Q(t)=b_{0}\left(t-\mu_{1}\right) \ldots\left(t-\mu_{l}\right)$, $\lambda_{i}, \mu_{j} \in \mathbb{K}$ be the decompositions of $P(t)$ and $Q(t)$ into irreducible factors. Then

$$
\varphi=\frac{f}{g}=\frac{a_{0}\left(\frac{p}{q}-\lambda_{1}\right) \ldots\left(\frac{p}{q}-\lambda_{m}\right)}{b_{0}\left(\frac{p}{q}-\mu_{1}\right) \ldots\left(\frac{p}{q}-\mu_{l}\right)}=\frac{a_{0}\left(p-\lambda_{1} q\right) \ldots\left(p-\lambda_{m} q\right) q^{l-m}}{b_{0}\left(p-\mu_{1} q\right) \ldots\left(p-\mu_{l} q\right)}
$$

and we obtain
$(*) \quad b_{0} f\left(p-\mu_{1} q\right) \ldots\left(p-\mu_{l} q\right)=a_{0} g\left(p-\lambda_{1} q\right) \ldots\left(p-\lambda_{m} q\right) q^{l-m}$.
Note, as $\lambda_{i} \neq \mu_{j}$, the polynomials $p-\lambda_{i} q$ and $p-\mu_{j} q$ are coprime for all $i=\overline{1, l}$ and $j=\overline{1, m}$. Moreover, since p and q are coprime, it is clear that q is coprime with polynomials of the form $p+\alpha q, \alpha \in \mathbb{K}$.

Note also that $p-\beta q \notin \mathbb{K}$. Indeed, if $p-\beta q=\xi \in \mathbb{K}$ for some $\beta, \xi \in \mathbb{K}$, then $p=\xi+\beta q$ and

$$
\varphi=\frac{f}{g}=\frac{a_{0}\left(\xi+\left(\beta-\lambda_{1}\right) q\right) \ldots\left(\xi+\left(\beta-\lambda_{m}\right) q\right) q^{l-m}}{b_{0}\left(\xi+\left(\beta-\mu_{1} q\right) \ldots\left(\xi+\left(\beta-\mu_{l}\right) q\right)\right.}
$$

which means that f and g are algebraically dependent, which contradicts our assumptions.

So from $(*)$ we conclude that f is divisible by all polynomials $\left(p-\lambda_{i} q\right)$. Since f is irreducible, taking into account the above considerations we conclude that $m=1$ and $f=a\left(p-\lambda_{1} q\right), a \in \mathbb{K}^{*}$. Therefore, from (*) we obtain

$$
b_{0} a\left(p-\lambda_{1} q\right)\left(p-\mu_{1} q\right) \ldots\left(p-\mu_{l} q\right)=a_{0} g\left(p-\lambda_{1} q\right) q^{l-1}
$$

and after reduction

$$
b_{0} a\left(p-\mu_{1} q\right) \ldots\left(p-\mu_{l} q\right)=a_{0} g q^{l-1}
$$

Since q is coprime with $\left(p-\mu_{j} q\right)$, we get $l=1$ and finally $a_{0} g=b_{0} a(p-$ $\mu_{1} q$). We obtain

$$
\varphi=\frac{f}{g}=\frac{a_{0}\left(p-\lambda_{1} q\right)}{b_{0}\left(p-\mu_{1} q\right)}=\frac{a_{0}\left(\frac{p}{q}-\lambda_{1}\right)}{b_{0}\left(\frac{p}{q}-\mu_{1}\right)}=\frac{a_{0}\left(\psi-\lambda_{1}\right)}{b_{0}\left(\psi-\mu_{1}\right)}
$$

One concludes that $\mathbb{K}(\varphi)=\mathbb{K}(\psi)$, which means that φ is a closed rational function.

2. Rational functions and pencils of hypersurfaces

In this section we give a characterization of closed rational functions. While proving Theorem 2 we use an approach from the paper of J. M. Ollagnier [7] connected with Darboux polynomials. Recall some notions and terminology (see also [6], pp.22-24). If δ is a derivation of the polynomial ring $\mathbb{K}\left[x_{1}, \ldots, x_{n}\right]$, then a polynomial f is called a Darboux polynomial for δ if $\delta(f)=\lambda f$ for some polynomial λ (not necessarily $\lambda \in \mathbb{K}$). The polynomial λ is called the cofactor for δ corresponding to the Darboux polynomial f (so, f is a polynomial eigenfunction for δ and λ is the corresponding eigenvalue).

