Characterization of clones of boolean operations by identities

Runglawan Butkote and Klaus Denecke

Communicated by V. I. Sushansky

Dedicated to V.I. Sushchansky on the occasion of his 60th birthday

AbStract. In [4] the authors characterized all clones of Boolean operations (Boolean clones) by functional terms. In this paper we consider a Galois connection between operations and equations and characterize all Boolean clones by using of identities. For each Boolean clone we obtain a set of equations with the property that an operation f belongs to this clone if and only if it satisfies these equations.

1. Preliminaries

Let A be the two-element set $A=\{0,1\}$. An n-ary Boolean operation is a map $f^{A}: A^{n} \rightarrow A$. We denote by $O_{A}^{(n)}$ the set of all n ary operations defined on A. Let $O_{A}:=\bigcup_{n \geq 1} O_{A}^{(n)}$ be the set of all operations defined on A. On the set O_{A} we may define the following composition operations $S_{m}^{n, A}: O_{A}^{(n)} \times\left(O_{A}^{(m)}\right)^{n} \rightarrow O_{A}^{(m)}$ by setting $S_{m}^{n, A}\left(f^{A}, g_{1}^{A}, \ldots, g_{n}^{A}\right):=f^{A}\left(g_{1}^{A}, \ldots, g_{n}^{A}\right)$, where $f^{A}\left(g_{1}^{A}, \ldots, g_{n}^{A}\right) \in O_{A}^{(m)}$ is defined by

$$
f^{A}\left(g_{1}^{A}, \ldots, g_{n}^{A}\right)\left(a_{1}, \ldots, a_{m}\right):=f^{A}\left(g_{1}^{A}\left(a_{1}, \ldots, a_{m}\right), \ldots, g_{n}^{A}\left(a_{1}, \ldots, a_{m}\right)\right)
$$

for all m-tuples $\left(a_{1}, \ldots, a_{m}\right) \in A^{m}$.
2000 Mathematics Subject Classification: 03B05, 03C05, 08B05.
Key words and phrases: Clone of Boolean operations, identity, Galois connection.

Further, we consider projections $e_{i}^{n, A}: A^{n} \rightarrow A, 1 \leq i \leq n$, defined by $e_{i}^{n, A}\left(a_{1}, \ldots, a_{n}\right):=a_{i}$, as nullary operations.

A clone of Boolean operations, for short a Boolean clone, is a class of Boolean operations that contains all projections and is closed under all composition operations $S_{m}^{n, A}, m, n \geq 1, m, n \in \mathbb{N}$. All clones of Boolean operations form a lattice, where the lattice operation meet is the intersection. The second lattice operation applied to clones is defined to be the smallest clone that contains the union of both clones. Since any clone can be regarded as a multi-based algebra, all Boolean clones form a complete lattice which is the lattice of all subclones of the clone $O_{\{0,1\}}$, originally described in [5], (see also [6]).

Boolean clones can be characterized by relations in the form $P_{o l} l_{A} \rho$. Here $\operatorname{Pol}_{A} \rho$ is the set of all operations f^{A} defined on A preserving the h-ary relation ρ in the sense that from

$$
\left(a_{11}, \ldots, a_{1 h}\right) \in \rho, \ldots,\left(a_{n 1}, \ldots, a_{n h}\right) \in \rho
$$

it follows $\left(f^{A}\left(\left(a_{11}, \ldots, a_{n 1}\right), \ldots, f^{A}\left(a_{1 h}, \ldots, a_{n h}\right)\right) \in \rho\right.$. It is easy to see that all sets of operations which have the form $\operatorname{Pol}_{A} \rho$ are clones. Conversely, each clone can be presented in this way by relations.

In this paper we characterize all Boolean clones by equations. This was also done in [4], but in our paper we will use the equational theory of Universal Algebra for a description of clones by equations.

If $f^{A} \in O_{A}^{(n)}$, then one can consider the algebra $\mathcal{A}=(A ; \wedge, \vee, \Rightarrow$ $\left., \Leftrightarrow, \oplus, \neg, \underline{\mathbf{0}}^{A}, \underline{\mathbf{1}}^{A}, f^{A}\right)$ of type $\tau=(2,2,2,2,2,1,0,0, n)$. To define the language over this algebra, we use the following notation,
K is the operation symbol corresponding to the conjunction \wedge,
D is the operation symbol corresponding to the disjuction \vee,
I is the operation symbol corresponding to the implication \Rightarrow,
E is the operation symbol corresponding to the equivalence \Leftrightarrow,
M is the operation symbol corresponding to the addition modulo 2 ,
N is the operation symbol corresponding to the negation \neg,
$\underline{\mathbf{0}}$ is the operation symbol corresponding to the constant $\mathbf{0}$,
$\underline{1}$ is the operation symbol corresponding to the constant $\mathbf{1}$, F is the operation symbol corresponding to the operation f^{A}.

If $f^{A} \in O_{A}^{(n)}$, then the dual operation $\left(f^{A}\right)^{d}$ can be defined by $\left(f^{A}\right)^{d}\left(a_{1}, \ldots, a_{n}\right):=\neg f^{A}\left(\neg a_{1}, \ldots, \neg a_{n}\right)$ for all $\left(a_{1}, \ldots, a_{n}\right) \in A^{n}$.

Let $f^{A} \in O_{A}^{(n)}$ and $i \in\{1, \ldots, n\}$. We say that the $i-t h$ variable of f^{A} is essential (or f^{A} depends essentially on the $i-t h$ variable) if there are n-tuples

$$
\underline{a}=\left(a_{1}, \ldots, a_{i-1}, b, a_{i+1}, \ldots, a_{n}\right), \underline{a^{\prime}}=\left(a_{1}, \ldots, a_{i-1}, c, a_{i+1}, \ldots, a_{n}\right)
$$

such that $b \neq c$ and $f^{A}(\underline{a}) \neq f^{A}\left(\underline{a}^{\prime}\right)$. Otherwise the $i-t h$ variable is called fictitious (or non-essential).

We denote by $\operatorname{Alg}(\tau)$ the class of all algebras of type τ. Terms of type τ over a set X of variables are defined as follows,
(i) $x_{i} \in X$ is a term of type τ and $\underline{\mathbf{0}}, \underline{\mathbf{1}}$ are terms of type τ,
(ii) if t_{1}, \ldots, t_{n} are terms of type τ and if F is the n-ary operation symbol, then $t=F\left(t_{1}, \ldots, t_{n}\right)$ is a term of type τ, if t_{1}, t_{2} are terms, then $t_{1} K t_{2}, t_{1} D t_{2}, t_{1} I t_{2}, t_{1} E t_{2}, t_{1} M t_{2}, N t_{1}$ are terms of type τ.

We denote the set of all terms of type τ by $W_{\tau}(X)$. If $X_{m}=$ $\left\{x_{1}, \ldots, x_{m}\right\}$ is a finite set of variables, then by (i) and (ii) the set $W_{\tau}\left(X_{m}\right)$ of m-ary terms is defined.

For every term $t \in W_{\tau}\left(X_{m}\right)$ and for every algebra $\mathcal{A}=(A ; \wedge, \vee, \Rightarrow$ $, \Leftrightarrow, \oplus, \neg, \underline{\mathbf{0}}^{A}, \underline{\mathbf{1}}^{A}, f^{A}$) we define an operation $t^{A} \in O_{A}^{(m)}$, called term operation, inductively by the following steps,
(i) if $t=x_{i} \in X_{m}$, then $x_{i}^{A}=e_{i}^{m, A}$ (the m-ary projection on the i-th input, $1 \leq i \leq m$),
(ii) if t_{1}, t_{2} are terms of type τ, then $\left(t_{1} K t_{2}\right)^{A}=t_{1}^{A} \wedge t_{2}^{A},\left(t_{1} D t_{2}\right)^{A}=t_{1}^{A} \vee$ $t_{2}^{A},\left(t_{1} I t_{2}\right)^{A}=t_{1}^{A} \Rightarrow t_{2}^{A},\left(t_{1} E t_{2}\right)^{A}=t_{1}^{A} \Leftrightarrow t_{2}^{A},\left(t_{1} M t_{2}\right)^{A}=t_{1}^{A} \oplus t_{2}^{A}$, $\left(N t_{1}\right)^{A}=\neg t_{1}^{A}$ and $\underline{\mathbf{0}}^{A}=0, \underline{\mathbf{1}}^{A}=1$,
(iii) if $t=F\left(t_{1}, \ldots, t_{n}\right)$ and $t_{1}^{A}, \ldots, t_{n}^{A}$ are the term operations which are induced by t_{1}, \ldots, t_{n}, then $t^{A}=f^{A}\left(t_{1}^{A}, \ldots, t_{n}^{A}\right)$. Here $f^{A}\left(t_{1}^{A}, \ldots, t_{n}^{A}\right)$ is the operation defined by

$$
f^{A}\left(t_{1}^{A}, \ldots, t_{n}^{A}\right)\left(a_{1}, \ldots, a_{n}\right)=f^{A}\left(t_{1}^{A}\left(a_{1}, \ldots, a_{n}\right), \ldots, t^{A}\left(a_{1}, \ldots, a_{n}\right)\right)
$$

Since later on we will replace only the symbol F by n-ary elements of a clone instead of the correct notations $t_{1} K t_{2}, t_{1} D t_{2}, t_{1} I t_{2}, t_{1} E t_{2}$, $t_{1} M t_{2}, N t_{1}$ we will use $t_{1} \wedge t_{2}, t_{1} \vee t_{2}, t_{1} \Rightarrow t_{2}, t_{1} \Leftrightarrow t_{2}, t_{1} \oplus t_{2}, \neg t_{1}$.

A pair $s \approx t$ of terms from $W_{\tau}(X)$ is called an identity in the algebra \mathcal{A} if $s^{A}=t^{A}$, i.e. if the induced term operations are equal. In this case we write $\mathcal{A} \models s \approx t$.

Let $I d_{B} \mathcal{A}$ be the set of all identities satisfied in \mathcal{A}. For the class $K \subseteq \operatorname{Alg}(\tau)$ we denote by $I d_{B} K$ the set of all identities satisfied by each algebra \mathcal{A} from K. If Σ is a set of equations $s \approx t$ consisting of terms from $W_{\tau}(X)$, then we denote the class of all algebras satisfying each equation from Σ as identity by $\operatorname{Mod}_{B} \Sigma$.

Then we get a Galois connection $\left(\operatorname{Id}_{B}, M o d_{B}\right)$, i.e. the following properties are satisfied:
$\Sigma_{1} \subseteq \Sigma_{2} \Rightarrow \operatorname{Mod}_{B} \Sigma_{2} \subseteq \operatorname{Mod}_{B} \Sigma_{1}$, $C_{1} \subseteq C_{2} \Rightarrow I d_{B} C_{2} \subseteq I d_{B} C_{1}$, $\Sigma \subseteq I d_{B} \operatorname{Mod}_{B} \Sigma$, $K \subseteq \operatorname{Mod}_{B} I d_{B} C$.

2. A Galois Connection between Operations and Equations

Let $f^{A} \in O_{A}^{(n)}$ be an n-ary operation and let

$$
\mathcal{A}=\left(A ; \wedge, \vee, \Rightarrow, \Leftrightarrow, \oplus, \neg, \underline{\mathbf{0}}^{A}, \underline{\mathbf{1}}^{A}, f^{A}\right)
$$

be an algebra of type $\tau=(2,2,2,2,2,1,0,0, n)$. Let $s, t \in W_{\tau}(X)$ be terms of type τ. Then $s \approx t$ is satisfied as identity in \mathcal{A}, and we write $\mathcal{A} \models s \approx t$ if $s^{A}=t^{A}$. Then we define

Definition 2.1. Let $s \approx t$ be an equation consisting of terms s , t of type τ, i.e. $s \approx t \in W_{\tau}(X)^{2}$. Then by

$$
f^{A} \vdash s \approx t \Leftrightarrow \mathcal{A}=\left(A ; \wedge, \vee, \Rightarrow, \Leftrightarrow, \oplus, \neg, \underline{\mathbf{0}}^{A}, \underline{\mathbf{1}}^{A}, f^{A}\right) \models s \approx t
$$

we define a binary relation \vdash between $O^{(n)}(A)$ and $W_{\tau}(X)$. If $f^{A} \vdash s \approx t$ holds, then we say that the operation f^{A} satisfies the equation $s \approx t$.

For $C \subseteq O^{(n)}(A)$ we define

$$
C \vdash f^{A} \Leftrightarrow \forall f^{A} \in C\left(f^{A} \vdash s \approx t\right)
$$

and for $\Sigma \subseteq W_{\tau}(X)^{2}$ we set

$$
C \vdash \Sigma \Leftrightarrow \forall s \approx t \in \Sigma(C \vdash s \approx t)
$$

Let $C \subseteq O_{A}^{(n)}, A=\{0,1\}$, and let $\Sigma \subseteq W_{\tau}(X)^{2}$. Then we define two operations $F_{B} \operatorname{Mod}: \mathcal{P}\left(O_{A}^{(n)}\right) \rightarrow \mathcal{P}\left(W_{\tau}(X)^{2}\right)$ (where \mathcal{P} denotes the formation of the power set) and $I d_{B}: \mathcal{P}\left(W_{\tau}(X)^{2}\right) \rightarrow \mathcal{P}\left(O_{A}^{(n)}\right)$ by

$$
\begin{aligned}
& F_{B} \operatorname{Mod} \Sigma=\left\{f^{A} \mid f^{A} \in O_{A}^{(n)} \text { and } \forall s \approx t \in \Sigma\left(f^{A} \vdash s \approx t\right)\right\} \\
& I_{B} C=\left\{s \approx t \mid s, t \in W_{\tau}(X) \text { and } \forall f^{A} \in C \quad\left(f^{A} \vdash s \approx t\right)\right\}
\end{aligned}
$$

Then the pair $\left(F_{B} \operatorname{Mod}, I d_{B}\right)$ is a Galois connection, i.e. we have $\Sigma_{1} \subseteq \Sigma_{2} \Rightarrow F_{B} \operatorname{Mod} \Sigma_{2} \subseteq F_{B} \operatorname{Mod} \Sigma_{1}$,
$C_{1} \subseteq C_{2} \Rightarrow I d_{B} C_{2} \subseteq I d_{B} C_{1}$,
$\Sigma \subseteq I d_{B} F_{B} M o d \Sigma$,
$C \subseteq F_{B} \operatorname{Mod}^{\prime} d_{B} C$.
Further, we get two closure operators $I d_{B} F_{B} M o d$ and $F_{B} M o d I d_{B}$ on $\mathcal{P}\left(W_{n}(X)^{2}\right)$ and on $\mathcal{P}\left(O_{A}^{(n)}\right)$, respectively.

