Free products of finite groups acting on regular rooted trees

C. K. Gupta, N. D. Gupta, A. S. Oliynyk

Dedicated to V.I. Sushchansky on the occasion of his 60th birthday

Abstract. Let finite number of finite groups be given. Let n be the largest order of their composition factors. We prove explicitly that the group of finite state automorphisms of rooted n-tree contains subgroups isomorphic to the free product of given groups.

1. Introduction

In last time many authors pay attention to automorphism groups or rooted tree. There are two main reasons for it. First, these groups help to obtain many deep purely algebraic results. Second, in studying automorphism groups of rooted trees many interesting connections between algebra, automata theory, dynamical systems, functional analysis etc. arise. For detailed overview see [GNS] and references therein.

We continue in the presented paper to study the subgroup structure of the automorphism group of a rooted tree. We consider free products of finite groups acting on regular rooted trees by the so-called finite state automorphisms. This is a natural question, since in the automorphism group of a regular rooted tree "almost all" subgroups are free [3, 4] and free products are rich in free subgroups. For previous results on free products acting on rooted trees see $[5,6,2,7,8]$.

The main result of our paper is the following sufficient condition of existence of a faithful action on the regular rooted tree T_{n} by finite state automorphisms.

Theorem 5.2. Let H_{1}, \ldots, H_{k} be finite groups and suppose that the orders of all composition factors of each H_{i} are bounded above by n. Then the free product $H_{1} * \cdots * H_{k}$ acts faithfully on the regular rooted tree T_{n} by finite state automorphisms.

The work is organized as follows. In Section 2 all necessary definitions and notations are given. In Section 3 we give some necessary conditions of existence of a faithful action by finite state automorphisms on T_{n} of a given free product of finite groups. The section 4 is the main part of the paper. It contains an explicit construction used in the proof of the main result and of the corollaries in Section 5. Section 6 contains an example of a faithful action, constructed by the methods of Section 4. And the last Section 7 is devoted to some open question concerning free products and groups of finite state automorphisms of regular rooted trees.

2. Preliminaries

For more details on the contents of this section see, for example, [GNS]. Let X be a finite alphabet, $|X|=n \geq 2$. Denote by X^{*} the free monoid generated by X. In other words, X^{*} is the set of all finite words over the alphabet X, including the empty word Λ, with the operation of concatenation. We identify X^{*} with the disjoint union of the Cartesian powers of X

$$
\bigcup_{i \geq 0} X^{i},
$$

where $X^{0}=\{\Lambda\}$. The length $|v|$ of a word $v \in X^{*}$ is $i \geq 0$ such that $v \in X^{i}$. Also consider the set $X^{\mathbb{N}}$ of all sequences (or the so called ω-words) of the form

$$
x_{1} x_{2} x_{3} \ldots,
$$

where $x_{i} \in X, i \geq 1$.
Define a partial order "<" on X^{*} by the rule

$$
\text { for } u, v \in X^{*} u<v \quad \text { iff } \quad u=v v_{1} \text { for some } v_{1} \in X^{*}, v_{1} \neq \Lambda
$$

Then the diagram of the poset $\left(X^{*},<\right)$ is a regular rooted tree denoted T_{n}. The set of vertices of T_{n} is X^{*}, Λ is the root and two vertices u, v are connected if and only if for some $x \in X$ we have $u=v x$ or $v=u x$. All vertices of this tree are naturally partitioned into levels, where the i th level is $X^{i}, i \geq 0$. Each vertex from the i th level $(i \geq 0)$ is adjacent with n vertices from the $(i+1)$ st level and with one vertex from the $(i-1)$ st level, except for $i=0$.