Further, for a rational function $\varphi=\frac{f}{g} \in \mathbb{K}\left(x_{1}, \ldots, x_{n}\right) \backslash \mathbb{K}$ one can define a (vector) derivation $\delta_{\varphi}=g d f-f d g: \mathbb{K}\left[x_{1}, \ldots, x_{n}\right] \rightarrow \Lambda^{2} \mathbb{K}\left[x_{1}, \ldots, x_{n}\right]$ by the rule $\delta_{\varphi}(h)=d h \wedge(g d f-f d g)$. For such a derivation δ_{φ} a polynomial h is called a Darboux polynomial if all coefficients of the 2 -form $d h \wedge(g d f-f d g)$ are divisible by the polynomial h, i.e., $d h \wedge(g d f-f d g)=$ $h \cdot \lambda$ for some $2-$ form λ, which is called a cofactor for the derivation δ_{φ}. Note that every divisor of the Darboux polynomial h is also a Darboux polynomial for δ_{φ} (see, for example, [6], p.23). It is easy to see that the polynomial $\alpha f+\beta g$ is a Darboux polynomial for the derivation δ_{φ} and therefore every divisor of the polynomial $\alpha f+\beta g$ is a Darboux polynomial of the derivation $\delta_{\varphi}=g d f-f d g$.

Theorem 2. Let polynomials $f, g \in \mathbb{K}\left[x_{1}, \ldots, x_{n}\right]$ be coprime and let at least one of them be a non-constant polynomial. Then the rational function $\varphi=\frac{f}{g}$ is closed if and only if all but finitely many hypersurfaces in the pencil $\alpha f+\beta g$ are irreducible.

Proof. Let $\varphi=\frac{f}{g}$ be closed. Suppose that the pencil $\alpha f+\beta g$ contains infinitely many reducible hypersurfaces. Let $\left\{\alpha_{i} f+\beta_{i} g\right\}_{i \in \mathbb{N}},\left(\alpha_{i}: \beta_{i}\right) \neq$ $\left(\alpha_{j}: \beta_{j}\right)$ for $i \neq j$ as points of \mathbb{P}^{1}, be an infinite sequence of (different) reducible hypersurfaces. For each i take one irreducible factor h_{i} of $\alpha_{i} f+$ $\beta_{i} g$.

By the above remark, all polynomials h_{i} are Darboux polynomials for δ_{φ} and $\operatorname{deg} h_{i}<\operatorname{deg} \varphi$. By Corollary 5 from [7] there exist finitely many cofactors of δ_{φ} that correspond to Darboux polynomials h_{i} (degrees of h_{i} are bounded). Therefore, there exist polynomials h_{i} and h_{j} such that $\delta_{\varphi}\left(h_{i}\right)=\lambda h_{i}$ and $\delta_{\varphi}\left(h_{j}\right)=\lambda h_{j}$ for some cofactor $\lambda \in \bigwedge^{2} \mathbb{K}\left[x_{1}, \ldots, x_{n}\right]$. This implies $\delta_{\varphi}\left(\frac{h_{i}}{h_{j}}\right)=0$ and thus $\mathrm{d}\left(\frac{f}{g}\right) \wedge \mathrm{d}\left(\frac{h_{i}}{h_{j}}\right)=\frac{1}{g^{2}} \delta_{\varphi}\left(\frac{h_{i}}{h_{j}}\right)=0$ (see [7]). Then by Lemma 1, the rational functions $\varphi=\frac{f}{g}$ and $\frac{h_{i}}{h_{j}}$ are algebraically dependent. As φ is closed, $\frac{h_{i}}{h_{j}}=F(\varphi)$ for some $F(t) \in \mathbb{K}(t)$ and therefore $\operatorname{deg} \frac{h_{i}}{h_{j}}=\operatorname{deg} F \operatorname{deg} \varphi$ (see for example [7]). But this is impossible since
$\operatorname{deg} \frac{h_{i}}{h_{j}}<\operatorname{deg} \varphi$. Therefore, all but finitely many hypersurfaces in $\alpha f+\beta g$ are irreducible.

