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Abstract. We construct a group D(I, T ) associated with the

pair (I, T ), where I is a nontrivial distributive submodule of a left

N -module G, T is a nontrivial subgroup of the unit group U(N) of

a right nearring N with an identity element, and find criteria for

D(I, T ) to be a Frobenius group.

0. Let N be a right nearring under two operations “+” and “·” with the
identity element 1, i.e. (N, +) is a group with the zero 0, multiplication
“·” is associative and (y + z) · x = y · x + z · x for all x, y, z ∈ N. As
usual, an additive group (G, +) with the zero e is called a left N -module
if (x + y)g = xg + yg and x(yg) = (xy)g for any g ∈ G and x, y ∈ N . A
subgroup H of G is called an N -submodule (or an N -subgroup) of G if
HN ⊆ H. Recall that an N -module G is abelian if the additive group
(G, +) is abelian and x(g + h) = xg + xh for all g, h ∈ G, x ∈ N. A
submodule I of an N -module G will be called distributive with respect
to subset T of N if x(g + h) = xg + xh for all g, h ∈ G and x ∈ T .
Moreover, G is unitary if 1g = g for any g ∈ G.

As it is well known U(N) = {d ∈ N | d is invertible in N} is a group
under “·” (which is called the unit group of N).

In this paper we construct a group D(I, T ), where I is a nontrivial
distributive submodule of a left N -module G, T is a nontrivial subgroup
of the unit group U(N) of a right nearring N with an identity element,
and find criteria for D(I, T ) to be a Frobenius group.

Throughout this paper, all nearrings are right with an identity element
and all modules are left. If H is a group, F its subgroup and x, y ∈ H,
then [x, y] = x−1y−1xy is the commutator of x and y, yx = x−1yx and
F x = x−1Fx = {yx | y ∈ F}.

Other general notations and conventions in this paper follow closely
those used in [1] and [2].
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1. Let N be a right nearring and G be a left N -group. If T is a subgroup
of U(N) and I is an N -subgroup of G, then on the set of pairs

D(I, T ) = {(a, b) | a ∈ I, b ∈ T}

we define the algebraic operation by the rule

(a, b)(u, v) = (bu + a, bv). (1)

Lemma 1. Let N be a right nearring with the identity element 1, G an
unitary left N -module with the zero e. If T is a subgroup of the unit
group U(N) of N , I is an N -subgroup which is distributive with respect
to T of G (in particular, I is an abelian N -submodule of G), then D(I, T )
is a group with the identity element (e, 1) under the operation given by
the rule (1) and, moreover,

D(I, T ) = E ⋊ F,

where a subgroup E = {(a, 1) | a ∈ I} is isomorphic to the additive group
I+ of I and F = {(0, b) | b ∈ T} is isomorphic to T .

Proof. The proof is immediate. We remark only that (a, b)−1 = (−b−1a, b−1)
for any a ∈ I and b ∈ T .

Remember that a semidirect product H = E ⋊ F of groups E and F
is called a Frobenius group with a kernel E and a complement F if

F ∩ F g = 1

for all g ∈ H\F and

E\{1} = H\
⋃

h∈H

F h.

The following result extends Theorem 2.3 from [3].

Theorem 2. Let N be a right nearring with the identity element 1 and
the zero 0, G an unitary left N -module with the zero e, T a nontrivial
subgroup of the unit group U(N), I is a nontrivial N -subgroup of G
which is distributive with respect to T . Then

H = D(I, T ) = E ⋊ F

is a Frobenius group with a kernel E and a complement F , where E is
isomorphic to the additive group I+ of I and F is isomorphic to T , if and
only if the following conditions hold:
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1. ann(T−1)(i) = {t − 1 ∈ (T − 1) | (t − 1)i = e} = {0} for any
nontrivial element i ∈ I;

2. I = (b − 1)I for every nontrivial element b of T .

Proof. (⇒) Let H = E ⋊ F be a Frobenius group with a kernel E ∼= I+

and a complement F ∼= T. By Lemma 1.1 of [3] for every element a ∈ I
and every element t ∈ T there exists a1 ∈ I such that

(a, 1) = [(a1, 1), (e, t)].