Figure 1: Regular rooted tree T_{3}, constructed for the alphabet $X=$ $\{0,1,2\}$

Denote the automorphism group of the rooted tree T_{n} by $G A_{n}$. Every automorphism of T_{n} fixes the root Λ. This means, that for given automorphism $f \in G A_{n}$, word $u \in X^{*}$ and $x \in X$ we have

$$
(u x)^{f}=u^{f} x^{\pi(u)}
$$

where $\pi(u)$ is a permutation from the symmetric group S_{n}, depending only on the word u. This property leads us to a definition of the action of $G A_{n}$ on $X^{\mathbb{N}}$. Namely, for $f \in G A_{n}$ and $w=x_{1} x_{2} x_{3} \ldots x_{n} \ldots \in X^{\mathbb{N}}$, then

$$
w^{f}=x_{1}^{\pi_{\Lambda}} x_{2}^{\pi_{x_{1}}} x_{3}^{\pi_{x_{1} x_{2}}} \ldots x_{n}^{\pi_{x_{1} x_{2} \ldots x_{n-1}}}
$$

We obtain in this way the permutation group $\left(G A_{n}, X^{\mathbb{N}}\right)$. As a permutation group this group is isomorphic to the infinitely iterated wreath product of symmetric groups S_{n} :

$$
\left(G A_{n}, X^{\mathbb{N}}\right) \simeq\left(\sum_{i=1}^{\infty} S_{n}, X^{\mathbb{N}}\right)
$$

In particular, this means that for arbitrary $k \in \mathbb{N}$ each automorphism $f \in G A_{n}$ can be written as a pair

$$
f=\left(f_{k}, f^{k}\right)
$$

where $f_{k} \in \mathcal{l}_{i=1}^{k} S_{n}$ and $f^{k}: X^{k} \rightarrow \sum_{i=k+1}^{\infty} S_{n}$, i.e. for every $u \in X^{k}$ we have $f^{k}(u) \in G A_{n}$. We call the automorphism $f^{k}(u)$ the state of the automorphism f in u. In particular, $f(\Lambda)=f$ so that f is a state of itself. An automorphism $f \in G A_{n}$ is called finite state if it has only finitely many different states. All finite state automorphisms form a subgroup of
$G A_{n}$ that is called the finite state automorphism group and is denoted by $F G A_{n}$. This group contains a proper subgroup FinG A_{n} of finitary automorphisms. An automorphism $f \in G A_{n}$ is called finitary if there exist $k \geq 0$ such, that for all $u \in X^{k}$ the state $f^{k}(u)$ is the identity. In other words, f does not change the m th letter in every (finite or ω-) word over X for all $m>k$. This group is locally finite since it can be decomposed as the direct limit of wreath products $\sum_{i=1}^{k} S_{n}, k \geq 1$ with the natural embeddings.

3. Some necessary conditions

Proposition 3.1. Let $H_{1}, \ldots, H_{k}(k \geq 2)$ be finite subgroups of the finite state automorphism group $F G A_{n}$. All composition factors of H_{i} $(1 \leq i \leq k)$ are subgroups of S_{n}.

Proof. We will prove that for some $m \geq 1$ the group H_{1} is embeddable into $l_{i=1}^{m} S_{n}$. As a subgroup of $F G A_{n}$ the group H_{1} acts on the levels of T_{n}. Suppose that all of these actions are non-faithful. Note that the kernel of the action on the l th level contains the kernel of the action on $(l+1)$-st level, $l \geq 1$. Since H_{1} is finite, the series of kernels have to stabilize on some nontrivial subgroup of H_{1}. This means that the action of H_{1} on T_{n} is not faithful which contradicts the selection of H_{1}. Hence for some $m \geq 1$ the group H_{1} acts faithfully on the set X^{m}. This precisely means embeddability of H_{1} into the wreath product $\sum_{i=1}^{m} S_{n}$. As it follows from [9], this implies the statement of the proposition.

Remark 3.2. Note, that this condition for finite group H is also sufficient for being a subgroup of $F G A_{n}$.

Proposition 3.3. Suppose that the group \mathfrak{G} splits into a free product:

$$
\mathfrak{G}=H_{1} * \cdots * H_{k}
$$

of finite groups. Then at most one of the groups H_{1}, \ldots, H_{k} is a subgroup of $\operatorname{Fin} G A_{n}$.

Proof. Assume that two groups (for example H_{1}, H_{2}) are contained in Fin $G A_{n}$. It follows immediately from the local finiteness of FinG A_{n} that the group generated by them is finite. This is a contradiction.

4. Sufficient condition

We start with two useful lemmata about wreath products.