Let now $\alpha_{0} f+\beta_{0} g$ be an irreducible hypersurface from the pencil $\alpha f+\beta g$. Consider the case when f and g are algebraically independent. One can assume without loss of generality $\alpha_{0} \neq 0$. Then $\alpha_{0} f+\beta_{0} g$ and g are algebraically independent as well. (If $\alpha_{0}=0$, then $\beta_{0} \neq 0$ and polynomials f and $\alpha_{0} f+\beta_{0} g$ are algebraically independent). Therefore, since $\alpha_{0} f+\beta_{0} g$ and g are coprime, by Theorem 1 the rational function $\psi=\frac{\alpha_{0} f+\beta_{0} g}{g}$ is closed. Then obviously $\varphi=\frac{f}{g}=\alpha_{0}^{-1}\left(\psi-\beta_{0}\right)$, which proves that φ is a closed rational function.

Let now f and g be algebraically dependent. Then $f=F(h)$ and $g=$ $G(h)$ for a common generative polynomial function h and polynomials $F(t), G(t) \in \mathbb{K}[t]$ (see Remark 2). Let $\left(1: \beta_{1}\right) \neq\left(1: \beta_{2}\right)$ be two different points in \mathbb{P}^{1} such that $f+\beta_{i} g=F(h)+\beta_{i} G(h)$ is irreducible for $i \in\{1,2\}$. In particular this means that $\operatorname{deg}\left(F(t)+\beta_{i} G(t)\right)=1$, i.e., $F(t)+\beta_{i} G(t)=$ $a_{i} t+b_{i}, a_{i}, b_{i} \in \mathbb{K}, a_{i} \neq 0$. Then since $\beta_{1} \neq \beta_{2}$, we conclude that $F(t)=a t+b$ and $G(t)=c t+d$ for some $a, b, c, d \in \mathbb{K}$. So $\varphi=\frac{f}{g}=\frac{a h+b}{c h+d}$. As at least one of f and g is non-constant and since f and g are coprime, we conclude that $\mathbb{K}(\varphi)=\mathbb{K}(h)$. Therefore, since $\mathbb{K}(h)$ is an algebraically closed subfield of the field $\mathbb{K}\left(x_{1}, \ldots, x_{n}\right), \varphi=\frac{f}{g}$ is a closed rational function.

Remark 3. Note, in order to show that $\varphi=\frac{f}{g}$ is closed in Theorem 2 it is enough to have two different irreducible hypersurfaces in the pencil $\alpha f+\beta g$. One irreducible hypersurface $\alpha_{0} f+\beta_{0} g$ is enough provided f and g are algebraically independent.

Remark 4. We also reproved a weak version (we do not give any estimation) of the next result of W. Ruppert (see [8], Satz 6).

If f and g are algebraically independent polynomials and the pencil $\alpha f+\beta g$ contains at least one irreducible hypersurface, then all but finitely many hypersurfaces in $\alpha f+\beta g$ are irreducible.

Remark 5. If a polynomial $f \in \mathbb{K}\left[x_{1}, \ldots, x_{n}\right]$ is non-constant then by Theorem 2 and Remark $2 f$ is closed if and only if for all but finitely many $\lambda \in \mathbb{K}$ the polynomial $f+\lambda$ is irreducible. This result is well-known (it can be proved by using the first Bertini theorem), see, for example, [9], Corollary 3.3.1.

Using Remark 5 one can prove that any non-constant polynomial $f \in \mathbb{K}\left[x_{1}, \ldots, x_{n}\right] \backslash \mathbb{K}$ can be written in the form $f=F(h)$ for some polynomial $F(t) \in \mathbb{K}[t]$ and irreducible polynomial h. Similar statement holds for rational functions.