Our main question is whether each clone of Boolean operations has the form $F_{B} \operatorname{Mod} \Sigma$ for a set Σ of equations. We are especially interested to find one-element sets Σ.

3. The Lattice of all Boolean Clones

The set of all clones of Boolean operations, originally described by E. Post ([5], [6]) forms a lattice. These clones and lattice are often called Post's classes and the lattice is denoted as Post's lattice. Post's lattice is countably infinite, complete, algebraic, atomic and dually atomic. It is also known that every clone in the lattice is finitely generated. Post's classes can be described as follows and the following Hasse diagram illustrates the lattice of all Boolean clones.
$C_{1}:=O_{\{0,1\}}$.
$C_{3}:=\operatorname{Pol}\{0\}$, and dually $C_{2}:=\operatorname{Pol}\{1\}$.
$C_{4}:=C_{2} \cap C_{3}$.
$A_{1}:=$ Pol \leq, where $\leq:=\{(00),(01),(11)\}$, (monotone Boolean functions).
$A_{3}:=A_{1} \cap C_{3}$, and dually $A_{2}:=A_{1} \cap C_{2}$.
$A_{4}:=A_{1} \cap C_{4}$.
$D_{3}:=\operatorname{Pol} N$, where $N:=\{(01),(10)\}$ (self-dual Boolean functions).
$D_{1}:=D_{3} \cap C_{4}$.
$D_{2}:=D_{3} \cap A_{1}$.
$L_{1}:=\operatorname{Pol}_{\rho_{G}}$, where $\rho_{G}:=\left\{(x, y, z, u) \in\{0,1\}^{4} \mid x+y=z+u\right\}$,
(linear Boolean functions).
$L_{3}:=L_{1} \cap C_{3}$, dually $L_{2}:=L_{1} \cap C_{2}$.
$L_{4}:=L_{1} \cap C_{4}$.
$L_{5}:=L_{1} \cap D_{3}$.
$F_{8}^{\mu}:=\operatorname{Pol}_{\mu}$, where $D_{\mu}:=\{0,1\}^{\mu} \backslash\{(1, \ldots, 1\}$, for $\mu \geq 2$, and dually
$F_{4}^{\mu}:=$ PolD ${ }_{\mu}^{\prime}$ with $D_{\mu}^{\prime}:=\{0,1\}^{\mu} \backslash\{(0, \ldots, 0\}$.
$F_{7}^{\mu}:=F_{8}^{\mu} \cap A_{1}$, and dually $F_{3}^{\mu}:=F_{4}^{\mu} \cap A_{1}$.
$F_{6}^{\mu}:=F_{8}^{\mu} \cap A_{4}$, and dually $F_{2}^{\mu}:=F_{4}^{\mu} \cap A_{4}$.
$F_{5}^{\mu}:=F_{8}^{\mu} \cap C_{4}$, and dually $F_{1}^{\mu}:=F_{4}^{\mu} \cap C_{4}$.
$F_{8}^{\infty}: \bigcap_{\mu=2}^{\infty} \operatorname{Pol} D_{\mu}$, and dually $F_{4}^{\infty}: \bigcap_{\mu=2}^{\infty} \operatorname{Pol} D_{\mu}^{\prime}$.
$F_{7}^{\infty}:=F_{8}^{\infty} \cap A_{1}$, and dually F_{3}^{∞}.
$F_{6}^{\infty}:=F_{8}^{\infty} \cap A_{4}$, and dually F_{2}^{∞}.
$F_{5}^{\infty}:=F_{8}^{\infty} \cap C_{4}$, and dually F_{1}^{∞}.
$P_{1}:=\langle\{e t\}\rangle$, and dually $S_{1}:=\langle\{v e l\}\rangle$
$P_{3}:=\langle\{e t, \underline{\mathbf{0}}\}\rangle$, and dually $S_{1}:=\langle\{$ vel, $\underline{\mathbf{1}}\}\rangle$
$P_{5}:=\langle\{e t, \underline{\mathbf{1}}\}\rangle$, and dually $S_{5}:=\langle\{$ vel, $\underline{\mathbf{0}}\}\rangle$
$P_{6}:=\langle\{e t, \underline{\mathbf{0}}, \underline{\mathbf{1}}\}\rangle$, and dually $S_{6}:=\langle\{$ vel $, \underline{\mathbf{0}}, \underline{\mathbf{1}}\}\rangle$.
$O_{9}:=\left\langle\left\{e_{1}^{1}, \underline{\mathbf{0}}, \underline{\mathbf{1}}\right.\right.$, non $\left.\}\right\rangle=\langle\{$ non,$\underline{\mathbf{0}}\}\rangle$.
$O_{8}:=\left\langle\left\{e_{1}^{1}, \underline{\mathbf{0}}, \underline{\mathbf{1}}\right\}\right\rangle$.
$O_{6}:=\left\langle\left\{e_{1}^{1}, \underline{\mathbf{0}}\right\}\right\rangle$, and dually $O_{5}:=\left\langle\left\{e_{1}^{1}, \underline{\mathbf{1}}\right\}\right\rangle$.
$O_{4}:=\left\langle\left\{e_{1}^{1}\right.\right.$, non $\left.\}\right\rangle=\langle\{$ non $\}\rangle$.
$O_{1}:=\left\langle\left\{e_{1}^{1}\right\}\right\rangle$.
Note that $\underline{\mathbf{0}}, \underline{\mathbf{1}}$ are the unary constant functions with values 0 and 1 , respectively, e_{1}^{1} is the identity, and vel, et and non are \vee, \wedge and \neg, respectively.

Figure 1: Post's Lattice of all Boolean Clones

4. Identities for Clones of Boolean Operations

There are several methods to characterize clones of Boolean operations. In [4] the authors characterized all clones of Boolean operations by socalled functional terms. Using the langauge of Universal Algebra for each clone of Boolean operations we obtain a set of characterizing identities satisfied in the algebra $\mathcal{A}=\left(\{0,1\} ; \wedge, \vee, \Rightarrow, \Leftrightarrow, \oplus, \neg, \underline{\mathbf{0}}^{A}, \underline{\mathbf{1}}^{A}, f^{A}\right)$. The results are given in the following table. Our notation goes partly back to E. L. Post [6].

Clones	Identities
C_{1}	$1 \approx 1$
C_{3}	$\neg F(\underline{0}) \approx 1$
C_{2}	$F(\underline{1}) \approx 1$
C_{4}	$\neg F(\underline{0}) \wedge F(\underline{1}) \approx 1$
A_{1}	$F(\underline{x}) \rightarrow F(\underline{x} \vee \underline{y}) \approx 1$
A_{3}	$\neg F(\underline{0}) \wedge(\neg F(\underline{x} \vee F(\underline{x} \vee \underline{y})) \approx 1$
A_{2}	$F(\underline{1}) \wedge(\neg F(\underline{x}) \vee F(\underline{x} \vee \underline{y})) \approx 1$
A_{4}	$\neg F(\underline{0}) \wedge F(\underline{1}) \wedge(\neg F(\underline{x}) \vee F(\underline{x} \vee \underline{y})) \approx 1$
D_{3}	$F(\underline{x}) \oplus F(\bar{x}) \approx 1$
D_{1}	$\neg F(\underline{0}) \wedge(F(\underline{x}) \oplus F(\bar{x})) \approx 1$
D_{2}	$(F(\underline{x}) \oplus F(\bar{x})) \wedge(\neg F(\underline{x}) \vee F(\underline{x} \vee \underline{y})) \approx 1$
L_{1}	$1 \oplus F(\underline{0}) \oplus F(\underline{x}) \oplus F(\underline{y}) \oplus F(\underline{x} \oplus \underline{y}) \approx 1$
L_{3}	$1 \oplus F(\underline{x}) \oplus F(\underline{y}) \oplus F(\underline{x} \oplus \underline{y}) \approx 1$
L_{2}	$F(\underline{1}) \wedge(1 \oplus F(\underline{0}) \oplus F(\underline{x}) \oplus F(\underline{y}) \oplus F(\underline{x} \oplus \underline{y}) \approx 1$
L_{4}	$F(\underline{1}) \wedge(1 \oplus F(\underline{x}) \oplus F(\underline{y}) \oplus F(\underline{x} \oplus \underline{y})) \approx 1$
L_{5}	$\begin{aligned} & (F(\underline{1}) \oplus F(\underline{0}) \wedge(1 \oplus F(\underline{0}) \oplus F(\underline{x}) \oplus F(\underline{y}) \oplus F(\underline{x} \oplus \underline{y})) \\ & \approx 1 \end{aligned}$
P_{6}	$F(\underline{x}) \wedge F(\underline{y}) \approx F(\underline{x} \wedge \underline{y})$
P_{3}	$\neg F(\underline{0}) \wedge(\bar{F}(\underline{x}) \wedge F(\underline{y}) \Leftrightarrow F(\underline{x} \wedge \underline{y})) \approx 1$
P_{5}	$F(\underline{1}) \wedge(F(\underline{x}) \wedge F(\underline{y}) \Leftrightarrow F(\underline{x} \wedge \underline{y})) \approx 1$
P_{1}	$\neg F(\underline{0}) \wedge F(\underline{1}) \wedge(F \bar{x}) \wedge F(\underline{y}) \Leftrightarrow F(\underline{x} \wedge \underline{y})) \approx 1$
S_{6}	$(F(\underline{x}) \vee F(\underline{y})) \approx F(\underline{x} \vee \underline{y})$
S_{5}	$\neg F(\underline{0}) \wedge((\bar{F}(\underline{x}) \vee F(\underline{y})) \Leftrightarrow F(\underline{x} \vee \underline{y})) \approx 1$
S_{3}	$F(\underline{1}) \wedge((F(\underline{x}) \vee F(\underline{y})) \Leftrightarrow F(\underline{x} \vee \underline{y})) \approx 1$
S_{1}	
F_{8}^{μ}	$\bigwedge_{\substack{i=1 \\ \mu-1}}^{\mu-1} F\left(\underline{x_{i}}\right) \Rightarrow \neg F\left(\underline{x_{1} \wedge \ldots \wedge \underline{x_{\mu-1}}} \wedge \underline{y}\right) \approx 1$
F_{4}^{μ}	$\bigwedge_{i=1}^{\mu} \neg F\left(\underline{x_{i}}\right) \Rightarrow F\left(\underline{\underline{x_{1}} \vee \ldots \vee \underline{x_{\mu-1}}} \vee \underline{y}\right) \approx 1$
F_{8}^{∞}	$\bigwedge_{\mu=2}^{\infty}\left(\bigwedge_{i=1}^{\mu-1} F\left(\underline{x_{i}}\right) \Rightarrow \neg F\left(\underline{\overline{x_{1}} \wedge \ldots \wedge \underline{x_{\mu-1}}} \wedge \underline{y}\right)\right) \approx 1$