Let (G, M) be a transitive permutation group and let $_{i=1}^{m}(G, M)$ be its (permutational) wreath power. For $m \geq 2$, the elements of $\chi_{i=1}^{m}(G, M)$ will be written as pairs $(g, f(x))$, where $g \in l_{i=1}^{m-1}(G, M)$ and $f(\cdot)$: $M^{m-1} \rightarrow G$. We write h instead of $f(x)$ in case $f(x) \equiv h$ for some
 ding

$$
\tau:(H, N) \hookrightarrow \sum_{i=1}^{m+1}(G, M)
$$

is given by

$$
\tau(h)=(h, e), \quad h \in H
$$

Here e denotes the identity element of H. Also define the j-diagonal (for $j \geq 0$) embedding

$$
\psi_{m, j}:(H, N) \hookrightarrow \sum_{i=1}^{j}(G, M) .
$$

Here ψ_{0} is the identity mapping and for $j>0$

$$
\psi_{j}(h)=\left(\psi_{j-1}(h), h\right), \quad h \in H .
$$

Lemma 4.1. Let (H, N) be a subgroup of the wreath power $\ell_{i=1}^{m}(G, M)$. Then for every $j \geq 1$ the wreath power $\ell_{i=1}^{m+j}(G, M)$ contains a subgroup (H_{1}, N_{1}) isomorphic to (H, N) as a permutation group.

Proof. Fix an arbitrary $m \in M$. Define the subset

$$
N_{1}=N \times \underbrace{\{m\} \times \cdots \times\{m\}}_{j \text { times }} \subset M^{m+j} .
$$

Denote by H_{1} the image of H under τ^{j}, the j th iteration of the canonical embedding. Then $\left(H_{1}, N_{1}\right)$ is the necessary subgroup.

Lemma 4.2. Let (H, N) be a subgroup of the wreath power $\zeta_{i=1}^{m}(G, M)$. Then for every $w \in M^{m}$ there exists a subgroup $\left(H_{1}, N_{1}\right)$ of ${\sum_{i=1}^{m}}_{i=1}(G, M)$ isomorphic to (H, N) as a permutation group, such that $w \in N_{1}$.

Proof. Consider the case $w \notin N$. Chose an arbitrary $u \in N$. Since the $\operatorname{group}(G, M)$ is transitive, so is the group ${\chi_{i=1}^{m}(G, M) \text {. Hence it contains a }}_{\text {a }}$ permutation π such that $\pi(u)=w$. Then $\left(\pi^{-1} H \pi, \pi(N)\right)$ is the required group.

Consider now finite groups H_{1}, \ldots, H_{k} such that all the composition factors of $H_{i}(1 \leq i \leq k)$ are subgroups of S_{n}. This means that H_{i} is a subgroup of $\left(l_{i=1}^{m_{i}} S_{n}, X^{m_{i}}\right)$ for some $m_{i} \in \mathbb{N}$ and $1 \leq i \leq k$. Suppose additionally that H_{i} acts regularly on some subset $A_{i} \subseteq X^{m_{i}}, 1 \leq i \leq$ k. Using Lemma 4.1 we may assume that $m_{1}=\ldots=m_{k}=m$. By Lemma 4.2 we have that the intersection $\bigcap_{i=1}^{m} A_{i}$ is not empty. Denote some common element by w.

Define now for every $i, 1 \leq i \leq k$, the embedding

$$
\varphi_{i}: H_{i} \hookrightarrow \sum_{i=1}^{m k} S_{n}
$$

as the composition $\varphi_{i}=\psi_{i} \cdot \tau^{m-i}$. This means that at first we take the i-diagonal embedding and then use the canonical embedding $m-i$ times.

Consider the following k subsets of the set $X^{m k}$:

$$
\begin{aligned}
& M_{1}=\left\{u w w \ldots w: u \in A_{1}, u \neq w\right\} \\
& M_{2}=\left\{u u w \ldots w: u \in A_{2}, u \neq w\right\} \\
& M_{k}=\left\{u u u \ldots u: u \in A_{k}, u \neq w\right\} .
\end{aligned}
$$

Lemma 4.3. The sets M_{1}, \ldots, M_{k} are nonempty and pairwise disjoint.
Proof. Follows from nontriviality of the given groups and regularity of their actions on the sets A_{1}, \ldots, A_{k}.