Corollary 1. A rational function $\frac{f}{g} \in \mathbb{K}\left(x_{1}, \ldots, x_{n}\right) \backslash \mathbb{K}$ can be written in the form $\frac{f}{g}=F(\varphi), F(t) \in \mathbb{K}(t)$, for some rational function $\varphi=\frac{p}{q}$ such that polynomials p and q are irreducible.
Proof. Let $\frac{p_{1}}{q_{1}}$ be a generative function for $\frac{f}{g}$. As $\frac{p_{1}}{q_{1}}$ is closed, by Theorem 2 the pencil $\alpha p_{1}+\beta q_{1}$ contains two different irreducible hypersurfaces $p=\alpha_{1} p_{1}+\beta_{1} q_{1}$ and $q=\alpha_{2} p_{1}+\beta_{2} q_{1}$, i.e., with $\left(\alpha_{1}: \beta_{1}\right) \neq\left(\alpha_{2}: \beta_{2}\right)$. Since the pencils $\alpha p+\beta q$ and $\alpha p_{1}+\beta q_{1}$ are equal, and since in the pencil $\alpha p_{1}+\beta q_{1}$ all but finitely many hypersurfaces are irreducible, we conclude that $\frac{p}{q}$ is closed and is a generative function for $\frac{f}{g}$.

Remark 6. Under conditions of Corollary 1 polynomials p and q can be chosen of the same degree.

Corollary 2. Let $\mathbb{K} \subseteq L \subseteq \mathbb{K}\left(x_{1}, \ldots, x_{n}\right)$ be an algebraically closed subfield in $\mathbb{K}\left(x_{1}, \ldots, x_{n}\right)$. Then it is possible to choose generators of L in the form $\frac{p_{1}}{q_{1}}, \ldots, \frac{p_{m}}{q_{m}}$, where p_{i} and q_{i} are irreducible polynomials.
Theorem 3. Let polynomials $f, g \in \mathbb{K}\left[x_{1}, \ldots, x_{n}\right]$ be coprime and algebraically independent. Then the rational function f / g is not closed if and only if there exist algebraically independent irreducible polynomials p and q and a positive integer $k \geqslant 2$ such that $f=\left(\alpha_{1} p+\beta_{1} q\right) \ldots\left(\alpha_{k} p+\beta_{k} q\right)$ and $g=\left(\gamma_{1} p+\delta_{1} q\right) \ldots\left(\gamma_{k} p+\delta_{k} q\right)$ for some $\left(\alpha_{i}: \beta_{i}\right),\left(\gamma_{j}: \delta_{j}\right) \in \mathbb{P}^{1}$, with $\left(\alpha_{i}: \beta_{i}\right) \neq\left(\gamma_{j}: \delta_{j}\right), i, j=\overline{1, k}$.

Proof. Suppose $\frac{f}{g}$ is not closed. Take its generative function $\frac{p}{q}$ with irreducible polynomials p and q (this is possible by Corollary 1). Then $\frac{f}{g}=F\left(\frac{p}{q}\right)$ for some rational function $F(t) \in \mathbb{K}(t)$ with $\operatorname{deg} F(t)=k \geqslant 2$. Note that the polynomials p and q are algebraically independent because in other case the polynomials f and g were algebraically dependent which contradicts to our assumptions. Write

$$
F(t)=\frac{a_{0}\left(t-\lambda_{1}\right) \ldots\left(t-\lambda_{s}\right)}{b_{0}\left(t-\mu_{1}\right) \ldots\left(t-\mu_{r}\right)}
$$

with $\lambda_{i} \neq \mu_{j}$, i.e., with coprime nominator and denominator. It is clear that $k=\operatorname{deg} F(t)=\max \{s, r\}$. After substitution of t by $\frac{p}{q}$ we obtain

$$
\frac{f}{g}=\frac{a_{0}\left(p-\lambda_{1} q\right) \ldots\left(p-\lambda_{s} q\right) q^{r-s}}{b_{0}\left(p-\mu_{1} q\right) \ldots\left(p-\mu_{r} q\right)}
$$