Clones	Identities $\mathrm{V}^{\text {a }}$
F_{4}^{∞}	$\bigwedge_{\mu=2}^{\infty}\left(\bigwedge_{i=1}^{\mu-1} \neg F\left(\underline{x_{i}}\right) \Rightarrow F\left(\underline{x_{1}} \vee \ldots \vee \underline{x_{\mu-1}} \vee \underline{y}\right)\right) \approx 1$
F_{5}^{μ}	$F(\underline{1}) \wedge\left(\bigwedge_{i=1}^{\mu-1} F\left(\underline{x_{i}}\right) \Rightarrow \neg F\left(\underline{x_{1} \wedge \ldots \wedge \underline{x_{\mu-1}}} \wedge \underline{y}\right)\right) \approx 1$
F_{1}^{μ}	$\neg F(\underline{0}) \wedge\left(\bigwedge_{i=1}^{\mu} \neg F\left(\underline{x_{i}}\right) \Rightarrow F\left(\underline{x_{1}} \vee \ldots \vee \underline{x_{\mu-1}} \vee \underline{y}\right)\right) \approx 1$
F_{5}^{∞}	$F(\underline{1}) \wedge\left(\bigwedge_{\mu=2}^{\infty}\left(\bigwedge_{i=1}^{\mu-1} F\left(\underline{x_{i}}\right) \Rightarrow \neg F\left(\underline{x_{1} \wedge \ldots \wedge \wedge_{\mu-1}} \wedge \underline{y}\right)\right)\right) \approx 1$
F_{1}^{∞}	$\neg F(\underline{0}) \wedge\left(\bigwedge_{\mu=2}\left(\bigwedge_{i=1} \neg F\left(\underline{x_{i}}\right) \Rightarrow F\left(\underline{x_{1} \vee \ldots \vee \underline{x_{\mu-1}}} \vee \underline{y}\right)\right)\right) \approx 1$
F_{7}^{2}	$F(\underline{x}) \Rightarrow \neg F(\bar{x}) \wedge F(\underline{x} \vee \underline{y}) \approx 1$
F_{7}^{μ}	$\left.\bigwedge_{i=1}^{\mu} F\left(\underline{x_{i}}\right) \Rightarrow \neg F\left(\underline{x_{1}} \wedge \ldots \wedge \underline{x_{\mu-1}}\right)\right) \wedge F\left(\underline{x_{1}} \vee \underline{x_{2}}\right) \approx 1$
F_{3}^{2}	$\neg F(\underline{x}) \Rightarrow F(\bar{x}) \wedge \neg F(\underline{x} \wedge \underline{y}) \approx 1$
F_{3}^{μ}	$\left.\begin{array}{l} \bigwedge_{i=1}^{\mu-1} \neg F\left(\underline{x_{i}}\right) \Rightarrow F\left(\underline{x_{1}} \vee \cdots \vee \underline{x_{\mu-1}}\right. \end{array}\right) \wedge \neg F\left(\underline{x_{1}} \wedge \underline{x_{2}}\right)$
F_{7}^{∞}	$\bigwedge_{\substack{\mu=2 \\ \approx 1}}^{\infty}\left(\bigwedge_{i=1}^{\mu-1} F\left(\underline{x_{i}}\right) \Rightarrow \neg F\left(\underline{\left.x_{1} \wedge \ldots \wedge \underline{x_{\mu-1}}\right)}\right) \wedge F\left(\underline{x_{1}} \vee \underline{x_{2}}\right)\right)$
F_{3}^{∞}	$\begin{aligned} & \bigwedge_{\mu=2}^{\infty}\left(\bigwedge_{i=1}^{\mu-1} \neg F\left(\underline{x_{i}}\right) \Rightarrow F\left(\underline{x_{1} \vee \ldots \vee \underline{x_{\mu-1}}}\right) \wedge \neg F\left(\underline{x_{1}} \wedge \underline{x_{2}}\right)\right) \\ & \approx 1 \end{aligned}$
F_{6}^{2}	$F(\underline{1}) \wedge(F(\underline{x}) \Rightarrow \neg F(\bar{x}) \wedge F(\underline{x} \vee \underline{y})) \approx 1$
F_{6}^{μ}	$\begin{aligned} & F(\underline{1}) \wedge\left(\bigwedge_{i=1}^{\mu-1} F\left(\underline{x_{i}}\right) \Rightarrow \neg F\left(\underline{\overline{x_{1}} \wedge \ldots \wedge \underline{x_{\mu-1}}}\right) \wedge\right. \\ & \left.\left.\left.F\left(\underline{x_{1}} \vee \underline{x_{2}}\right)\right)\right)\right) \approx 1 \end{aligned}$
F_{2}^{2}	$\neg F(\underline{0}) \wedge \neg F(\underline{x}) \Rightarrow F(\bar{x}) \wedge \neg F(\underline{x} \wedge \underline{y})) \approx 1$
F_{2}^{μ}	$\begin{aligned} & \neg F(\underline{0}) \wedge\left(\bigwedge_{i=1}^{\mu-1} \neg F\left(\underline{x_{i}}\right) \Rightarrow F\left(\overline{x_{1} \vee \ldots \vee \underline{x_{\mu-1}}}\right) \wedge\right. \\ & \left.\neg F\left(\underline{x_{1}} \wedge \underline{x_{2}}\right)\right) \approx 1 \\ & { }_{\mu-1} \end{aligned}$
F_{6}^{∞}	$\begin{aligned} & F(\underline{1}) \wedge\left(\bigwedge _ { \mu = 2 } ^ { \mu } \left(\bigwedge_{i=1}^{\mu} F\left(\underline{x_{i}}\right) \Rightarrow \neg F\left(\underline{x_{1} \wedge \ldots \wedge \underline{x_{\mu-1}}}\right)\right.\right. \\ & \left.\left.\wedge F\left(\underline{x_{1}} \vee \underline{x_{2}}\right)\right)\right) \approx 1 \end{aligned}$
F_{2}^{∞}	$\begin{aligned} & \neg F(\underline{0}) \wedge\left(\bigwedge _ { \mu = 2 } ^ { \infty } \left(\bigwedge_{i=1}^{\mu-1} \neg F\left(\underline{x_{i}}\right) \Rightarrow F\left(\overline{x_{1} \vee \ldots \vee \underline{x_{\mu-1}}}\right) \wedge\right.\right. \\ & \left.\left.\neg F\left(\underline{x_{1}} \wedge \underline{x_{2}}\right)\right)\right) \approx 1 \end{aligned}$
O_{9}	$\begin{aligned} & ((F(\underline{x} \Leftrightarrow F(\underline{y})) \Rightarrow(F(\underline{x} \Leftrightarrow F(\underline{x} \wedge \underline{y}))) \wedge \\ & (1 \oplus f(\underline{0}) \oplus \bar{F}(\underline{x}) \oplus F(\underline{y}) \oplus F(\underline{x} \oplus \underline{y})) \approx 1 \end{aligned}$

Clones	Identities
O_{4}	$(F(\underline{0}) \oplus F(\underline{1})) \wedge((F(\underline{x}) \Leftrightarrow F(\underline{y})) \Rightarrow(F(\underline{x})$
	$\Leftrightarrow F(\underline{x} \wedge \underline{y}))) \wedge$
O_{8}	$(1 \oplus f(\underline{0}) \oplus F(\underline{x}) \oplus F(\underline{y}) \oplus F(\underline{x} \oplus \underline{y})) \approx 1$
	$(F(\underline{x}) \Rightarrow F(\underline{x} \vee \underline{y})) \wedge(1 \oplus f(\underline{0}) \oplus \bar{F}(\underline{x}) \oplus F(\underline{y})$
O_{6}	$\oplus F(\underline{x} \oplus \underline{y})) \approx 1$
	$(F(\underline{x}) \Rightarrow F(\underline{x} \vee \underline{y})) \wedge(1 \oplus F(\underline{x}) \oplus F(\underline{y}) \oplus F(\underline{x} \oplus \underline{y}))$
O_{5}	≈ 1
	$F(\underline{1}) \wedge(F(\underline{x}) \Rightarrow F(\underline{x} \vee \underline{y})) \wedge(1 \oplus f(\underline{0}) \oplus F(\underline{x}) \oplus F(\underline{y})$
O_{1}	$\oplus F(\underline{x} \oplus \underline{y})) \approx 1$
	$F(\underline{1}) \wedge(\bar{F}(\underline{x}) \Rightarrow F(\underline{x} \vee \underline{y})) \wedge(1 \oplus F(\underline{x}) \oplus F(\underline{y})$
	$\oplus F(\underline{x} \oplus \underline{y})) \approx 1$

The main result is that every clone of Boolean operations can be characterized by a set of identities. We will give a complete proof of this result. We denote the n-tuples $(0, \ldots, 0)$ and $(1, \ldots, 1)$ by $\underline{0}$ and $\underline{1}$, respectively. The proof can be shortened using the following observations.

Lemma 4.1. Let $\Sigma=\{s \approx t\}$, then $F_{B} \operatorname{Mod} \Sigma \cap C_{2}=F_{B} \operatorname{Mod}\{F(\underline{1})$ $\wedge s \approx t\}$.

Proof. Let $f^{A} \in F_{B} \operatorname{Mod}\{s \approx t\} \cap C_{2}$, then $f^{A} \vdash s \approx t$ and $f^{A}(1, \ldots, 1)=$ 1. Now we get $s^{A}=t^{A}$ and then $F(\underline{1})^{A} \wedge s^{A}=t^{A}$. Therefore $[F(\underline{1}) \wedge s]^{A}=$ t^{A}. Thus $f^{A} \in F_{B} \operatorname{Mod}\{F(\underline{1}) \wedge s \approx t\}$. Let $f^{A} \in F_{B} \operatorname{Mod}\{F(\underline{1}) \wedge s \approx t\}$, then $[F(\underline{1}) \wedge s]^{A}=t^{A}$. Further $F(\underline{1})^{A} \wedge s^{A}=t^{A}$. Therefore $f^{A}(\underline{1})=1$ and $s^{A}=t^{A}$. Hence $f^{A} \in C_{2}$ and $f^{A} \in F_{B} \operatorname{Mod}\{s \approx t\}$.

The following lemma can be proved in a similar way.
Lemma 4.2. Let $\Sigma=\{s \approx t\}$, then $F_{B} \operatorname{Mod} \Sigma \cap C_{3}=F_{B} \operatorname{Mod}\{\neg F(\underline{0}) \wedge$ $s \approx t\}$.

Lemma 4.1 and Lemma 4.2 are needed only for the special case when $\Sigma=\{s \approx 1\}$. Then both follow from the the next lemma.

Lemma 4.3. Let $\Sigma_{1}=\{s \approx 1\}$ and $\Sigma_{2}=\{t \approx 1\}$, then $F_{B} \operatorname{Mod} \Sigma_{1} \cap$ $F_{B} \operatorname{Mod} \Sigma_{2}=F_{B} \operatorname{Mod}\{s \wedge t \approx 1\}$.

Proof. Let $f^{A} \in F_{B} \operatorname{Mod} \Sigma_{1} \cap F_{B} \operatorname{Mod} \Sigma_{2}$, then $f^{A} \vdash s \approx 1$ and $f^{A} \vdash t \approx 1$. Further we get $s^{A} \equiv 1$ and $t^{A} \equiv 1$. Therefore from $s^{A} \wedge t^{A}=[s \wedge t]^{A} \equiv 1$ implies $f^{A} \vdash s \wedge t \approx 1$. Hence $f^{A} \in F_{B} \operatorname{Mod}\{s \wedge t \approx 1\}$.

Let $f^{A} \in F_{B} \operatorname{Mod}\{s \wedge t \approx 1\}$, then $f^{A} \vdash s \wedge t \approx 1$. Therefore $[s \wedge t]^{A} \equiv 1$. Then from $s^{A} \wedge t^{A} \equiv 1$ we get $s^{A} \equiv 1$ and $t^{A} \equiv 1$. Now we have $f^{A} \vdash s \approx 1$ and $f^{A} \vdash t \approx 1$. Thus $f^{A} \in F_{B} \operatorname{Mod} \Sigma_{1} \cap F_{B} \operatorname{Mod} \Sigma_{2}$.

Let F^{d} be a new n-ary operation symbol. Let

$$
L=\left\{K, D, E, M, N, \underline{0}, \underline{1}, F, F^{d}\right\} .
$$

Instead of these symbols we use $L=\left\{\wedge, \vee, \Leftrightarrow, \oplus, \neg, \underline{0}, \underline{1}, F, F^{d}\right\}$. Let τ^{\prime} be the type which uses only operation symbols from L.

Definition 4.4. Let $W_{\tau^{\prime}}\left(X_{m}\right)$ be the set of all m-ary terms of type τ^{\prime}. Now for each $t \in W_{\tau^{\prime}}\left(X_{m}\right)$ we define the dual term t^{d} inductively by the following steps,
(i) if $t=x_{i} \in X_{m}$, then $x_{i}^{d}=x_{i}, 1 \leq i \leq m$,
(ii) if $t_{1}, \ldots, t_{n} \in W_{\tau^{\prime}}\left(X_{m}\right)$ and $t_{1}^{d}, \ldots, t_{n}^{d}$ are dual terms of t_{1}, \ldots, t_{n}, respectively, then $\left(t_{1} \wedge t_{2}\right)^{d}=t_{1}^{d} \vee t_{2}^{d},\left(t_{1} \vee t_{2}\right)^{d}=t_{1}^{d} \wedge t_{2}^{d},\left(t_{1} \Leftrightarrow\right.$ $\left.t_{2}\right)^{d}=t_{1}^{d} \oplus t_{2}^{d},\left(\neg t_{1}\right)^{d}=t_{1}^{d}$ and $F\left(t_{1}, \ldots, t_{n}\right)=F^{d}\left(t_{1}^{d}, \ldots, t_{n}^{d}\right)$.

This gives the set $W_{\tau^{\prime}}\left(X_{m}\right)^{d} \subseteq W_{\tau^{\prime}}\left(X_{m}\right)$. For a subset $M \subseteq W_{\tau^{\prime}}\left(X_{m}\right)$ we define $M^{d}:=\left\{t^{d} \mid t \in M\right\}$ and for the algebra $\mathcal{A}=\left(A ; M^{A}, f^{A}\right)$ we define $\mathcal{A}^{d}=\left(A ;\left(M^{d}\right)^{A},\left(f^{d}\right)^{A}\right)$.

Lemma 4.5. For each $t \in W_{\tau^{\prime}}\left(X_{m}\right)$ we get $\left(t^{d}\right)^{\mathcal{A}}=\left(t^{\mathcal{A}}\right)^{d}$.
Proof. If $t=x_{i} \in X_{m}$, then $\left(t^{\mathcal{A}}\right)^{d}=\left(x_{i}^{\mathcal{A}}\right)^{d}=\left(e_{i}^{m, A}\right)^{d}=e_{i}^{m, A}=x_{i}^{\mathcal{A}}=$ $\left(t^{d}\right)^{\mathcal{A}}$. If $t_{1}^{d}, \ldots, t_{n}^{d}$ are dual terms of t_{1}, \ldots, t_{n}, respectivly and $\left(t_{1}^{d}\right)^{\mathcal{A}}=$ $\left(t_{1}^{\mathcal{A}}\right)^{d}, \ldots,\left(t_{n}^{d}\right)^{\mathcal{A}}=\left(t_{n}^{\mathcal{A}}\right)^{d}$, then $\left(\left(t_{1} \wedge t_{2}\right)^{d}\right)^{\mathcal{A}}=\left(t_{1}^{d} \vee t_{2}^{d}\right)^{\mathcal{A}}=\left(t_{1}^{d}\right)^{\mathcal{A}} \vee\left(t_{2}^{d}\right)^{\mathcal{A}}=$ $\left(t_{1}^{\mathcal{A}}\right)^{d} \vee\left(t_{2}^{\mathcal{A}}\right)^{d}=\left(t_{1}^{\mathcal{A}} \wedge t_{2}^{\mathcal{A}}\right)^{d}=\left(\left(t_{1} \wedge t_{2}\right)^{\mathcal{A}}\right)^{d}$. For $t_{1} \vee t_{2}, t_{1} \Leftrightarrow t_{2}, t_{1} \oplus t_{2}, \neg t_{1}$ the corresponding equations can be proved similarly. If $t=F\left(t_{1}, \ldots, t_{n}\right)$, we get $\left(\left(F\left(t_{1}, \ldots, t_{n}\right)\right)^{d}\right)^{\mathcal{A}}=\left(F^{d}\left(t_{1}^{d}, \ldots, t_{n}^{d}\right)\right)^{\mathcal{A}}=\left(F^{d}\right)^{\mathcal{A}}\left(\left(t_{1}^{d}\right)^{\mathcal{A}}, \ldots,\left(t_{n}^{d}\right)\right)^{\mathcal{A}}=$ $\left(F^{\mathcal{A}}\right)^{d}\left(\left(t_{1}^{\mathcal{A}}\right)^{d}, \ldots,\left(t_{n}^{\mathcal{A}}\right)^{d}\right)=\left(F^{\mathcal{A}}\left(t_{1}^{\mathcal{A}}, \ldots, t_{n}^{\mathcal{A}}\right)\right)^{d}=\left(F\left(t_{1}, \ldots, t_{n}\right)^{\mathcal{A}}\right)^{d}$.