It is easy to see that

$$
M_{i}=\{(\underbrace{w \ldots w}_{k \text { times }})^{\varphi_{i}(h)}: h \in H_{i}, h \neq e\}, \quad 1 \leq i \leq k .
$$

Now define the following subsets of the set $X^{m k}$:

$$
D_{i}=\bigcup_{\substack{1 \leq j \leq k \\ j \neq i}}\left\{v^{\varphi_{i}(h)}: v \in M_{j}, h \in H_{i}\right\}, \quad 1 \leq i \leq k
$$

Lemma 4.4. The set $D_{i}, 1 \leq i \leq k$ is a union of the orbits of the action of $\varphi_{i}\left(H_{i}\right)$ on $X^{m k}$.

Proof. Let $u \in D_{i}$. Then for some $h_{1} \in H_{i}, h_{2} \in H_{j}, h_{2} \neq e, j \neq i$, we have

$$
u=\left(\left(w^{k}\right)^{\varphi_{i}\left(h_{2}\right)}\right)^{\varphi_{i}\left(h_{1}\right)} .
$$

This implies the required assertion.

Note that neither M_{i}, nor $D_{i}(1 \leq i \leq k)$ contains the word w_{k}. We will use a presentation of $G A_{n}$ as a wreath product

$$
G A_{n} \simeq\left(\sum_{i=1}^{m k}\left(S_{n}, X\right)\right) Z\left(\sum_{i=1}^{\infty}\left(S_{n}, X\right)\right) \simeq\left(\sum_{i=1}^{m k}\left(S_{n}, X\right)\right)\left\langle G A_{n} .\right.
$$

Define finally for each $i(1 \leq i \leq k)$ two maps $f_{i 1}, f_{i 2}: H_{i} \longrightarrow G A_{n}$. Namely, for arbitrary element $h \in H_{i}$ denote $f_{i 1}(h)$ by h^{\prime} and $f_{i 2}(h)$ by $h^{\prime \prime}$. Then as elements of the wreath product above they have the form

$$
h^{\prime}=(e, \bar{h}), \quad h^{\prime \prime}=\left(\varphi_{i}(h), \bar{h}\right)
$$

and the map $\bar{h}: X^{m k} \longrightarrow G A_{n}$ acts by the rule

$$
\bar{h}(v)= \begin{cases}h^{\prime \prime}, & \text { if } v \in D_{i} \\ h^{\prime}, & \text { otherwise }\end{cases}
$$

Then for every $v \in X^{\mathbb{N}}$ presented in the form $v=v_{1} v_{2} v_{3} \ldots$, where $v_{i} \in X^{m k}, i \geq 1$, we get:

$$
\begin{gathered}
v^{h^{\prime}}=v_{1}^{e}\left(v_{2} v_{3} \ldots\right)^{\bar{h}\left(v_{1}\right)}, \\
v^{h^{\prime \prime}}=v_{1}^{\varphi_{i}(h)}\left(v_{2} v_{3} \ldots\right)^{\bar{h}\left(v_{1}\right)} .
\end{gathered}
$$

Proceeding this way we have

$$
\begin{gathered}
v^{h^{\prime}}=v_{1}^{e} v_{2}^{\pi_{1}} v_{3}^{\pi_{2}} \cdots \\
v^{h^{\prime \prime}}=v_{1}^{\varphi_{i}(h)} v_{2}^{\pi_{1}} v_{3}^{\pi_{2}} \cdots
\end{gathered}
$$

where

$$
\pi_{j}=\left\{\begin{array}{ll}
\varphi_{i}(h), & \text { if } v_{j} \in D_{i} \\
e, & \text { otherwise }
\end{array}, \quad j \geq 2\right.
$$

Lemma 4.5. The maps $f_{i 1}, f_{i 2}$ are faithful representations of H_{i} in $F G A_{n}$.

Proof. Let $h \in H_{i}$. The sets of states of the automorphisms h^{\prime} and $h^{\prime \prime}$ are equal to the set of states $\left\{h^{\prime}(v), h^{\prime \prime}(v):|v| \leq k m\right\}$. This implies that $f_{i 1}, f_{i 2}$ are maps into the group $F G A_{n}$ of finite state automorphisms.