Put $\left(\alpha_{i}: \beta_{i}\right)=\left(1:-\lambda_{i}\right)$ for $i=\overline{1, s},\left(\gamma_{j}: \delta_{j}\right)=\left(1:-\mu_{j}\right)$ for $j=\overline{1, r}$. If $r \leqslant s$, then put $\left(\gamma_{j}: \delta_{j}\right)=(0: 1)$ for $j=r+1, \ldots, s$. If $r>s$, then put $\left(\alpha_{i}: \beta_{i}\right)=(0: 1)$ for $i=s+1, \ldots, r$. We obtained

$$
\frac{f}{g}=\frac{a_{0}\left(\alpha_{1} p+\beta_{1} q\right) \ldots\left(\alpha_{k} p+\beta_{k} q\right)}{b_{0}\left(\gamma_{1} p+\delta_{1} q\right) \ldots\left(\gamma_{k} p+\delta_{k} q\right)}
$$

which means that up to multiplication by a non-zero constant $f=\left(\alpha_{1} p+\right.$ $\left.\beta_{1} q\right) \ldots\left(\alpha_{k} p+\beta_{k} q\right)$ and $g=\left(\gamma_{1} p+\delta_{1} q\right) \ldots\left(\gamma_{k} p+\delta_{k} q\right)$.

Suppose now that f and g have the form as in the conditions of this Theorem. Let us show that the rational function $\frac{f}{g}$ is not closed./ As $f=\left(\alpha_{1} p+\beta_{1} q\right) \ldots\left(\alpha_{k} p+\beta_{k} q\right)$ and $g=\left(\gamma_{1} p+\delta_{1} q\right) \ldots\left(\gamma_{k} p+\delta_{k} q\right)$, one has

$$
\frac{f}{g}=\frac{\left(\alpha_{1} p+\beta_{1} q\right) \ldots\left(\alpha_{k} p+\beta_{k} q\right)}{\left(\gamma_{1} p+\delta_{1} q\right) \ldots\left(\gamma_{k} p+\delta_{k} q\right)}=\frac{\left(\alpha_{1} \frac{p}{q}+\beta_{1}\right) \ldots\left(\alpha_{k} \frac{p}{q}+\beta_{k}\right)}{\left(\gamma_{1} \frac{p}{q}+\delta_{1}\right) \ldots\left(\gamma_{k} \frac{p}{q}+\delta_{k}\right)}
$$

i.e., $\frac{f}{g}=F\left(\frac{p}{q}\right)$ for the rational function $F(t)=\frac{\left(\alpha_{1} t+\beta_{1}\right) \ldots\left(\alpha_{k} t+\beta_{k}\right)}{\left(\gamma_{1} t+\delta_{1}\right) \ldots\left(\gamma_{k} t+\delta_{k}\right)}$. Since $\left(\alpha_{i}: \beta_{i}\right) \neq\left(\gamma_{j}: \delta_{j}\right), i, j=\overline{1, k}$, we conclude that $\operatorname{deg} F(t) \geqslant 2$, which means that $\frac{f}{g}$ is not closed (equivalently, by Theorem 2, the pencil $\alpha f+\beta g$ contains infinitely many reducible hypersurfaces).

Example 1. Let p and q be irreducible algebraically independent polynomials in $\mathbb{K}\left[x_{1}, \ldots, x_{n}\right], n \geqslant 2$. Then $\varphi=\frac{p^{l}}{q^{m}}$ is a closed rational function for coprime l and m.

Indeed, suppose the converse holds. Then by Theorem 3 there exists irreducible polynomials p_{1} and q_{1}, an integer $k \geqslant 2$ such that

$$
\frac{p^{l}}{q^{m}}=\frac{\left(\alpha_{1} p_{1}+\beta_{1} q_{1}\right) \ldots\left(\alpha_{k} p_{1}+\beta_{k} q_{1}\right)}{\left(\gamma_{1} p_{1}+\delta_{1} q_{1}\right) \ldots\left(\gamma_{k} p_{1}+\delta_{k} q_{1}\right)}, \quad\left(\alpha_{i}: \beta_{i}\right) \neq\left(\gamma_{j}: \delta_{j}\right), i, j=\overline{1, k}
$$