Lemma 4.6. Let $L^{A}=\left\{\wedge, \vee, \Leftrightarrow, \oplus, \neg, \mathbf{0}, 1, f^{A},\left(f^{A}\right)^{d}\right\}$ and let s, t be terms using only operation symbols from L^{A}. Let $L^{\prime A} \subseteq L^{A}$ be a subset, then
$\mathcal{A}=\left(\{0,1\} ; L^{\prime A}, f^{A}\right) \models s \approx t \Longleftrightarrow \mathcal{A}^{d}=\left(\{0,1\} ;\left(L^{\prime d}\right)^{\mathcal{A}},\left(f^{A}\right)^{d}\right) \models s^{d} \approx t^{d}$.
Proof. Let $\varphi:\{0,1\} \rightarrow\{0,1\}$ be given by $\varphi(0)=1$ and $\varphi(1)=0$, i.e. $\varphi=\neg$ is the negation. Let $f_{i}^{A} \in L^{\prime}$. Since

$$
\begin{aligned}
\varphi\left(\left(f_{i}^{A}\right)^{d}\left(x_{1}, \ldots, x_{n}\right)\right)=\neg\left(f_{i}^{A}\right)^{d}\left(x_{1}, \ldots, x_{n}\right)= & \\
\neg \neg\left(\neg f_{i}^{A}\left(\neg x_{1}, \ldots, \neg x_{n}\right)\right)=f_{i}^{A}\left(\neg x_{1}, \ldots, \neg x_{n}\right)= & \\
& \quad f_{i}^{A}\left(\varphi\left(x_{1}\right), \ldots, \varphi\left(x_{n}\right)\right)
\end{aligned}
$$

and

\[

\]

φ has the properties of an isomorphism exchanging each operation by the dual one. Since $\mathcal{A} \vdash s \approx t$, then $\mathcal{A}^{d} \vdash s^{d} \approx t^{d}$ and vice versa.

Corollary 4.7. $\left(F_{B} \operatorname{Mod}\{s \approx t\}\right)^{d}=F_{B} \operatorname{Mod}\left\{s^{d} \approx t^{d}\right\}$.
Proof. Let $\left(f^{A}\right)^{d} \in\left(F_{B} \operatorname{Mod}\{s \approx t\}\right)^{d}$, then $f^{A} \in F_{B} \operatorname{Mod}\{s \approx t\}$. From Lemma 4.4 we get $\left(f^{A}\right)^{d} \vdash s^{d} \approx t^{d}$. Therefore $\left(f^{A}\right)^{d} \in F_{B} \operatorname{Mod}\left\{s^{d} \approx t^{d}\right\}$, i.e. $\left(F_{B} \operatorname{Mod}\{s \approx t\}\right)^{d} \subseteq F_{B} \operatorname{Mod}\left\{s^{d} \approx t^{d}\right\}$.

Let $f^{A} \in F_{B} \operatorname{Mod}\left\{s^{d} \approx t^{d}\right\}$, then $\mathcal{A}=\left(\{0,1\} ; K^{\mathcal{A}}, f^{A}\right) \models s^{d} \approx$ t^{d}. From Lemma 4.4 we get $\mathcal{A}^{d}=\left(\{0,1\} ; K^{\prime \mathcal{A}},\left(f^{A}\right)^{d}\right) \models\left(s^{d}\right)^{d} \approx$ $\left(t^{d}\right)^{d}=s \approx t$. Further $\left(f^{A}\right)^{d} \in F_{B} \operatorname{Mod}\{s \approx t\}$. Therefore $\left(\left(f^{A}\right)^{d}\right)^{d} \in$ $\left(F_{B} \operatorname{Mod}\{s \approx t\}\right)^{d}$. Hence $f^{A} \in\left(F_{B} \operatorname{Mod}\{s \approx t\}\right)^{d}$, i.e. $F_{B} \operatorname{Mod}\left\{s^{d} \approx\right.$ $\left.t^{d}\right\} \subseteq\left(F_{B} \operatorname{Mod}\{s \approx t\}\right)^{d}$.

Proposition 4.8.

$$
\begin{aligned}
& C_{1}=F_{B} \operatorname{Mod}\{1 \approx 1\} \\
& C_{3}=F_{B} \operatorname{Mod}\{\neg F(\underline{0}) \approx 1\}, \\
& C_{2}=F_{B} \operatorname{Mod}\{F(\underline{1}) \approx 1\}, \\
& C_{4}=F_{B} \operatorname{Mod}\{\neg F(\underline{0}) \wedge F(\underline{1}) \approx 1\} .
\end{aligned}
$$

Proof. Obviously, for C_{1}, the equation $1 \approx 1$ is satisfied by all Boolean operations f^{A} since F does not occur in our equation. Since $C_{3}=C_{1} \cap C_{3}$, $C_{2}=C_{1} \cap C_{2}$ and $C_{4}=C_{3} \cap C_{2}$, then one can apply Lemma 4.1, Lemma 4.2 and Lemma 4.3, respectively.

We set $\underline{x}=\left(x_{1}, \ldots, x_{n}\right)$. If $x_{i} \leq y_{i}$ for all $1 \leq i \leq n$, where \leq denotes the usual order on the set $\{0,1\}$, then we write $\underline{x} \preceq \underline{y}$.

Proposition 4.9.

$$
\begin{aligned}
& A_{1}=F_{B} \operatorname{Mod}\{F(\underline{x}) \Rightarrow F(\underline{x} \vee \underline{y}) \approx 1\}, \\
& A_{3}=F_{B} \operatorname{Mod}\{\neg F(\underline{0}) \wedge(\neg F(\underline{x}) \vee F(\underline{x} \vee \underline{y})) \approx 1\}, \\
& A_{2}=F_{B} \operatorname{Mod}\{F(\underline{1}) \wedge(\neg F(\underline{x}) \vee F(\underline{x} \vee \underline{y})) \approx 1\}, \\
& A_{4}=F_{B} \operatorname{Mod}\{\neg F(\underline{0}) \wedge F(\underline{1}) \wedge(\neg F(\underline{x}) \vee F(\underline{x} \vee \underline{y})) \approx 1\}
\end{aligned}
$$

Proof. Let $f^{A} \in A_{1}$ and let $\Sigma=\{F(\underline{x}) \Rightarrow F(\underline{x} \vee \underline{y}) \approx 1\}$, then $f^{A}(\underline{x}) \leq$ $f^{A}(\underline{y})$ for every $\underline{x} \preceq \underline{y}$. Assume $f^{A}(\underline{x})=0$, then $\left.\left(f^{A}(\underline{x}) \Rightarrow f^{A}(\underline{x}) \vee \underline{y}\right)\right)=$ $\left.\left(0 \Rightarrow f^{A}(\underline{x}) \vee \underline{y}\right)\right)=1$. Assume $f^{A}(\underline{x})=1$, then $f^{A}(\underline{x} \vee \underline{y})=1$ since f^{A} is monotone and $\underline{x} \preceq \underline{x} \vee \underline{y}$. Moreover $\left(f^{A}(\underline{x}) \Rightarrow f^{A}(\underline{x} \vee \underline{y})\right)=1$. Therefore $f^{A} \vdash \Sigma$.

Let $f^{A} \in F_{B} \operatorname{Mod} \Sigma$, then $\left(f^{A}(\underline{x}) \Rightarrow f^{A}(\underline{x} \vee y)\right)=1$. Let $\underline{x} \preceq y$ and assume that $f^{A}(\underline{x})>f^{A}(\underline{y})$, then $f^{A}(\underline{x})>f^{A}(\underline{x} \vee \underline{y})$ since $f^{A}(\underline{x} \vee \underline{y})=$ $f^{A}(\underline{y})$. Therefore $f^{A}(\underline{x})=1$ and $f^{A}(\underline{x} \vee \underline{y})=0$. Hence $\left(f^{A}(\underline{x}) \Rightarrow\right.$ $\left.f^{A}(\underline{x} \vee \underline{y})\right)=0 \neq 1$, a contradiction. Thus $f^{A}(\underline{x}) \leq f^{A}(\underline{y})$. Therefore $f^{A} \in A_{1}$.

Since $A_{3}=A_{1} \cap C_{3}, A_{2}=A_{1} \cap C_{2}$ and $A_{4}=A_{2} \cap C_{3}$, then we can apply Lemma 4.1, Lemma 4.2 and Lemma 4.3, respectively.

For $\underline{x}=\left(x_{1}, \ldots, x_{n}\right)$ we write $\bar{x}=\left(\neg x_{1}, \ldots, \neg x_{n}\right)$.

Proposition 4.10.

$$
\begin{aligned}
& D_{3}=F_{B} \operatorname{Mod}\{F(\underline{x}) \oplus F(\bar{x}) \approx 1\} \\
& D_{1}=F_{B} \operatorname{Mod}\{\neg F(\underline{0}) \wedge(F(\underline{x}) \oplus F(\bar{x})) \approx 1\}, \\
& D_{2}=F_{B} \operatorname{Mod}\{(F(\underline{x}) \oplus F(\bar{x})) \wedge(\neg F(\underline{x}) \vee F(\underline{x} \vee \underline{y})) \approx 1\}
\end{aligned}
$$

Proof. Let $f^{A} \in D_{3}$ and let $\Sigma=\{F(\underline{x}) \oplus F(\bar{x}) \approx 1\}$, then $f^{A}(\underline{x})=$ $f^{A}\left(x_{1}, \ldots, x_{n}\right)=\neg f^{A}\left(\neg x_{1}, \ldots, \neg x_{n}\right)=\neg f^{A}(\bar{x})$. Assume $f^{A}(\underline{x})=0$, then $\neg f^{A}(\bar{x})=0$, i.e. $f^{A}(\bar{x})=1$. Therefore $f^{A}(\underline{x}) \oplus f^{A}(\bar{x})=1$. Assume $f^{A}(\underline{x})=1$, then $\neg f^{A}(\bar{x})=1$, i.e. $f^{A}(\bar{x})=0$. Then $f^{A}(\underline{x}) \oplus f^{A}(\bar{x})=1$. Therefore $f^{A} \vdash \Sigma$.

Let $f^{A} \in F_{B} \operatorname{Mod} \Sigma$, then $f^{A}(\underline{x}) \oplus f^{A}(\bar{x})=1$ for every $\underline{x} \in\{0,1\}^{n}$. Assume $f^{A}(\underline{x})=0$, then $1=f^{A}(\underline{x}) \oplus f^{A}(\bar{x})=0 \oplus f^{A}(\bar{x})$. Therefore $f^{A}(\bar{x})=1$, i.e. $\neg f^{A}(\bar{x})=0$. Hence $f^{A}(\underline{x})=\neg f^{A}(\bar{x})$. Assume $f^{A}(\underline{x})=1$, then $1=f^{A}(\underline{x}) \oplus f^{A}(\bar{x})=1 \oplus f^{A}(\bar{x})$. Now we get $f^{A}(\bar{x})=0$, i..e. $\neg f^{A}(\bar{x})=1$. Hence $f^{A}(\underline{x})=\neg f^{A}(\bar{x})$. Therefore $f^{A} \in D_{3}$.

Since $D_{1}=D_{3} \cap C_{4}=D_{3} \cap C_{3}$ and $D_{2}=D_{3} \cap A_{1}$, then the proof can be given using Lemma 4.1 and Lemma 4.3, respectively.

Instead of $x \wedge y$ we will also write $x y$.

Proposition 4.11.

$$
\begin{aligned}
L_{1}= & F_{B} \operatorname{Mod}\{1 \oplus F(\underline{0}) \oplus F(\underline{x}) \oplus F(\underline{y}) \oplus F(\underline{x} \oplus \underline{y}) \approx 1\} \\
L_{3}= & F_{B} \operatorname{Mod}\{1 \oplus F(\underline{x}) \oplus F(\underline{y}) \oplus F(\underline{x} \oplus \underline{y}) \approx 1\} \\
L_{2}= & F_{B} \operatorname{Mod}\{F(\underline{1}) \wedge(1 \oplus F(\underline{0}) \oplus F(\underline{x}) \oplus F(\underline{y}) \oplus F(\underline{x} \oplus \underline{y}) \approx 1\} \\
L_{4}= & F_{B} \operatorname{Mod}\{F(\underline{1}) \wedge(1 \oplus F(\underline{x}) \oplus F(\underline{y}) \oplus F(\underline{x} \oplus \underline{y}) \approx 1\} \\
L_{5}= & F_{B} \operatorname{Mod}\{(F(\underline{1}) \oplus F(\underline{0})) \wedge(1 \oplus F(\underline{0}) \oplus F(\underline{x}) \oplus F(\underline{y}) \oplus \\
& F(\underline{x} \oplus \underline{y})) \approx 1\} .
\end{aligned}
$$

Proof. Let $f^{A} \in L_{1}$ and let $\Sigma=\{1 \oplus F(\underline{0}) \oplus F(\underline{x}) \oplus F(\underline{y}) \oplus F(\underline{x} \oplus \underline{y}) \approx 1\}$, then there are $a_{0}, a_{1}, \ldots, a_{n} \in\{0,1\}$ such that $f^{A}(\underline{x}) \neq f^{A}\left(x_{1}, \ldots, x_{n}\right)=$ $a_{0} \oplus a_{1} x_{1} \oplus, \ldots \oplus a_{n} x_{n}$. If $a_{i}=0$, then $a_{i} x_{i} \oplus a_{i} y_{i}=0 \oplus 0=0=$ $0 \wedge\left(x_{i} \oplus y_{i}\right)=a_{i} \wedge\left(x_{i} \oplus y_{i}\right)$. If $a_{i}=1$, then $a_{i} x_{i} \oplus a_{i} y_{i}=\left(1 x_{i}\right) \oplus\left(1 y_{i}\right)=$ $x_{i} \oplus y_{i}=1 \wedge\left(x_{i} \oplus y_{i}\right)=a_{i} \wedge\left(x_{i} \oplus y_{i}\right)$. Therefore $\left(a_{i} x_{i}\right) \oplus\left(a_{i} y_{i}\right)=a_{i}\left(x_{i} \oplus y_{i}\right)$. Then $1 \oplus f^{A}(\underline{0}) \oplus f^{A}(\underline{x}) \oplus f^{A}(\underline{y}) \oplus f^{A}(\underline{x} \oplus \underline{y})=1 \oplus\left(a_{0} \oplus a_{1} x_{1} \oplus \ldots \oplus\right.$ $\left.a_{n} x_{n}\right) \oplus\left(a_{0} \oplus a_{1} y_{1} \oplus \ldots \oplus a_{n} y_{n}\right) \oplus\left(a_{0} \oplus a_{1}\left(x_{1} \oplus y_{n}\right) \oplus \ldots \oplus a_{n}\left(x_{n} \oplus y_{n}\right)\right)=1$. Therefore $f^{A} \vdash \Sigma$.