Let $h_{1}, h_{2} \in H_{i}$ be arbitrary elements. For $v=v_{1} v_{2} v_{3} \ldots \in X^{\mathbb{N}}$, where $v_{i} \in X^{m k}, i \geq 1$, we have

$$
\left(v^{h_{1}^{\prime}}\right)^{h_{2}^{\prime}}=\left(v_{1}^{e}\left(v_{2} v_{3} \ldots\right)^{\overline{h_{1}(}\left(v_{1}\right)}\right)^{h_{2}^{\prime}}=v_{1}^{e}\left(\left(v_{2} v_{3} \ldots\right)^{\left.\overline{h_{1}\left(v_{1}\right)}\right)^{\overline{h_{2}}\left(v_{1}\right)}}\right.
$$

and
$\left(v^{h_{1}^{\prime \prime}}\right)^{h_{2}^{\prime \prime}}=\left(v_{1}^{\varphi_{i}\left(h_{1}\right)}\left(v_{2} v_{3} \ldots\right)^{\overline{h_{1}}\left(v_{1}\right)}\right)^{h_{2}^{\prime \prime}}=v_{1}^{\varphi_{i}\left(h_{1} h_{2}\right)}\left(\left(v_{2} v_{3} \ldots\right)^{\overline{h_{1}}\left(v_{1}\right)}\right)^{\overline{h_{2}\left(v_{1}^{\varphi_{i}\left(h_{1}\right)}\right)} .}$.
By Lemma $4.4 \overline{h_{1}}\left(v_{1}\right)$ and $\overline{h_{2}}\left(v_{1}^{\varphi_{i}\left(h_{1}\right)}\right)$ are equal to h_{1}^{\prime} and h_{2}^{\prime} or to $h_{1}^{\prime \prime}$ and $h_{2}^{\prime \prime}$, respectively. Since φ_{i} is an embedding, we inductively obtain that both $f_{i 1}$ and $f_{i 2}$ are faithful representations.

Denote by \mathfrak{G}_{1} and \mathfrak{G}_{2} the subgroups of $F G A_{n}$ generated by the images $f_{11}\left(H_{1}\right), \ldots, f_{k 1}\left(H_{k}\right)$ and $f_{12}\left(H_{1}\right), \ldots, f_{k 2}\left(H_{k}\right)$, respectively.

Theorem 4.6. The groups \mathfrak{G}_{1} and \mathfrak{G}_{2} are isomorphic to the free product $H_{1} * \cdots * H_{k}$.

We need for the proof the following generalization of the well-known "ping-pong" lemma.

Lemma 4.7. [6] Let a permutation group G on a set Ω be generated by its proper subgroups $G_{1}, \ldots, G_{m}(m \geq 2)$ and at least one of them has order greater then 2 . If there exist pairwise disjoint nonempty subsets $\Omega_{1}, \ldots, \Omega_{m}$ of Ω such that for $i \in\{1, \ldots, m\}$ the next condition holds:

$$
\omega^{g} \in \Omega_{i} \text { for } \omega \in \Omega_{j}, j \neq i, \text { and } g \in G_{i}, g \neq 1
$$

then the group G splits into the free product

$$
G=G_{1} * \cdots * * G_{m}
$$

Proof of theorem 4.6. Let us prove our statement for the group \mathfrak{G}_{2}.
The group \mathfrak{G}_{2} as a subgroup of $F G A_{n}$ is a permutation group acting on the set $X^{\mathbb{N}}$. Define for the subgroups $f_{12}\left(H_{1}\right), \ldots, f_{k 2}\left(H_{k}\right)$ the following subsets $\Omega_{1}, \ldots, \Omega_{k}$ of $X^{\mathbb{N}}$:

$$
\begin{aligned}
\Omega_{i}= & \left(X^{m k}\right)^{*} M_{i} w^{\mathbb{N}}= \\
& =\left\{u_{1} \ldots u_{l} v w w \ldots: l \geq 0, u_{1}, \ldots, u_{l} \in X^{m k}, v \in M_{i}\right\}, 1 \leq i \leq k
\end{aligned}
$$