But then

(a, 1) = (−a1, 1)(e, t−1)(a1, 1)(e, t) = (1e − a1, 1t−1)(1e + a1, 1t) =

(−a1, t
−1)(a1, t) = (t−1a1 − a1, t

−1t) = (t−1a1 − a1, 1).

This means that

a = t−1a1 − a1 = (t−1 − 1)a1 ∈ (t−1 − 1)I.

As a consequence I = (t−1 − 1)I for each nontrivial element t ∈ T.

Let a be any nontrivial element of I. Suppose that (b − 1)a = e for
some element b ∈ T. Then

(e, b) = ((b − 1)a, b) = (ba − a, b) = (−a, b)(a, 1) = (1e − a, 1b)(a, 1) =

= (−a, 1)(e, b)(a, 1) = (a, 1)−1(e, b)(a, 1) ∈ F (a,1)
⋂

F.

Since

F (u,v) ∩ F = 〈(e, 1)〉

for each (u, v) ∈ H \ F , we conclude that b − 1 = 0.

(⇐) Suppose that the conditions (1) and (2) are true for nontrivial
elements b ∈ T and a ∈ I. Since

a = (b − 1)a1

for some elements a1 ∈ I, we deduce that

[(a1, 1), (e, b−1)] = (−a1, 1)(−be, b)(a1, 1)(e, b−1) =

(−a1, 1)(e, b)(a1, 1)(e, b−1) = (1e − a1, 1 · b)(1e + a1, 1b−1) =

(−a1, b)(a1, b
−1) = (ba1 − a1, bb

−1) = (a, 1).

This yields that E = [E, (e, b)] for any nontrivial element (e, b) ∈ F .
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Let x ∈ I and t, y ∈ T , where t 6= 1. Then

(e, t)(x,y) = ((y−1t − y−1)x, y−1ty) /∈ E.

Suppose that (c, t) ∈ H \
⋃

(u,v)∈H F (u,v). Inasmuch as (t − 1)I = I,

there exists an element x ∈ I such that c = (t − 1)y−1x and so (c, t) =
(e, yty−1)(x,y). Hence

E \ {(e, 1)} = H \
⋃

(x,y)∈H

F (x,y).

Now if (u, v) ∈ H \ F and (e, b) ∈ F ∩ F (u,v), then there is an element
(e, w) ∈ F such that

(e, b) = (u, v)−1(e, w)(u, v)

and therefore

(e, b) = (−v−1u, v−1)(e, w)(u, v) = (v−1e − v−1u, v−1w)(u, v) =

(−v−1u, v−1w)(u, v) = (v−1wu − v−1u, v−1wv).

Since u = vi for some i ∈ I, we conclude that e = v−1wu − v−1u =
v−1wvi − v−1vi = (v−1wv − 1)i and so, in view of (1), v−1wv − 1 = 0.
But then b = 1. Hence F ∩ F (u,v) = 〈(e, 1)〉.

Corollary 3. If P is a skew-field and T is a nontrivial subgroup of the
multiplicative group P ∗, then D(P+, T ) is a Frobenius group, where P+

is the additive group of P .

Corollary 4. If G is a nontrivial abelian unitary left module over a
right nearfield N , then D(G, T ) is a Frobenius group for every nontrivial
subgroup T of the multiplicative group N∗.

As in [2, Definition 1.6.34], a nearring N is called subcommutative
if aN = Na for each a ∈ N . Recall [2, Definition 1.9.6] that a left N -
module G is called strongly monogenic if G = Ng for some g ∈ G and
for all h ∈ G it is either Nh = G or Nh = {e}. Moreover, G is faithful if
nG 6= {e} for any nonzero n ∈ N .

Proposition 5. Let G be a nontrivial faithful abelian strongly monogenic
unitary left N -module, N a subcommutative right nearring N with the
identity element 1. If T is a nontrivial subgroup of the unit group U(N),
then D(G, T ) = E ⋊ F is a Frobenius group with a kernel E ∼= G+ and
a complement F ∼= T .
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Proof. Let us t ∈ T . If (e, t) ∈ F ∩ F (g,1) for some nonzero g ∈ G, then

(e, t) = (g, 1)−1(e, v)(g, 1)

for some element v ∈ T and from this

(e, t) = (−g, 1)(e, v)(g, 1) = (−g, v)(g, 1) = ((v − 1)g, v).