Let $f^{A} \in F_{B} \operatorname{Mod} \Sigma$, then $1 \oplus f^{A}(\underline{0}) \oplus f^{A}(\underline{x}) \oplus f^{A}(\underline{y}) \oplus f^{A}(\underline{x} \oplus \underline{y})=1$. Assume that f^{A} is essentially depending on n variables. If $n=\overline{0}$, then f^{A} is constant. Now we have that f^{A} is linear. Suppose $n \geq 1$. Let $\alpha=\left(a_{1}, \ldots, a_{n}\right), \beta=\left(\neg a_{1}, a_{2}, \ldots, a_{n}\right)$ and $e_{1}=(1,0, \ldots, 0)$. Since $f^{A} \vdash \Sigma$, then $1=1 \oplus f^{A}(\underline{0}) \oplus f^{A}(\alpha) \oplus f^{A}(\beta) \oplus f^{A}(\alpha \oplus \beta)=1 \oplus f^{A}(\underline{0}) \oplus$ $f^{A}(\alpha) \oplus f^{A}(\beta) \oplus f^{A}\left(e_{1}\right)$. Therefore $f^{A}(\alpha)=f^{A}(\beta)$ iff $f^{A}(\underline{0})=f^{A}\left(e_{1}\right)$. Since a_{1} is an essential variable, then there exist $x_{2}, \ldots, x_{n} \in\{0,1\}^{n}$ such that $f^{A}\left(a_{1}, x_{2}, \ldots, x_{n}\right) \neq f^{A}\left(\neg a_{1}, x_{2}, \ldots, x_{n}\right)$. Therefore $f^{A}(\underline{0}) \neq$ $f^{A}\left(e_{1}\right)$. Hence $f^{A}(\alpha) \neq f^{A}(\beta)$ for any $a_{2}, \ldots, a_{n} \in\{0,1\}^{n}$. Thus $f^{A}\left(a_{1}, \ldots, a_{n}\right)=a_{1} \oplus f^{A}\left(0, a_{2}, \ldots, a_{n}\right)$. Applying the same argument to the remaining variable we get $f^{A}\left(a_{1}, \ldots, a_{n}\right)=a_{1} \oplus a_{2} \oplus \ldots \oplus a_{n} \oplus$ $f^{A}(0, \ldots, 0)$. Therefore $f^{A} \in L_{1}$.

For the proof of the equations for $L_{3}=L_{1} \cap C_{3}, L_{2}=L_{1} \cap C_{2}$, $L_{4}=L_{1} \cap C_{4}$, and $L_{5}=L_{1} \cap D_{3}$, we can apply Lemma 4.1, Lemma 4.2 and Lemma 4.3.

Proposition 4.12.

$$
\begin{aligned}
& P_{6}=F_{B} \operatorname{Mod}\{F(\underline{x}) \wedge F(\underline{y}) \approx F(\underline{x} \wedge \underline{y})\} \\
& P_{3}=F_{B} \operatorname{Mod}\{\neg F(\underline{0}) \wedge(F(\underline{x}) \wedge F(\underline{y}) \Leftrightarrow F(\underline{x}) \wedge F(\underline{y})) \approx 1\} \\
& P_{5}=F_{B} \operatorname{Mod}\{F(\underline{1}) \wedge(F(\underline{x}) \wedge F(\underline{y}) \Leftrightarrow F(\underline{x}) \wedge F(\underline{y})) \approx 1\} \\
& \left.P_{1}=F_{B} \operatorname{Mod}\{\neg F(\underline{0}) \wedge F(\underline{1}) \wedge(F(\underline{x}) \wedge F(\underline{y})) \Leftrightarrow F(\underline{x}) \wedge F(\underline{y})) \approx 1\right\}
\end{aligned}
$$

Proof. Let $f^{A} \in P_{6}$ and let $\Sigma=\{F(\underline{x}) \wedge F(\underline{y}) \approx F(\underline{x} \wedge \underline{y})\}$. If f^{A} is constant, then $f^{A} \vdash \Sigma$. If $f^{A} \in P_{6} /\{\mathbf{0}, \mathbf{1}\}$, then $f^{A}(\underline{x})=f^{A}\left(x_{1}, \ldots, x_{n}\right)=$
$x_{1} \wedge \ldots \wedge x_{n}$. Assume $f^{A}(\underline{x} \wedge \underline{y})=0$, then $\left(x_{1} \wedge y_{1}\right) \wedge \ldots \wedge\left(x_{n} \wedge y_{n}\right)=0$. Then there exists $x_{i} \wedge y_{i}=\overline{0}$ for some $i \in\{1, \ldots, n\}$. Therefore from $x_{i}=0 \vee y_{i}=0$ it follows $f^{A}(\underline{x}) \wedge f^{A}(y)=\left(x_{1} \wedge \ldots \wedge x_{n}\right) \wedge\left(y_{1} \wedge \ldots \wedge y_{n}\right)=0$. Thus $f^{A}(\underline{x}) \wedge f^{A}(\underline{y})=f^{A}(\underline{x} \wedge \underline{y})$. Assume $f^{A}(\underline{x} \wedge \underline{y})=1$, now we get $\left(x_{1} \wedge y_{1}\right) \wedge \ldots \wedge\left(x_{n} \wedge y_{n}\right)=1$. Then $x_{i}=y_{i}=1$ for all $i \in\{1, \ldots, n\}$. Therefore $f^{A}(\underline{x})=x_{1} \wedge \ldots \wedge x_{n}=1$ and $f^{A}(\underline{y})=y_{1} \wedge \ldots \wedge y_{n}=1$. Thus $\left(f^{A}(\underline{x}) \wedge f^{A}(\underline{y})\right)=f^{A}(\underline{x} \wedge \underline{y})$. Therefore $f^{A} \vdash \Sigma$.

Let $f^{A} \in F_{B} \operatorname{Mod} \Sigma$, then $f^{A}(\underline{x}) \wedge f^{A}(\underline{y})=f^{A}(\underline{x} \wedge \underline{y})$. Assume f^{A} is not constant. Let $\underline{x} \preceq \underline{y}$, then $x_{i} \wedge y_{i}=x_{i}$ for all $i \in\{1, \ldots, n\}$. Now we have $f^{A}(\underline{x} \wedge \underline{y})=f^{A}(\underline{x})$. Therefore $f^{A}(\underline{x}) \wedge f^{A}(\underline{y})=f^{A}(\underline{x})$. If $f^{A}(\underline{x})=1$, then $f^{A}(\underline{y})=1$. Therefore $f^{A}(\underline{x}) \leq f^{A}(\underline{y})$. Hence f^{A} is monotone.

Let $B=\left\{\underline{x} \in\{0,1\}^{n} \mid f^{A}(\underline{x})=1 \wedge \forall \underline{y}\left(\underline{y} \prec \underline{x} \Rightarrow f^{A}(\underline{y})=0\right)\right\}$. We will show that $|B|=1$. Assume that $|B|>1$. We have $\underline{a}, \underline{b} \in B, \underline{a} \neq \underline{b}$, and then $f^{A}(\underline{a})=1$ and $f^{A}(\underline{b})=1$. Since $\underline{a} \neq \underline{b}, \underline{a} \nprec \underline{b}$ and $\underline{b} \nprec \underline{a}$, then there exist $i, j \in\{1, \ldots, n\}$ and $i \neq j$ such that $a_{i}>b_{i}$ and $b_{j}>a_{j}$. Then $a_{i} \wedge b_{i}=b_{i}<a_{i}$ and $a_{j} \wedge b_{j}=a_{j}$. Consider $k \in\{1, \ldots, n\}$ such that $k \neq i, j$. If $a_{k}=b_{k}$, then $a_{k} \wedge b_{k}=a_{k}$. If $a_{k} \neq b_{k}$, then $a_{k} \wedge b_{k}=0 \leq a_{k}$. Therefore $\underline{a} \wedge \underline{b} \prec \underline{a}$. Further $f^{A}(\underline{a} \wedge \underline{b})=0$. Therefore $f^{A}(\underline{a}) \wedge f^{A}(\underline{b}) \neq f^{A}(\underline{a} \wedge \underline{b})$, a contradiction. Therefore $|B| \leq 1$.

Assume $|B|=\phi$, then there is no $\underline{x} \in\{0,1\}^{n}$ such that $f^{A}(\underline{x})=1$ or if there is an \underline{x} such that $f^{A}(\underline{x})=1$, then there is a \underline{y} with $\underline{y} \prec \underline{x}$ and $f^{A}(\underline{y})=1$.

If there is no $\underline{x} \in\{0,1\}^{n}$ such that $f^{A}(\underline{x})=1$, then $f^{A}(\underline{x})=0$ for all $\underline{x} \in\{0,1\}^{n}$. Therefore f^{A} is constant $\mathbf{0}$, a contradiction.

If there is an \underline{x} such that $f^{A}(\underline{x})=1$, then there is a \underline{y} with $\underline{y} \prec \underline{x}$ and $f^{A}(\underline{y})=1$. Assume $\underline{y}=\underline{0}$, then $f^{A}(\underline{0})=1$. Therefore \bar{f}^{A} is constant $\mathbf{1}$, a contradiction.

Assume $\underline{y} \neq \underline{0}$, now we have $f^{A}(\underline{y})=1$ and since $|B|=\phi$, then there exists $\underline{z_{1}}$ with $\underline{z_{1}} \prec \underline{y}$ and $f^{A}\left(\underline{z_{1}}\right)=1$. If $\underline{z_{1}}=\underline{0}$, then $f^{A}(\underline{0})=1$. Therefore $f^{\bar{A}}$ is constant $\overline{1}$, a contradiction. If $\overline{z_{1}} \neq \underline{0}$, then there exists $\underline{z_{2}}$ with $\underline{z_{2}} \prec \underline{z_{1}}$ and $f^{A}\left(\underline{z_{2}}\right)=1$ otherwise $\underline{z_{2}} \in B$. Applying the same argument then we get the chain $\underline{z_{k}} \prec \underline{z_{k-1}} \prec, \ldots, \prec \underline{z_{1}} \prec \underline{y}$ for some k. Since this chain is finite, then $\overline{z_{k}}=\underline{0}$. Therefore $f^{\bar{A} \text { is constant } 1, ~ a ~}$ contradiction. Therefore $|B| \neq \phi$. Hence $|B|=1$.

Hence f^{A} is monotone and has the property $|B|=1$. Since f^{A} is not constant $\mathbf{0}$, then $f^{A}(\underline{1})=1$. Therefore $B=\{\underline{1}\}$. Hence $f^{A}(\underline{x})=0$ for all $\underline{x} \neq \underline{1}$. Therefore $f^{A}(\underline{x})=f^{A}\left(x_{1}, \ldots, x_{n}\right)=x_{1} \wedge \ldots \wedge x_{n}$. Since $P_{3}=P_{6} \cap C_{3}, P_{5}=P_{6} \cap C_{2}$ and $P_{1}=P_{6} \cap C_{4}$, then one can apply Lemma 4.1, Lemma 4.2 and Lemma 4.3.

Proposition 4.13.

$$
\begin{aligned}
& S_{6}=F_{B} \operatorname{Mod}\{F(\underline{x}) \vee F(\underline{y}) \approx F(\underline{x} \vee \underline{y})\}, \\
& \left.S_{5}=F_{B} \operatorname{Mod}\{\neg F(\underline{0}) \wedge((F(\underline{x}) \vee F(\underline{y})) \Leftrightarrow F(\underline{x} \vee \underline{y}))) \approx 1\right\} \\
& \left.S_{3}=F_{B} \operatorname{Mod}\{F(\underline{1}) \wedge((F(\underline{x}) \vee F(\underline{y})) \Leftrightarrow F(\underline{x} \vee \underline{y}))) \approx 1\right\} \\
& \left.S_{1}=F_{B} \operatorname{Mod}\{\neg F(\underline{0}) \wedge F(\underline{1}) \wedge((F(\underline{x}) \vee F(\underline{y})) \Leftrightarrow F(\underline{x} \vee \underline{y}))) \approx 1\right\} .
\end{aligned}
$$

Proof. Since $S_{6}=\left(P_{6}\right)^{d}$, then by Corollary $4.5 S_{6}=F_{B} \operatorname{Mod}\{F(\underline{x}) \vee$ $F(\underline{y}) \approx F(\underline{x} \vee \underline{y})\}$.

Since $S_{5}=S_{6} \cap C_{3}, S_{3}=S_{6} \cap C_{2}$ and $S_{1}=S_{6} \cap C_{4}$, one can apply lemmas 4.1, 4.2 and 4.3.