Since $w \notin M_{i}$, for $1 \leq i \leq k$, the subsets are well defined.
By Lemma 4.3 the subsets $\Omega_{1}, \ldots, \Omega_{k}$ are pairwise disjoint.
Consider arbitrary indices $i, j(1 \leq i, j \leq k, i \neq j)$. Let $u=$ $u_{1} \ldots u_{l} v w w \ldots \in \Omega_{j}, l \geq 0, u_{1}, \ldots, u_{l} \in X^{m k}, v \in M_{j}$ and $h \in H_{i}$. We will show that $u^{f_{i 2}(h)} \in \Omega_{i}$. Since $M_{j} \subset D_{i}$ and $w_{k} \notin D_{i}$ using the rule of action of $f_{i 2}(h)$ on $X^{\mathbb{N}}$ we can write the word $u^{f_{i 2}(h)}$ in the form:

$$
u_{1}^{\prime} \ldots u_{l}^{\prime} v^{\prime}\left(w^{k}\right)^{\varphi_{i}(h)} w w \ldots
$$

Here $u_{1}^{\prime}, \ldots, u_{l}^{\prime}, v^{\prime}$ are some elements of $X^{m k}$. This presentation implies that $u^{f_{i 2}(h)} \in \Omega_{i}$ by the definition of the set M_{i}.

Applying Lemma 4.7 we immediately obtain a factorization

$$
\mathfrak{G}_{2}=f_{12}\left(H_{1}\right) * \cdots * f_{k 2}\left(H_{k}\right)
$$

By Lemma 4.5 it means that

$$
\mathfrak{G}_{2} \simeq H_{1} * \cdots * H_{k}
$$

which completes the proof.

5. Embedding theorems

In this section we present some interesting results following from the construction of the previous section and in particular from theorem 4.6.

We start with the following corollary of the Kaloujnine-Krasner wreath product embedding theorem [10].

Lemma 5.1. Let H be a finite group, let m be the length of its composition series and suppose that the orders of the composition factors of H are less than or equal to n. Then for an alphabet $X(|X|=n)$ the wreath product $\left(l_{i=1}^{m} S_{n}, X^{m}\right)$ contains a regular subgroup (Γ, A) with $\Gamma \simeq H$.

Proof. Let

$$
H=H_{1} \triangleright H_{2} \triangleright \cdots \triangleright H_{m} \triangleright\{1\}
$$

be some composition series of H. Due to the Kaloujnine-Krasner Theorem H acts regularly on the set

$$
\left(H_{1} / H_{2}\right) \times\left(H_{2} / H_{3}\right) \times \cdots \times\left(H_{m-1} / H_{m}\right) \times H_{m}
$$

as a subgroup of the standard wreath product

$$
\left.\left.\left.\left(H_{1} / H_{2}\right)\right\}\left(H_{2} / H_{3}\right)\right\} \cdots \geqslant\left(H_{m-1} / H_{m}\right)\right\} H_{m}
$$

Since by assumption all factors of the wreath product have size $\leq n$ it naturally embeds into $\left(\sum_{i=1}^{m} S_{n}, X^{m}\right)$. This completes the proof.

Theorem 5.2. Let H_{1}, \ldots, H_{k} be finite groups and suppose that the orders of all their composition factors are bounded above by n. Then the free product $H_{1} * \cdots * H_{k}$ acts faithfully on the regular rooted tree T_{n} by finite state automorphisms.

Proof. By Lemma 5.1 all given groups satisfy the conditions of the previous section. Use then the construction described there and Theorem 4.6 gives the required conclusion.

Corollary 5.3. Let $n=2,3$ or 4 . Then finite groups H_{1}, \ldots, H_{k} are embeddable into the group of finite state automorphisms $F G A_{n}$ if and only if their free product $H_{1} * \cdots * H_{k}$ is embeddable.

Proof. Sufficiency is obvious.
We have to prove necessity. By Proposition 3.1 all groups H_{1}, \ldots, H_{k} have subnormal series with factors from the symmetric group S_{n}. But in our case (S_{2}, S_{3} or S_{4}) it follows that the composition factors of all given groups have size $\leq n$. Now apply Theorem 5.2.