Since $\alpha_{i} p_{1}+\beta_{i} q_{1}$ and $\gamma_{j} p_{1}+\delta_{j} q_{1}$ are coprime for all i and j, it follows that $p^{l}=\left(\alpha_{1} p_{1}+\beta_{1} q_{1}\right) \ldots\left(\alpha_{k} p_{1}+\beta_{k} q_{1}\right)$ and $q^{m}=\left(\gamma_{1} p_{1}+\delta_{1} q_{1}\right) \ldots\left(\gamma_{k} p_{1}+\delta_{k} q_{1}\right)$. Since p and q are algebraically independent, as in the proof of Theorem 1 we conclude that $\alpha p_{1}+\beta q_{1} \neq \mathbb{K}$ for all $(\alpha: \beta) \in \mathbb{P}^{1}$. Therefore, $\left(\alpha_{1}\right.$: $\left.\beta_{1}\right)=\cdots=\left(\alpha_{k}: \beta_{k}\right),\left(\gamma_{1}: \delta_{1}\right)=\cdots=\left(\gamma_{k}: \delta_{k}\right)$, and

$$
p^{l}=a_{0}\left(\alpha_{1} p_{1}+\beta_{1} q_{1}\right)^{k}, \quad q^{m}=b_{0}\left(\gamma_{1} p_{1}+\delta_{1} q_{1}\right)^{k}
$$

for some $a_{0}, b_{0} \in \mathbb{K}^{*}$. Since p and q are irreducible, we obtain, up to multiplication by a non-zero constant, $\alpha_{1} p_{1}+\beta_{1} q_{1}=p^{l^{\prime}}$ and $\gamma_{1} p_{1}+\delta_{1} q_{1}=$ $q^{m^{\prime}}$, i.e., $k \geqslant 2$ divides both l and m. This is impossible, since l and m are coprime. We obtained a contradiction, which proves that $\frac{p^{l}}{q^{m}}$ is a closed rational function.

3. Products of irreducible polynomials

Theorem 4. Let $p_{1}, \ldots, p_{k} \in \mathbb{K}\left[x_{1}, \ldots, x_{n}\right]$ be irreducible algebraically independent polynomials. If $\operatorname{gcd}\left(m_{1}, m_{2}, \ldots m_{k}\right)=1$ then the polynomial

$$
p_{1}^{m_{1}} p_{2}^{m_{2}} \ldots p_{k}^{m_{k}}+\lambda
$$

is irreducible for all but finitely many $\lambda \in \mathbb{K}$.

Proof. Show at first that the polynomial $p_{1}^{m_{1}} p_{2}^{m_{2}} \ldots p_{k}^{m_{k}}$ is closed. Suppose to the contrary it is not closed and let $p_{1}^{m_{1}} p_{2}^{m_{2}} \ldots p_{k}^{m_{k}}=F(h)$ for some closed polynomial h and $F(t) \in \mathbb{K}[t]$, $\operatorname{deg} F(t) \geqslant 2$. Let $F(t)=\alpha\left(t-\mu_{1}\right) \ldots\left(t-\mu_{s}\right)$ be the decomposition of $F(t)$ into linear factors. Then

$$
p_{1}^{m_{1}} p_{2}^{m_{2}} \ldots p_{k}^{m_{k}}=\alpha\left(h-\mu_{1}\right) \ldots\left(h-\mu_{s}\right), \quad \mu_{i} \in \mathbb{K}, \quad \alpha \in \mathbb{K}^{*}
$$

Since the polynomials $h-\mu_{i}$ are closed and since we assumed that the polynomial $p_{1}^{m_{1}} p_{2}^{m_{2}} \ldots p_{k}^{m_{k}}$ is not closed, one concludes that $s \geqslant 2$. Suppose there exists $\mu_{i} \neq \mu_{j}$, assume without loss of generality $\mu_{1} \neq \mu_{2}$. As all p_{i} are irreducible, it is clear that $h-\mu_{1}=\alpha_{1} p_{i_{1}}^{s_{1}} \ldots p_{i_{m}}^{s_{m}}$ and $h-\mu_{2}=\alpha_{2} p_{j_{1}}^{t_{1}} \ldots p_{j_{r}}^{t_{r}}$ for $p_{i_{1}}, \ldots, p_{i_{m}}, p_{j_{1}}, \ldots, p_{j_{r}} \in\left\{p_{1}, \ldots, p_{k}\right\}$. Since $\mu_{1} \neq \mu_{2}$, the polynomials $h-\mu_{1}$ and $h-\mu_{2}$ are coprime. Therefore, the sets $\left\{p_{i_{1}}, \ldots, p_{i_{m}}\right\}$ and $\left\{p_{j_{1}}, \ldots, p_{j_{r}}\right\}$ are disjoint. From $\left(h-\mu_{1}\right)-(h-$ $\left.\mu_{2}\right)+\left(\mu_{1}-\mu_{2}\right)=0$ it follows that