Let $\underline{x_{i}}$ be the n-tuple $\underline{x_{i}}=\left(x_{i_{1}}, \ldots, x_{i_{n}}\right)$.
Proposition 4.14. For each $\mu \geq 2$,

$$
\begin{aligned}
F_{8}^{\mu}= & F_{B} \operatorname{Mod}\left\{\bigwedge_{i=1}^{\mu-1} F\left(\underline{x_{i}}\right) \Rightarrow \neg F\left(\underline{x_{1} \wedge \ldots \wedge \underline{x_{\mu-1}}} \wedge \underline{y}\right) \approx 1\right\} \\
F_{5}^{\mu}= & F_{B} \operatorname{Mod}\left\{F(\underline{1}) \wedge\left(\bigwedge_{i=1}^{\mu-1} F\left(\underline{x_{i}}\right) \Rightarrow \neg F\left(\underline{x_{1} \wedge \ldots \wedge \underline{x_{\mu-1}}} \wedge \underline{y}\right)\right) \approx 1\right\} \\
F_{7}^{\mu}= & F_{B} \operatorname{Mod}\left\{\bigwedge_{i=1}^{\mu-1} F\left(\underline{x_{i}}\right) \Rightarrow \neg F\left(\underline{x_{1} \wedge \ldots \wedge \underline{x_{\mu-1}}}\right) \wedge F\left(\underline{x_{1}} \vee \underline{x_{2}}\right) \approx 1\right\} \\
F_{6}^{\mu}= & F_{B} \operatorname{Mod}\left\{F (\underline { 1 }) \wedge \left(\bigwedge_{i=1}^{\mu-1} F\left(\underline{x_{i}}\right) \Rightarrow \neg F\left(\underline{x_{1} \wedge \ldots \wedge \underline{x_{\mu-1}}}\right) \wedge\right.\right. \\
& \left.\left.F\left(\underline{x_{1}} \vee \underline{x_{2}}\right)\right) \approx 1\right\} .
\end{aligned}
$$

Proof. Let $f^{A} \in F_{8}^{\mu}$ and let $\Sigma=\left\{\bigwedge_{i=1}^{\mu-1} F\left(\underline{x_{i}}\right) \Rightarrow \neg F\left(\underline{x_{1}} \wedge \ldots \wedge \underline{x_{\mu-1}} \wedge \underline{y}\right) \approx\right.$ $1\}$, then for any $\alpha_{1}, \ldots, \alpha_{\mu} \in\{0,1\}^{n}$: if $f^{A}\left(\alpha_{1}\right)=\cdots=f^{A}\left(\alpha_{\mu}\right)=1$, then $\alpha_{1} \wedge \ldots \wedge \alpha_{\mu} \neq(0, \ldots, 0)$. Assume $f^{A}\left(\alpha_{1}\right)=\cdots=f^{A}\left(\alpha_{\mu-1}\right)=$ 1 , and let $\beta=\overline{\alpha_{1} \wedge \ldots \wedge \alpha_{\mu-1}} \wedge \alpha_{\mu}$, then $\beta \wedge\left(\alpha_{1} \wedge \ldots \wedge \alpha_{\mu-1}\right)=$ $\overline{\alpha_{1} \wedge \ldots \wedge \alpha_{\mu-1}} \wedge \alpha_{\mu} \wedge\left(\alpha_{1} \wedge \ldots \wedge \alpha_{\mu-1}\right)=(0, \ldots, 0)$. Therefore by the contrapositive of the implication which defines the elements from F_{8}^{μ} we get $f^{A}(\beta)=0$. Then $f^{A}\left(\alpha_{1}\right) \wedge \ldots \wedge f^{A}\left(\alpha_{\mu-1}\right) \Rightarrow \neg f^{A}\left(\overline{\alpha_{1} \wedge \ldots \wedge \alpha_{\mu-1}} \wedge \alpha_{\mu}\right)=$ 1. If there exists α_{i} such that $f^{A}\left(\alpha_{i}\right)=0$ for some $i \in\{1, \ldots, \mu-1\}$, then $f^{A}\left(\alpha_{1}\right) \wedge \ldots \wedge f^{A}\left(\alpha_{\mu-1}\right) \Rightarrow \neg f^{A}\left(\overline{\alpha_{1} \wedge \ldots \wedge \alpha_{\mu-1}} \wedge \alpha_{\mu}\right)=1$. Therefore $f^{A} \vdash \Sigma$.

Let $f^{A} \in F_{B} \operatorname{Mod} \Sigma$, then $\bigwedge_{i=1}^{\mu-1} f^{A}\left(\underline{x_{i}}\right) \Rightarrow \neg f^{A}\left(\underline{x_{1} \wedge \ldots \wedge \underline{x_{\mu-1}}} \wedge \underline{x_{\mu}}\right)=$

1. Assume $f^{A}(\underline{0}) \neq 0$, i.e. $f^{A}(\underline{0})=1$. Since $\bigwedge_{i=1}^{\mu-1} f^{A}(\underline{0})=1$ and $\neg f^{A}(\overline{0 \wedge \ldots \wedge 0} \wedge \underline{0})=\neg f^{A}(\underline{0})=\neg 1=0$, then $\bigwedge_{i=1}^{\mu-1} f^{A}(\underline{0}) \Rightarrow$ $\neg f^{A}(\underline{\overline{0} \wedge \ldots \wedge \underline{0}} \wedge \underline{0})=0$, a contradiction. Therefore $f^{A}(\underline{0})=0$.
Let $\alpha_{1}, \ldots, \alpha_{\mu} \in\{0,1\}^{n}$ such that $f^{A}\left(\alpha_{1}\right)=\ldots=f^{A}\left(\alpha_{\mu}\right)=1$. Because of $\left(f^{A}\left(\alpha_{1}\right) \wedge \ldots \wedge f^{A}\left(\alpha_{\mu-1}\right)\right) \Rightarrow \neg f^{A}\left(\overline{\alpha_{1} \wedge \ldots \alpha_{\mu-1}} \wedge \underline{x}\right)=1$ for all $\underline{x} \in\{0,1\}^{n}$ we have $\neg f^{A}\left(\overline{\alpha_{1} \wedge \ldots \alpha_{\mu-1}} \wedge \alpha_{\mu}\right)=1$, i.e $f^{A}\left(\overline{\alpha_{1} \wedge \ldots \alpha_{\mu-1}} \wedge\right.$ $\left.\alpha_{\mu}\right)=0$. Assume $\left(\alpha_{1} \wedge \ldots \wedge \alpha_{\mu-1}\right) \wedge \alpha_{\mu}=\underline{0}$, then $\overline{\alpha_{1} \wedge \ldots \wedge \alpha_{\mu-1}} \wedge \alpha_{\mu}=$ α_{μ}. Therefore $f^{A}\left(\alpha_{\mu}\right)=f^{A}\left(\overline{\alpha_{1} \wedge \ldots \alpha_{\mu-1}} \wedge \alpha_{\mu}\right)=0$, a contradiction. Hence $\left(\alpha_{1} \wedge \ldots \alpha_{\mu-1}\right) \wedge \alpha_{\mu} \neq \underline{0}$. Therefore $f^{A} \in F_{8}^{\mu}$.

Since $F_{5}^{\mu}=F_{8}^{\mu} \cap C_{4}, F_{7}^{\mu}=F_{8}^{\mu} \cap A_{1}, F_{6}^{\mu}=F_{8}^{\mu} \cap A_{4}$, one can apply Lemma 4.3.

Proposition 4.15. For each $\mu \geq 2$,

$$
\begin{aligned}
F_{4}^{\mu}= & F_{B} \operatorname{Mod}\left\{\bigwedge _ { i = 1 } ^ { \mu - 1 } \neg F (\underline { x _ { i } }) \Rightarrow F \left(\underline{\left.\left.\overline{x_{1}} \vee \ldots \vee \underline{x_{\mu-1}} \vee \underline{y}\right) \approx 1\right\}}\right.\right. \\
F_{1}^{\mu}= & F_{B} \operatorname{Mod}\left\{\neg F(\underline{0}) \wedge\left(\bigwedge_{i=1}^{\mu-1} \neg F\left(\underline{x_{i}}\right) \Rightarrow F\left(\underline{x_{1}} \vee \ldots \vee \underline{x_{\mu-1}} \vee \underline{y}\right)\right) \approx 1\right\} \\
F_{3}^{\mu}= & F_{B} \operatorname{Mod}\left\{\bigwedge_{i=1}^{\mu-1} \neg F\left(\underline{x_{i}}\right) \Rightarrow F\left(\underline{x_{1}} \vee \ldots \vee \underline{x_{\mu-1}}\right) \wedge \neg F\left(\underline{x_{1}} \wedge \underline{x_{2}}\right) \approx 1\right\}, \\
F_{2}^{\mu}= & F_{B} \operatorname{Mod}\left\{\neg F (\underline { 0 }) \wedge \left(\bigwedge_{i=1}^{\mu-1} \neg F\left(\underline{x_{i}}\right) \Rightarrow F\left(\underline{x_{1}} \vee \ldots \vee \underline{x_{\mu-1}}\right) \wedge\right.\right. \\
& \left.\left.\neg F\left(\underline{x_{1}} \wedge \underline{x_{2}}\right)\right) \approx 1\right\} .
\end{aligned}
$$

Proof. Let $f^{A} \in F_{4}^{\mu}$ and let $\sigma=\left\{\bigwedge_{i=1}^{\mu-1} \neg F\left(\underline{x_{i}}\right) \Rightarrow \neg F\left(\underline{x_{1} \vee \ldots \vee \underline{x_{\mu-1}}} \vee\right.\right.$ $\underline{y}) \approx 1\}$, then for any $\alpha_{1}, \ldots, \alpha_{\mu} \in\{0,1\}^{n}:$ if $f^{A}\left(\alpha_{1}\right)=\cdots=f^{A}\left(\alpha_{\mu}\right)=$ 0 , then $\alpha_{1} \vee \ldots \vee \alpha_{\mu} \neq(1, \ldots, 1)$. If $f^{A}\left(\alpha_{1}\right)=\ldots=f^{A}\left(\alpha_{\mu-1}\right)=0$, we get $\neg f^{A}\left(\alpha_{i}\right)=1$ for all $i \in\{0,1\}^{n}$. Let $\beta=\overline{\alpha_{1} \vee \ldots \vee \alpha_{\mu-1}} \vee$ α_{μ}, then $\beta \vee\left(\alpha_{1} \vee \ldots \vee \alpha_{\mu-1}\right)=\left(\overline{\alpha_{1} \vee \ldots \vee \alpha_{\mu-1}} \vee \alpha_{\mu}\right) \vee\left(\alpha_{1} \vee \ldots \vee\right.$ $\left.\alpha_{\mu-1}\right)=(1, \ldots, 1) \vee \alpha_{\mu}=(1, \ldots, 1)$. Then by the contrapositive of the implication which defines the elements from F_{4}^{μ} we get $f^{A}(\beta)=1$, i.e. we have $f^{A}(\beta)=f^{A}\left(\overline{\alpha_{1} \vee \ldots \vee \alpha_{\mu-1}} \vee \alpha_{\mu}\right)=1$. Then $\neg f^{A}\left(\alpha_{1}\right) \vee \ldots \vee$ $\neg f^{A}\left(\alpha_{\mu-1}\right) \Rightarrow f^{A}\left(\overline{\alpha_{1} \vee \ldots \vee \alpha_{\mu-1}} \vee \alpha_{\mu}\right)=1$. If there exists α_{i} such that $f^{A}\left(\alpha_{i}\right)=1$ for some $i \in\{1, \ldots, \mu-1\}$, then $\neg f^{A}\left(\alpha_{i}\right)=0$. Thus $\neg f^{A}\left(\alpha_{1}\right) \wedge \ldots \wedge \neg f^{A}\left(\alpha_{\mu-1}\right) \Rightarrow f^{A}\left(\overline{\alpha_{1} \vee \ldots \vee \alpha_{\mu-1}} \vee \alpha_{\mu}\right)=1$. Therefore $f^{A} \vdash \Sigma$.

Let $f^{A} \in F_{B} \operatorname{Mod} \Sigma$, then $\bigwedge_{i=1}^{\mu-1} \neg f^{A}\left(\underline{x_{i}}\right) \Rightarrow f^{A}\left(\underline{x_{1} \vee \ldots \vee \underline{x_{\mu-1}}} \vee x_{\mu}\right)=$ 1. Assume $f^{A}(\underline{1}) \neq 1$, i.e. $f^{A}(\underline{1})=0$, then $\bigwedge_{i=1}^{\mu-1} \neg f^{A}(\underline{1}) \Rightarrow f^{A}(\overline{1 \vee \ldots \vee 1} \vee$ $\underline{1})=0$, a contradiction. Therefore $f^{A}(\underline{1})=1$.

Let $\alpha_{1}, \ldots, \alpha_{\mu} \in\{0,1\}^{n}$ such that $f^{A}\left(\alpha_{1}\right)=\ldots=f^{A}\left(\alpha_{\mu}\right)=0$. Then $\neg f^{A}\left(\alpha_{i}\right)=1$ for all $i \in\{1, \ldots, \mu\}$. Therefore $\neg f^{A}\left(\alpha_{1}\right) \wedge \ldots \wedge \neg f^{A}\left(\alpha_{\mu-1}\right)$ $\Rightarrow f^{A}\left(\overline{\alpha_{1} \vee \ldots \alpha_{\mu-1}} \vee \underline{x}\right)=1$ for all $\underline{x} \in\{0,1\}^{n}$. This gives

$$
f^{A}\left(\overline{\alpha_{1} \vee \ldots \alpha_{\mu-1}} \vee \alpha_{\mu}\right)=1
$$

Assume $\left(\alpha_{1} \vee \ldots \vee \alpha_{\mu-1}\right) \vee \alpha_{\mu}=\underline{1}$, then $\overline{\left.\alpha_{1} \vee \ldots \vee \alpha_{\mu-1}\right)} \vee \alpha_{\mu}=\alpha_{\mu}$. Therefore $f^{A}\left(\alpha_{\mu}\right)=f^{A}\left(\overline{\left.\alpha_{1} \vee \ldots \alpha_{\mu-1}\right)} \vee \alpha_{\mu}\right)=1$, a contradiction. Hence $\left(\alpha_{1} \vee \ldots \vee \alpha_{\mu-1}\right) \vee \alpha_{\mu} \neq \underline{1}$. Therefore $f^{A} \in F_{4}^{\mu}$.

Since $F_{1}^{\mu}=F_{4}^{\mu} \cap C_{4}, F_{3}^{\mu}=F_{4}^{\mu} \cap A_{1}$, and $F_{2}^{\mu}=F_{4}^{\mu} \cap A_{4}$, one can apply Lemma 4.3.