This gives that (v − 1)g = e and v = t. Since G = Ng and

(v − 1)G = (v − 1)Ng = N(v − 1)g = Ne = {e},

we obtain by the faithfulness of G that t = 1. Hence F ∩F (g,1) = 〈(e, 1)〉.
Now if h is a nonzero element of G and t is a nontrivial element of T ,

then
(t − 1)G = (t − 1)Nh = N(t − 1)h = G

and therefore
E \ {(e, 1)} = H \

⋃

(u,v)∈H

F (u,v).

A zero-symmetric right nearring N is local if NL = {k ∈ N | Nk 6=
N} is an N -subgroup [4].

Proposition 6. Let G be a nontrivial abelian monogenic unitary left
N -module, where N is a local right nearring with the identity element
1 and the zero 0 6= 1. If D(G, U(N)) is a Frobenius group, then N is a
nearfield.

Proof. By the monogenity G = Ng for some nonzero element g ∈ G.
Let j be a nontrivial element of NL. Since D(G, U(N)) is Frobenius,
we deduce that G = (1 − (1 − j))G = jG and so g = jng for some
n ∈ N . But then (1− jn)g = e. In view of Corollary 2.6 and Lemma 2.4
from [4] there exists some t ∈ N such that t(1 − jn) = 1 and therefore
g = t(1 − jn)g = te = e, a contradiction. This means that NL = {0}, as
desired.

Example 7. Let (G, +) be a group with the zero e. The set M(G) = {f :
G → G |f is a mapping} is a right nearring with the identity element iG
under two operations “+” and “◦” defined by the rules

(f1 + f2)(x) = f1(x) + f2(x) and (f1 ◦ f2)(x) = f1(f2(x))

for all elements x ∈ G and f1, f2 ∈ M(G), where f(x) means an image of
x with respect to f ∈ M(G). Hence G is an unitary left M(G)-module.
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1) Let G be a torsion-free divisible abelian group. If s : G → G is a
mapping defined by the rule s(g) = 2g for all g ∈ G, then sn(g) = 2ng
for all n ∈ Z and (iG − sn)(h) = (1 − 2n)h 6= e for each nonzero element
h ∈ G. Moreover, (iG−sn)(G) = G for any nonzero n ∈ Z. By Theorem 2
D(G, 〈s〉) is a torsion-free Frobenius group.

2) If f : G → G is a regular automorphism of G and G = {g −
fn(g) | g ∈ G} for any nonzero n ∈ Z, then D(G, 〈f〉) is a Frobenius
group.

3) Let G be a torsion-free abelian group, 2G = G anf t : G → G is
a mapping defined by the rule t(g) = −g for each g ∈ G. Then t2 = iG,
(1− t)(h) = h+h 6= e for any nontrivial h ∈ G and (1− t)(G) = 2G = G.
This means that D(G, 〈t〉) is a Frobenius group.

4) Let N be a distributive nearring with the identity element 1 and
P be a subfield of N with the identity element 1. Suppose that G = N+

is the additive group of N and a is a fixed element from P \ {0, 1}. Then
a mapping φ : G → G given by φ(u) = ua (u ∈ N) is an automorphism
of G and φn(u) = uan for any n ∈ Z.

If an 6= 1 for any nonzero n ∈ Z, then (iG −φn)(h) = h(1− an) = 0 if
and only if h = 0. Since 1− an ∈ P ∗, we deduce that (iG − φn)(G) = G.
Hence D(N+, 〈φ〉) is a Frobenius group.

Now suppose that an = 1 and n is the smallest positive integer with
this property. Then (iG−φs)(h) = h(1−as) 6= 0 for all nonzero h ∈ G and
integers s such that 1 ≤ s ≤ n−1. Moreover, (iG−φs)(G) = G(1−as) =
G. From this it follows that D(N+, 〈φ〉) is a Frobenius group.
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