Corollary 5.4. Finite soluble groups H_{1}, \ldots, H_{k} are embeddable into the group of finite state automorphisms $F G A_{n}$ if and only if their free product $H_{1} * \cdots * H_{k}$ is embeddable.

Proof. It is sufficient to prove necessity. By Proposition 3.1 all the groups H_{1}, \ldots, H_{k} have subnormal series with factors from the symmetric group S_{n}. This means that orders of these factors divide $n!$. Consider the composition series which are refinements of the subnormal ones. Since groups H_{1}, \ldots, H_{k} are soluble their composition factors are cyclic of prime order. It follows from above that their orders divide n !. Hence these orders are bounded by n from above. The rest is to apply Theorem 5.2.

In case $n=p$ is prime we have the natural Sylow p-subgroup of the group $G A_{p}$, namely the wreath product $\sum_{i=1}^{\infty} C_{p}$ of infinity many copies of the cyclic group of order p. Denote it by $\operatorname{Syl}\left(G A_{p}\right)$. We can also consider the finite state part of this group, i.e., the intersection $\operatorname{FSyl}\left(G A_{p}\right)=$ $\operatorname{Syl}\left(G A_{p}\right) \cap F G A_{p}$. It is easy to see that both groups $\operatorname{Syl}\left(G A_{p}\right)$ and $F \operatorname{Syl}\left(G A_{p}\right)$ contain every finite p-group. As in the previous section, for any finite p-groups H_{1}, \ldots, H_{k} we can use the completely analogous construction and to prove the following

Theorem 5.5. Let H_{1}, \ldots, H_{k} be finite p-groups. Then the group $F \operatorname{Syl}\left(G A_{p}\right)$ contains subgroups isomorphic to the free product $H_{1} * \cdots *$ H_{k}.

6. An example

Let $H_{1}=\left\langle a \mid a^{2}=1\right\rangle$ and $H_{2}=\left\langle b \mid b^{3}=1\right\rangle$ be cyclic groups of orders 2 and 3 , respectively. Then H_{1}, H_{2} act regularly on the subsets $A_{1}=\{1,2\}$

Figure 2:
and $A_{2}=\{1,2,3\}$ of $X=\{1,2,3\}$ as the subgroups $\langle(12)\rangle$ and $\langle(123)\rangle$ of the symmetric group S_{3}. Using the notation of Section 4 we have $n=3, k=2$ and $m=1$. Consider $\varphi_{1}(a)=((12) ; e, e, e)$ and $\varphi_{2}(b)=$ ((123); (123), (123), (123)) (Figure 2).

Choose $w=1$. Then we get $M_{1}=\{21\}, M_{2}=\{22,33\}$ and $D_{1}=$ $\{22,33,12\}, D_{2}=\{21,32,13\}$. Denote $a_{i}=f_{1 i}(a)$ and $b_{i}=f_{1 i}(b)$, $i=1,2$. As elements of $F G A_{3}$ these automorphisms have the following recurrent form (Figure 3):

$$
\begin{aligned}
& a_{1}=\left(e ; a_{1}, a_{2}, a_{1}, a_{1}, a_{2}, a_{1}, a_{1}, a_{1}, a_{2}\right) \\
& a_{2}=\left(\varphi_{1}(a) ; a_{1}, a_{2}, a_{1}, a_{1}, a_{2}, a_{1}, a_{1}, a_{1}, a_{2}\right) \\
& b_{1}=\left(e ; b_{1}, b_{1}, b_{2}, b_{2}, b_{1}, b_{1}, b_{1}, b_{2}, b_{1}\right) \\
& b_{2}=\left(\varphi_{2}(b) ; b_{1}, b_{1}, b_{2}, b_{2}, b_{1}, b_{1}, b_{1}, b_{2}, b_{1}\right)
\end{aligned}
$$

By Theorem 4.6 we have $\left\langle a_{i}, b_{i}\right\rangle=\left\langle a_{i}\right\rangle *\left\langle b_{i}\right\rangle \simeq C_{2} * C_{3}, i=1,2$.
Due to [11] the subgroups $\left\langle b_{i}^{2} a_{i} b_{i}^{2}, a_{i} b_{i}^{2} a_{i} b_{i}^{2} a_{i}\right\rangle$ are free of rank 2 .