Proposition 4.16. $O_{9}=F_{B} \operatorname{Mod}\{((F(\underline{x}) \Leftrightarrow F(\underline{y})) \Rightarrow(F(\underline{x} \Leftrightarrow F(\underline{x} \wedge$ $\underline{y}))) \wedge(1 \oplus F(\underline{0}) \oplus F(\underline{y}) \oplus F(\underline{x} \oplus \underline{y})) \approx 1\}$.
Proof. Let $f^{A} \in O_{9}$ and let $\Sigma=\{((F(\underline{x}) \Leftrightarrow F(y)) \Rightarrow(F(\underline{x} \Leftrightarrow F(\underline{x} \wedge y))) \wedge$ $(1 \oplus F(\underline{0}) \oplus F(\underline{y}) \oplus F(\underline{x} \oplus \underline{y})) \approx 1\}$. If f^{A} is the constant, then $f^{\bar{A}} \vdash \Sigma$. If f^{A} is the identity mapping, then $\left(\left(f^{A}(\underline{x}) \Leftrightarrow f^{A}(\underline{y})\right) \Rightarrow\left(f^{A}(\underline{x}) \Leftrightarrow\right.\right.$ $\left.f^{A}(\underline{x} \wedge \underline{y})\right)=((x \Leftrightarrow y) \Rightarrow(x \Leftrightarrow(x \wedge y)))=((x \Leftrightarrow y) \Rightarrow(x \Leftrightarrow(x \wedge y)))$ and this is a tautology. Since $1 \oplus f^{A}(\underline{0}) \oplus f^{A}(\underline{x}) \oplus f^{A}(\underline{y}) \oplus f^{A}(\underline{x} \oplus \underline{y})=$ $1 \oplus 0 \oplus x \oplus y \oplus(x \oplus y)=1$, then $\left(\left(f^{A}(\underline{x}) \Leftrightarrow f^{A}(\underline{y})\right) \Rightarrow\left(f^{A}(\underline{x}) \Leftrightarrow\right.\right.$ $\left.f^{A}(\underline{x} \wedge \underline{y})\right) \wedge\left(1 \oplus f^{A}(\underline{0}) \oplus f^{A}(\underline{x}) \oplus f^{A}(\underline{y}) \oplus f^{A}(\underline{x} \oplus \underline{y})\right)=1$. If f^{A} is the negation, then $\left(\left(f^{A}(\underline{x}) \Leftrightarrow f^{A}(\underline{y})\right) \Rightarrow\left(f^{\bar{A}}(\underline{x}) \Leftrightarrow f^{A}(\underline{x} \wedge \underline{y})\right) \wedge\left(1 \oplus f^{A}(\underline{0}) \oplus\right.\right.$ $\left.f^{A}(\underline{x}) \oplus f^{A}(\underline{y}) \oplus f^{A}(\underline{x} \oplus \underline{y})\right)=((y \Leftrightarrow x) \Rightarrow(y \Leftrightarrow \neg(x \wedge y))) \wedge(1 \oplus 1 \oplus$ $y \oplus x \oplus \neg(x \oplus y))=((y \Leftrightarrow x) \Rightarrow(y \Leftrightarrow(y \vee x))) \wedge(y \oplus x \oplus \neg(x \oplus y))=1$. Therefore $f^{A} \vdash \Sigma$.

Let $f^{A} \in F_{B} \operatorname{Mod} \Sigma$, then $\left(\left(f^{A}(\underline{x}) \Leftrightarrow f^{A}(\underline{y})\right) \Rightarrow\left(f^{A}(\underline{x}) \Leftrightarrow f^{A}(\underline{x} \wedge\right.\right.$ $\underline{y})) \wedge\left(1 \oplus f^{A}(\underline{0}) \oplus f^{A}(\underline{x}) \oplus f^{A}(\underline{y}) \oplus f^{A}(\underline{x} \oplus \underline{y})\right)=1$. Then $1 \oplus f^{A}(\underline{0}) \oplus$ $\bar{f}^{A}(\underline{x}) \oplus f^{A}(\underline{y}) \oplus f^{A}(\underline{x} \oplus \underline{y})=1$. Therefore $f^{\bar{A}}$ is linear.

Next we will show that f^{A} depends essentially on at most one variable. If f^{A} does not depend on any varaiable, then f^{A} is the constant $\mathbf{0}$ or $\mathbf{1}$. Then $f^{A} \in O_{9}$. If f^{A} is essentially depending on one variable, then $f^{A} \in\{x, \neg x\}$. Then $f^{A} \in O_{9}$. Assume f^{A} depends essentially on more than one variable, i.e. f^{A} has at least two essential variables. Let x_{1}, x_{2} be essential variables of f^{A}, then $f^{A}(\underline{x})=$ $f^{A}\left(x_{1}, \ldots, x_{n}\right)=x_{1} \oplus x_{2} \oplus f^{A}\left(0,0, x_{3}, \ldots, x_{n}\right)$. Let $\alpha=\left(0,1, x_{3}, \ldots, x_{n}\right)$ and $\beta=\left(1,0, x_{3}, \ldots, x_{n}\right)$, then $f^{A}(\alpha)=0 \oplus 1 \oplus f^{A}\left(0,0, x_{3}, \ldots, x_{n}\right)=$
$1 \oplus 0 \oplus f^{A}\left(0,0, x_{3}, \ldots, x_{n}\right)=f^{A}(\beta)$. Therefore $f^{A}(\alpha)=f^{A}(\beta)$. Since $f^{A} \vdash \Sigma$, then $\left(f^{A}(\alpha) \Leftrightarrow f^{A}(\beta)\right) \Rightarrow\left(f^{A}(\alpha) \Leftrightarrow f^{A}(\alpha \wedge \beta)\right)=1$. Therefore $f^{A}(\alpha)=f^{A}(\alpha \wedge \beta)$. Since $f^{A}(\alpha \wedge \beta)=f^{A}\left(0 \wedge 1,1 \wedge 0, x_{3} \wedge x_{3}, \ldots, x_{n} \wedge x_{n}\right)=$ $f^{A}\left(0,0, x_{3}, \ldots, x_{n}\right)=\neg f^{A}(\alpha)$, then $f^{A}(\alpha) \neq f^{A}(\alpha \wedge \beta)=\neg f^{A}(\alpha)$, a contradiction. Therefore f^{A} depends essentially on one variable.

Proposition 4.17. $O_{4}=F_{B} \operatorname{Mod}\{(F(\underline{0}) \oplus F(\underline{1})) \wedge((F(\underline{x}) \Leftrightarrow F(\underline{y})) \Rightarrow$ $(F(\underline{x}) \Leftrightarrow F(\underline{x} \wedge \underline{y}))) \wedge(1 \oplus F(\underline{0}) \oplus F(\underline{x}) \oplus F(\underline{y}) \oplus F(\underline{x} \oplus \underline{y})) \approx 1\}$.

Proof. Let $f^{A} \in O_{4}$ and let $\Sigma=\{(F(\underline{0}) \oplus F(\underline{1})) \wedge((F(\underline{x}) \Leftrightarrow F(\underline{y})) \Rightarrow$ $(F(\underline{x}) \Leftrightarrow F(\underline{x} \wedge \underline{y}))) \wedge(1 \oplus F(\underline{0}) \oplus F(\underline{x}) \oplus F(\underline{y}) \oplus F(\underline{x} \oplus \underline{y})) \approx 1\}$, then $f^{A} \vdash((F(\underline{x}) \Leftrightarrow F(\underline{y})) \Rightarrow(F(\underline{x} \Leftrightarrow F(\underline{x} \wedge \underline{y}))) \wedge(1 \oplus \bar{F}(\underline{0}) \oplus F(\underline{x}) \oplus$ $F(\underline{y}) \oplus F(\underline{x} \oplus \underline{y})) \approx 1\}$. Since f^{A} is the identity or the negation, then $f^{A}(\underline{0}) \oplus f^{A}(\underline{1})=1$. Further $\left(f^{A}(\underline{0}) \oplus f^{A}(\underline{1})\right) \wedge\left(\left(f^{A}(\underline{x}) \Leftrightarrow f^{A}(\underline{y})\right) \Rightarrow\right.$ $\left.\left(f^{A}(\underline{x}) \Leftrightarrow f^{A}(\underline{x} \wedge \underline{y})\right)\right) \wedge\left(1 \oplus f^{A}(\underline{0}) \oplus f^{A}(\underline{x}) \oplus f^{A}(\underline{y}) \oplus f^{A}(\underline{x} \oplus \underline{y})\right)=1$. Therefore $f^{A} \vdash \Sigma$.

Let $f^{A} \in F_{B} \operatorname{Mod} \Sigma$, then $\left(f^{A}(\underline{0}) \oplus f^{A}(\underline{1})\right) \wedge\left(\left(f^{A}(\underline{x}) \Leftrightarrow f^{A}(\underline{y})\right) \Rightarrow\right.$ $\left(f^{A}\left(\underline{x} \Leftrightarrow f^{A}(\underline{x} \wedge \underline{y})\right)\right) \wedge\left(1 \oplus f^{A}(\underline{0}) \oplus F(\underline{x}) \oplus f^{A}(\underline{y}) \oplus f^{A}(\underline{x} \oplus \underline{y})\right)=1$. Now we get $f^{A}(\underline{0}) \oplus f^{A}(\underline{1})=1$ and $\left(\left(f^{A}(\underline{x}) \Leftrightarrow f^{A}(\underline{y})\right) \Rightarrow\left(f^{A}(\underline{x}) \Leftrightarrow\right.\right.$ $\left.\left.f^{A}(\underline{x} \wedge \underline{y})\right)\right) \wedge\left(1 \oplus f^{A}(\underline{0}) \oplus f^{A}(\underline{x}) \oplus f^{A}(\underline{y}) \oplus f^{A}(\underline{x} \oplus \underline{y})\right)=1$. Then $f^{A} \in O_{9}$. Since $f^{A}(\underline{0}) \oplus f^{A}(\underline{1})=1$, then $f^{\bar{A}} \in\{x, \neg x\}$.

Proposition 4.18. $O_{8}=F_{B} \operatorname{Mod}\{(F(\underline{x}) \Rightarrow F(\underline{x}) \vee \underline{y})) \wedge(1 \oplus F(\underline{0}) \oplus$ $F(\underline{x}) \oplus F(\underline{y}) \oplus F(\underline{x} \oplus \underline{y})) \approx 1\}$.

Proof. Let $f^{A} \in O_{8}$ and let $\Sigma=\{(F(\underline{x}) \Rightarrow F(\underline{x}) \vee \underline{y})) \wedge(1 \oplus F(\underline{0}) \oplus F(\underline{x}) \oplus$ $F(y) \oplus F(\underline{x} \oplus \underline{y})) \approx 1\}$. Since $O_{8} \subseteq A_{1}$ and $O_{8} \subseteq L_{1}$, then $f^{A}(\underline{x}) \Rightarrow$ $f^{A}(\underline{x} \vee \underline{y})=1$ and $1 \oplus f^{A}(\underline{0}) \oplus f^{A}(\underline{x}) \oplus f^{A}(\underline{y}) \oplus f^{A}(\underline{x} \oplus \underline{y})=1$. Therefore $\left(f^{A}(\underline{x}) \Rightarrow f^{A}(\underline{x} \vee \underline{y})\right) \wedge\left(1 \oplus f^{A}(\underline{0}) \oplus f^{A}(\underline{x}) \oplus f^{A}(\underline{y}) \oplus f^{A}(\underline{x} \oplus \underline{y})\right)=1$. Hence $f^{A} \vdash \Sigma$.

Let $f^{A} \in F_{B} \operatorname{Mod} \Sigma$, then $\left(f^{A}(\underline{x}) \Rightarrow f^{A}(\underline{x} \vee \underline{y})\right) \wedge\left(1 \oplus f^{A}(\underline{0}) \oplus f^{A}(\underline{x}) \oplus\right.$ $\left.f^{A}(\underline{y}) \oplus f^{A}(\underline{x} \oplus \underline{y})\right)=1$. Therefore $f^{A}(\underline{x}) \Rightarrow f^{A}(\underline{x} \vee \underline{y})=1$ and $1 \oplus$ $f^{A}(\underline{\underline{0}}) \oplus f^{A}(\underline{x}) \oplus f^{A}(\underline{y}) \oplus f^{A}(\underline{x} \oplus \underline{y})=1$. Hence $f^{A} \in \bar{A}_{1}$ and $f^{A} \in L_{1}$. Thus $f^{A} \in\{\mathbf{0}, \mathbf{1}, x\}$.

Proposition 4.19. $O_{6}=F_{B} \operatorname{Mod}\{(F(\underline{x}) \Rightarrow F(\underline{x} \vee \underline{y})) \wedge(1 \oplus F(\underline{x}) \oplus$ $F(\underline{y}) \oplus F(\underline{x} \oplus \underline{y})) \approx 1\}$.

Proof. Let $f^{A} \in O_{6}$ and let $\Sigma=\{(F(\underline{x}) \Rightarrow F(\underline{x} \vee \underline{y})) \wedge(1 \oplus F(\underline{x}) \oplus$ $F(\underline{y}) \oplus F(\underline{x} \oplus \underline{y})) \approx 1\}$. If f^{A} is the constant, then $f^{A} \vdash \Sigma$. If f^{A} is the identity, then $f^{A}(\underline{x}) \Rightarrow f^{A}(\underline{x} \vee \underline{y})=x \Rightarrow(x \vee y)=1$ and $1 \oplus$
$f^{A}(\underline{x}) \oplus f^{A}(\underline{y}) \oplus f^{A}(\underline{x} \oplus \underline{y})=1 \oplus x \oplus y \oplus(x \oplus y)=1$. Then $\left(f^{A}(\underline{x}) \Rightarrow\right.$ $\left.f^{A}(\underline{x} \vee \underline{y})\right) \wedge\left(1 \oplus f^{A}(\underline{x}) \oplus f^{A}(\underline{y}) \oplus f^{A}(\underline{x} \oplus \underline{y})\right)=1$. Therefore $f^{A} \vdash \Sigma$.