$$
\alpha_{1} p_{i_{1}}^{s_{1}} \ldots p_{i_{m}}^{s_{m}}-\alpha_{2} p_{j_{1}}^{t_{1}} \ldots p_{j_{r}}^{t_{r}}+\left(\mu_{1}-\mu_{2}\right)=0
$$

which means that the set $\left\{p_{1}, \ldots, p_{k}\right\}$ is algebraically dependent. We obtained a contradiction. Therefore, $\mu_{1}=\cdots=\mu_{s}$ and $p_{1}^{m_{1}} \ldots p_{k}^{m_{k}}=$ $\alpha\left(h-\mu_{1}\right)^{s}, s \geqslant 2$. From the unique factorization of the polynomial $p_{1}^{m_{1}} \ldots p_{k}^{m_{k}}$ it follows that $s\left|m_{1}, \ldots, s\right| m_{k}$ which is impossible by our restriction on numbers m_{1}, \ldots, m_{k}. This contradiction proves that the polynomial $p_{1}^{m_{1}} \ldots p_{k}^{m_{k}}$ is closed. Therefore, by Remark 5 the polynomial $p_{1}^{m_{1}} \ldots p_{k}^{m_{k}}+\lambda$ is irreducible for all but finitely many $\lambda \in \mathbb{K}$.

The authors are grateful to Prof. A. Bodin who has observed on some intersection of this paper with his preprint [2] (in fact, the statement of Theorem 2 is equivalent to Theorem 2.2 from [2] in zero characteristic, but the proofs of these results are quite different).

References

[1] Ivan V. Arzhantsev, Anatoliy P. Petravchuk, Closed and irreducible polynomials in several variables, arXiv:math. AC/0608157.
[2] Arnaud Bodin, Reducibility of rational functions in several variables, arXiv:math. NT/0510434
[3] W. V. D. Hodge and D. Pedoe, Methods of algebraic geometry. Vol. I. Reprint of the 1947 original. Cambridge Mathematical Library. Cambridge University Press, Cambridge, 1994.
[4] S. Najib, Une généralisation de l'inégalité de Stein-Lorenzini, J. Algebra 292 (2005), 566-573.
[5] A. Nowicki, M. Nagata, Rings of constants for k-derivations in $k\left[x_{1}, \ldots, x_{n}\right]$, J. Math. Kyoto Univ. 28 (1988), 111-118.
[6] A. Nowicki, Polynomial derivations and their rings of constants, N.Copernicus University Press, Torun, 1994.
[7] J. M. Ollagnier, Algebraic closure of a rational function, Qualitative theory of dynamical systems, 5 (2004), 285-300.
[8] W. M. Ruppert, Reduzibilität ebener Kurven, J. Reine Angew. Math., 369:167191, 1986.
[9] A. Schinzel, Polynomials with Special Regard to Reducibility, Encyclopedia of Mathematics and its Applications, vol. 77., Cambridge University Press, 2000.
[10] Y. Stein, The total reducibility order of a polynomial in two variables, Israel J. Math 68 (1989), 109-122.

Contact information

Anatoliy P.
Kiev Taras Shevchenko University, Fac-
Petravchuk ulty of Mechanics and Mathematics, 64, Volodymyrska street, 01033 Kyiv, Ukraine E-Mail: aptr@univ.kiev.ua

Oleksandr G. Iena Kiev Taras Shevchenko University and Technische Universität Kaiserslautern, Fachbereich Mathematik, Postfach 3049, 67653 Kaiserslautern, Germany
E-Mail: yena@mathematik.uni-kl.de