7. Some open questions

Let us formulate some questions arising in connection with the obtained results. Firstly, the question about possibility of omitting any additional conditions in Theorem 5.2.

Question 7.1. Let finite groups H_{1}, \ldots, H_{k} be embeddable into $F G A_{n}$. Is their free product $H_{1} * \cdots * H_{k}$ embeddable into $F G A_{n}$?

In particular,
Question 7.2. Is the free product $A_{n} * A_{n}$ embeddable into $F G A_{n}$ for $n \geq 5$?

Here by A_{n} we denote the alternating group of degree n.
If the answer to Question 7.1 is negative then

Figure 3: Automorphisms a_{2} and b_{2}

Question 7.3. For given finite groups H_{1}, \ldots, H_{k} compute the smallest number n such that the free product $H_{1} * \cdots * H_{k}$ is embeddable into $F G A_{n}$.

By Theorem 5.2 this number does not exceed the order of the largest composition factor of H_{1}, \ldots, H_{k}.

And finally a question about closeness under operation of free product in the class of finite state automorphism groups.

Question 7.4. Let $H_{1} \leq F G A_{n}$ and $H_{2} \leq F G A_{m}(n, m \geq 2)$. Is it true that $H_{1} * H_{2}<F G A_{k}$ for some $k \geq 2$?

References

[1] Grigorchuk R.I., Nekrashevich V.V., Sushchanskii V.I. Automata, Dynamical Systems, and Groups// Proceedings of the Steklov Institute of Mathematics. 2000. - 231. - p. 128 -203.
[2] Nekrashevych V.V. Self-similar groups// Mathematical Surveys and Monographs, 117. AMS, Providence, RI, 2005. xii +231 pp.
[3] Bhattacharjee M. The ubiquity of free subgroups in certain inverse limits of groups// Journal of Algebra. -1995. - 172. - p.134-146.
[4] Abért M., Virág B., Dimension and randomness in groups acting on rooted trees// J. Amer. Math. Soc., 18 (1), 2005, p.157-192 (electronic).
[5] Olijnyk A. Free products of C_{2} as groups of finitely automatic permutations// Voprosy algebry. - 1999. - 14. - p. $158-165$.
[6] Olijnyk A.S. Free Products of Finite Groups and Groups of Finitely Automatic Permutations// Proceedings of the Steklov Institute of Mathematics. -2000. 231. - p. $1-8$.
[7] A.M.Brunner, S.N.Sidki Endomorphisms of the finitary group of isometries of the binary tree// Topological and asymptotic aspects of group theory, p.221-234, Contemp. Math., 394, Amer. Math. Soc., Providence, RI, 2006.
[8] M. Vorobets, Y.Vorobets On a series of finite automata defining free transformation groups// arXiv:math/0604328.
[9] M.Boyle, J.Franks, B.Kitchens. Automorphisms of one-sided subshifts of finite type//Ergod. Th. \& Dynam. Sys. - 1990 10. - p.421-449.
[10] Kaloujnine L., Krasner M. Produit complet des groupes de permutations et le probleme d'extension des groupes (I, II, III) // Acta Sci. Math. (Seeged).- 1950.Vol. 13, P. 208-230 // 1951.- Vol. 14.- P. 39-67, 69-82.
[11] Magnus W., Karrass A., Solitar D. Combinatorial Group Theory, Interscience, N.-Y. 1966.

Contact information

C. K. Gupta | Department of Mathematics and Astronomy |
| :--- |
| The University of Manitoba |
| R3T 2N2 Winnipeg |
| Canada |
| |
| |
| E-Mail: cgupta@cc.umanitoba.ca |

N. D. Gupta

Department of Mathematics and Astronomy The University of Manitoba R3T 2N2 Winnipeg
Canada
E-Mail: ngupta@ms.umanitoba.ca
A. S. Oliynyk

Department of Mechanics and Mathematics
Kyiv Taras Shevchenko University
Volodymyrska 60
01033 Kyiv
Ukraine
E-Mail: olijnyk@univ.kiev.ua