Let $f^{A} \in F_{B} \operatorname{Mod} \Sigma$, then $\left(f^{A}(\underline{x}) \Rightarrow f^{A}(\underline{x} \vee \underline{y})\right) \wedge\left(1 \oplus f^{A}(\underline{x}) \oplus f^{A}(\underline{y}) \oplus\right.$ $\left.f^{A}(\underline{x} \oplus \underline{y})\right)=1$. Thus $f^{A}(\underline{x}) \Rightarrow f^{A}(\underline{x} \vee \underline{y})=1$ and $1 \oplus f^{A}(\underline{x}) \oplus f^{A}(\underline{y}) \oplus$ $f^{A}(\underline{x} \oplus \underline{y})=1$. Therefore $f^{A} \in A_{1}$ and $\bar{f}^{A} \in L_{3}$. Hence $f^{A} \in O_{6}$.

Proposition 4.20. $O_{5}=F_{B} \operatorname{Mod}\{F(\underline{1}) \wedge(F(\underline{x}) \Rightarrow F(\underline{x} \vee \underline{y})) \wedge(1 \oplus F(\underline{0}) \oplus$ $F(\underline{x}) \oplus F(\underline{y}) \oplus F(\underline{x} \oplus \underline{y})) \approx 1\}$.

Proof. Let $f^{A} \in O_{5}$ and let $\Sigma=\{F(\underline{1}) \wedge(F(\underline{x}) \Rightarrow F(\underline{x} \vee \underline{y})) \wedge(1 \oplus$ $F(\underline{0}) \oplus F(\underline{x}) \oplus F(\underline{y}) \oplus F(\underline{x} \oplus \underline{y})) \approx 1\}$. If f^{A} is the constant 1 , then $f^{A} \vdash \Sigma$. If f^{A} is the identity, then $f^{A}(\underline{1})=1$ and $\left(f^{A}(\underline{x}) \Rightarrow f^{A}(\underline{x} \vee \underline{y})\right) \wedge$ $\left(1 \oplus f^{A}(\underline{0}) \oplus f^{A}(\underline{x}) \oplus f^{A}(\underline{y}) \oplus f^{A}(\underline{x} \oplus \underline{y})\right)=1$. Then $f^{A}(\underline{1}) \wedge\left(f^{A}(\underline{x}) \Rightarrow\right.$ $\left.f^{A}(\underline{x} \vee \underline{y})\right) \wedge\left(1 \oplus f^{A}(\underline{0}) \oplus f^{A}(\underline{x}) \oplus f^{A}(\underline{y}) \oplus f^{A}(\underline{x} \oplus \underline{y})\right)=1 \wedge 1 \wedge 1=1$. Therefore $f^{A} \vdash \Sigma$.

Let $f^{A} \in F_{B} \operatorname{Mod} \Sigma$, then $f^{A}(\underline{1}) \wedge\left(f^{A}(\underline{x}) \Rightarrow f^{A}(\underline{x} \vee y)\right) \wedge\left(1 \oplus f^{A}(\underline{0}) \oplus\right.$ $\left.f^{A}(\underline{x}) \oplus f^{A}(\underline{y}) \oplus f^{A}(\underline{x} \oplus \underline{y})\right)=1$. Then $f^{A}(\underline{1})=1, f^{A}(\underline{x}) \Rightarrow f^{A}(\underline{x} \vee \underline{y})=1$ and $1 \oplus f^{A}(\underline{0}) \oplus f^{A}(\underline{x}) \oplus f^{A}(\underline{y}) \oplus f^{A}(\underline{x} \oplus \underline{y})=1$. Therefore $f^{A} \in C_{2}$, $f^{A} \in A_{1}$ and $f^{A} \in L_{3}$. Hence $\bar{f}^{A} \in O_{6}$

Proposition 4.21. $O_{1}=F_{B} \operatorname{Mod}\{F(\underline{1}) \wedge(F(\underline{x}) \Rightarrow F(\underline{x} \vee \underline{y})) \wedge(1 \oplus$ $F(\underline{x}) \oplus F(\underline{y}) \oplus F(\underline{x} \oplus \underline{y})) \approx 1\}$.

Proof. Let $f^{A} \in O_{1}$ and let $\{F(\underline{1}) \wedge(F(\underline{x}) \Rightarrow F(\underline{x} \vee \underline{y})) \wedge(1 \oplus F(\underline{x}) \oplus F(\underline{y}) \oplus$ $F(\underline{x} \oplus \underline{y})) \approx 1\}$, then $f^{A}(\underline{1})=1$ and $\left(f^{A}(\underline{x}) \Rightarrow f^{A}(\underline{x} \vee \underline{y})\right) \wedge\left(1 \oplus f^{A}(\underline{x}) \oplus\right.$ $\left.f^{A}(\underline{y}) \oplus f^{A}(\underline{x} \oplus \underline{y})\right)=1$. Then $f^{A}(\underline{1}) \wedge\left(f^{A}(\underline{x}) \Rightarrow f^{A}(\underline{x} \vee \underline{y})\right) \wedge\left(1 \oplus f^{A}(\underline{x}) \oplus\right.$ $\left.f^{A}(\underline{y}) \oplus f^{A}(\underline{x} \oplus \underline{y})\right)=1$. Therefore $f^{A} \vdash \Sigma$. Let $f^{A} \in F_{B} M o d \Sigma$, then $f^{A}(\underline{1}) \wedge\left(f^{A}(\underline{x}) \Rightarrow f^{A}(\underline{x} \vee \underline{y})\right) \wedge\left(1 \oplus f^{A}(\underline{x}) \oplus f^{A}(\underline{y}) \oplus f^{A}(\underline{x} \oplus \underline{y})\right)=1$. Then $f^{A}(\underline{1})=1$ and $\left.f^{A}(\underline{x}) \Rightarrow \bar{f}^{A}(\underline{x} \vee \underline{y})\right) \wedge\left(1 \oplus f^{A}(\underline{x}) \oplus f^{A}(\underline{y}) \oplus f^{\bar{A}}(\underline{x} \oplus \underline{y})\right)=1$. Therefore $f^{A} \in C_{2}$ and $f^{A} \in O_{6}$. Assume $f^{A}(\underline{0}) \neq 0$, i.e. $f^{A}(\underline{0})=1$, then $1 \oplus f^{A}(\underline{0}) \oplus f^{A}(\underline{1}) \oplus f^{A}(\underline{0} \oplus \underline{1})=0$, a contradiction. Then $f^{A}(\underline{0})=0$. Therefore $f^{A} \in O_{1}$.

Proposition 4.22.

$$
\left.\left.\left.\left.\left.\left.\begin{array}{rl}
F_{8}^{\infty}= & F_{B} \operatorname{Mod}\left\{\bigwedge _ { i = 1 } ^ { \mu - 1 } F (\underline { x _ { i } }) \Rightarrow \neg F \left(\underline{x_{1}} \wedge \ldots \wedge \underline{x_{\mu-1}}\right.\right. \\
\underline{y}
\end{array}\right)\right) \approx 1 \mid \mu \geq 2\right\}, ~ \begin{array}{rl}
F_{5}^{\infty}= & F_{B} \operatorname{Mod}\left\{F (\underline { 1 }) \wedge \left(\bigwedge _ { i = 1 } ^ { \mu - 1 } F (\underline { x _ { i } }) \Rightarrow \neg F \left(\underline{x_{1}} \wedge \ldots \wedge \underline{x_{\mu-1}}\right.\right.\right.
\end{array} \underline{y}\right)\right) \approx 1\right)
$$

$$
\begin{aligned}
F_{7}^{\infty}= & F_{B} \operatorname{Mod}\left\{\bigwedge_{i=1}^{\mu-1} F\left(\underline{x_{i}}\right) \Rightarrow \neg F\left(\underline{x_{1} \wedge \ldots \wedge \underline{x_{\mu-1}}}\right) \wedge F\left(\underline{x_{1}} \vee \underline{x_{2}}\right) \approx 1\right. \\
& \mid \mu \geq 2\}, \\
F_{6}^{\infty}= & F_{B} \operatorname{Mod}\left\{F (\underline { 1 }) \wedge \left(\bigwedge_{i=1}^{\mu-1} F\left(\underline{x_{i}}\right) \Rightarrow \neg F\left(\underline{\underline{x_{1}} \wedge \ldots \wedge \underline{x_{\mu-1}}}\right)\right.\right. \\
& \left.\left.\wedge F\left(\underline{x_{1}} \vee \underline{x_{2}}\right)\right) \approx 1 \mid \mu \geq 2\right\} .
\end{aligned}
$$

Proof. Let $f^{A} \in F_{8}^{\infty}$ and let $\Sigma=\left\{\bigwedge_{i=1}^{\mu-1} F\left(\underline{x_{i}}\right) \Rightarrow \neg F\left(\underline{x_{1} \wedge \ldots \wedge \underline{x_{\mu-1}}} \wedge\right.\right.$ $\underline{y})) \approx 1 \mid \mu \geq 2\}$. Since $\left.\bigwedge_{i=1}^{\mu-1} F\left(\underline{x_{i}}\right) \Rightarrow \neg F\left(\underline{x_{1} \wedge \ldots \wedge \underline{x_{\mu-1}}} \wedge \underline{y}\right)\right) \approx 1$ is satisfied by any operation from F_{8}^{μ} for all $\mu \geq 2$ and $f^{A} \in F_{8}^{\infty}=\bigcap_{\mu \geq 2} F_{8}^{\mu}$, then $\left.f^{A} \vdash \bigwedge_{i=1}^{\mu-1} F\left(\underline{x_{i}}\right) \Rightarrow \neg F\left(\overline{x_{1} \wedge \ldots \wedge x_{\mu-1}} \wedge \underline{y}\right)\right) \approx 1$ for all $\mu \geq 2$. Therefore $f^{A} \vdash \Sigma$.

Let $f^{A} \in F_{B} \operatorname{Mod} \Sigma$, then $\left.\bigwedge_{i=1}^{\mu-1} f^{A}\left(\underline{x_{i}}\right) \Rightarrow \neg f^{A}\left(\underline{x_{1} \wedge \ldots \wedge \underline{x_{\mu-1}}} \wedge \underline{y}\right)\right)=1$ for all $\mu \geq 2$. Therefore $f^{A} \in F_{8}^{\mu}$ for all $\mu \geq 2$. Hence $f^{A} \in \bigcap F_{8}^{\mu}=F_{8}^{\infty}$. Since $F_{5}^{\infty}=F_{8}^{\infty} \cap A_{4}, F_{7}^{\infty}=F_{8}^{\infty} \cap A_{1}$, and $F_{6}^{\infty}=F_{8}^{\infty} \cap^{\mu \geq 2} A_{4}$, then one can apply Lemma 4.3.

Proposition 4.23.

$$
\begin{aligned}
& F_{4}^{\infty}= F_{B} \operatorname{Mod}\left\{\bigwedge_{i=1}^{\mu-1} \neg F\left(\underline{x_{i}}\right) \Rightarrow F\left(\underline{\overline{x_{1}} \vee \ldots \vee \underline{x_{\mu-1}}} \vee \underline{y}\right)\right. \\
&\approx 1 \mid \mu \geq 2\}, \\
& F_{1}^{\infty}= F_{B} \operatorname{Mod}\left\{\neg F (\underline { 0 }) \wedge \left(\bigwedge _ { i = 1 } ^ { \mu - 1 } \neg F (\underline { x _ { i } }) \Rightarrow F \left(\underline{x_{1}} \vee \ldots \vee \underline{x_{\mu-1}} \vee\right.\right.\right. \\
&\underline{y})) \approx 1 \mid \mu \geq 2\}, \\
& F_{3}^{\infty}= F_{B} \operatorname{Mod}\left\{\bigwedge _ { i = 1 } ^ { \mu - 1 } \neg F (\underline { x _ { i } }) \Rightarrow \neg F (\underline { \overline { x _ { 1 } } \vee \ldots \vee \underline { x _ { \mu - 1 } } }) \wedge \neg F \left(\underline{x_{1}}\right.\right. \\
&\left.\left.\wedge \underline{x_{2}}\right) \approx 1 \mid \mu \geq 2\right\}, \\
& F_{2}^{\infty}= F_{B} \operatorname{Mod}\left\{\neg F (\underline { 0 }) \wedge \left(\bigwedge_{i=1}^{\mu-1} \neg F\left(\underline{x_{i}}\right) \Rightarrow F\left(\underline{x_{1}} \vee \ldots \vee \underline{x_{\mu-1}}\right) \wedge\right.\right. \\
&\left.\left.\neg F\left(\underline{x_{1}} \wedge \underline{x_{2}}\right)\right) \approx 1 \mid \mu \geq 2\right\} .
\end{aligned}
$$

The proof is similar to the proof of Proposition 4.22.

References

[1] K. Denecke and S.L. Wismath, Hyperidentities and Clones, Gordon and Breach Science Publishers, 2000.
[2] K. Denecke and S. L. Wismath, Universal Algebra and Applications in Theoretical Computer Science, Chapman and Hall/CRC, 2002.
[3] O. Ekins, S. Foldes, P. L. Hammer, L. Hellerstein, Equational Theories of Boolean Functions, RUTCOR Research Report, RRR 6-98, February 1998.
[4] S. Foldes and G. R. Pogosyan, Post Class Characterized by Functional Terms, RRR-RUTCOR Research Report, Rutgers University Center for Operation Research, 2000.
[5] E. L. Post, Introduction to a General Theory of Elementary propositions, Amer. J. Math. 43(1921).
[6] E.L. Post, The two-valued iterative systems of mathematical logic, Ann. Math. Studies 5, Princeton Univ. Press, 1941.

Contact information

R. Butkote	University of Potsdam, Institute of Math-
ematics, 14415 Potsdam, Germany, Am	
	Neuen Palais 10
	E-Mail: unique1st@hotmail.com
	URL: www.users.math.uni-potsdam.de

K. Denecke University of Potsdam, Institute of Mathematics, 14415 Potsdam, Germany, Am Neuen Palais 10
E-Mail: kdenecke@rz.uni-potsdam.de
URL: www.users.math.uni-potsdam.de

