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Gorenstein Latin squares

M. A. Dokuchaev, V. V. Kirichenko, B. V. Novikov

and M. V. Plakhotnyk

Abstract. We introduce the notion of a Gorenstein Latin

square and consider loops and quasigroups related to them. We

study some properties of normalized Gorenstein Latin squares and

describe all of them with order n ≤ 8.

1. Preliminaries

The notion of a Latin square was introduced by L. Euler at the end of
the XVIII century (see [5] for details). Nowadays Latin squares have
their applications in such modern branches of mathematics as compiler
testing in statistics and cryptography. The most popular example of an
application of Latin squares is the game SUDOKU, well known through
over the world as the Japanese game [10].

Definition 1.1. A Latin square Ln of order n is a square n × n
matrix, such that its rows and columns are permutations of some set
S = {s1, . . . , sn}.

In what follows we shall take S = {0, 1, . . . , n− 1}. So Ln = (αij),
where αij ∈ {0, 1, . . . , n − 1}. We say that a Latin square of order n
is normalized if its first row is (0, 1, . . . , n − 1) and the first column is
(0, 1, . . . , n−1)T , where T (as exponent index) means transposition. The
normalized Latin squares are also called “reduced Latin squares” or “Latin
squares of standard form”.

The numbers of the Latin squares of small orders are as follows:
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There exist a unique normalized Latin square for each n = 2, 3:

L2 =

(

0 1
1 0

)

, L3 =





0 1 2
1 2 0
2 0 1



 .

For n = 4 the normalized Latin squares are:








0 1 2 3
1 0 3 2
2 3 0 1
3 2 1 0









,









0 1 2 3
1 2 3 0
2 3 0 1
3 0 1 2









,









0 1 2 3
1 3 0 2
2 0 3 1
3 2 1 0









,









0 1 2 3
1 0 3 2
2 3 1 0
3 2 0 1









.

There exist 56 normalized Latin squares for n = 5 (L. Euler (1782),
A. Cayley (1890)), 9408 normalized Latin squares for n = 6 (M. Frolov
(1890), G. Ferry (1900)) and 16 942 080 normalized Latin squares for
n = 7 [15]. For n = 8, 9, 10 see [17], [3], [12], and for further information
consult [12], [13].

Next we introduce the notion of a Gorenstein Latin square which
appears in the study of Gorenstein rings [8].

Definition 1.2. A Latin square Ln = (αij) is called Gorenstein if its
main diagonal consists of zeros and there exists a permutation σ : i→ σ(i)
i = 1, . . . , n, such that αik + αkσ(i) = αiσ(i) for all i, k = 1, . . . , n.

Example 1.1. The Cayley table of the Klein four-group (2)×(2) can be
written in the following form:

K(4) =









0 1 2 3
1 0 3 2
2 3 0 1
3 2 1 0









.

Example 1.2. The Cayley table of the elementary Abelian 2-group
(2)×(2)×(2) is as follows:

K(8) =

























0 1 2 3 4 5 6 7
1 0 3 2 5 4 7 6
2 3 0 1 6 7 4 5
3 2 1 0 7 6 5 4
4 5 6 7 0 1 2 3
5 4 7 6 1 0 3 2
6 7 4 5 2 3 0 1
7 6 5 4 3 2 1 0

























.
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The Latin square K(4) is Gorenstein with σ =

(

1 2 3 4
4 3 2 1

)

, whe-

reas K(8) is Gorenstein with

σ =

(

1 2 3 4 5 6 7 8
8 7 6 5 4 3 2 1

)

.

Recall that a quasigroup is a non-empty set Q with a binary ope-
ration ∗ such that the equations a ∗ x = b and y ∗ a = b have unique
solutions x and y in Q. Obviously, every Latin square is the Cayley table
of a finite quasigroup. In particular, the Cayley table of a finite group is
a Latin square. See [1], [2], [4], [14] for more information on the theory
of quasigroups.

A quasigroup Q is called a loop if it has an identity element e ∈ Q
(e ∗ x = x ∗ e = x for every x ∈ Q). Evidently every normalized Latin
square is a Cayley table of some loop.

2. Gorenstein loops

Definition 2.1. A finite quasigroup Q defined on the set {0, 1, . . . , n−1}
is called Gorenstein if its Cayley table C(Q) = (αij) is a Gorenstein
Latin square.

The permutation corresponding to Q (see Definition 1.2) is denoted
by σ = σ(Q).

Lemma 2.1. Let C = (αij) be a Gorenstein Latin square with permuta-
tion σ. Then αiσ(i) = n− 1 for all i = 1, . . . , n.

Proof. Summing over k the equations

αik + αkσ(i) = αiσ(i) (1)

we obtain
n(n− 1)

2
+
n(n− 1)

2
= nαiσ(i)

Corollary 2.1. σ has no cycles of length 1.

Proof. If i = σ(i) then n− 1 = αiσ(i) = αii = 0.

In this section we consider Gorenstein loops. We will denote the
identity element of such a loop by 0, so its Cayley table is supposed to
be normalized. We abbreviate the term “normalized Gorenstein Latin
square” by NGLS.
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Proposition 2.1. If C = (αij) is a NGLS then
(i) σ(i) = n− i+ 1 for all i = 1, . . . , n;
(ii) n is even.

Proof. By Lemma 2.1 the equation (1) becomes

αik + αkσ(i) = n− 1. (2)

Put k = 1 in it. Since C is normalized, α1i = αi1 = i − 1. Hence
σ(i) = n− i+ 1.

Suppose n = 2m+ 1. Then σ(m+ 1) = m+ 1 in contradiction with
Corollary 2.1.

Proposition 2.1 means that for all NGLS’s σ is uniquely determined
and equals to a product of transpositions:

σ(C) = (1, n)(2, n− 1)(3, n− 2) . . . (m,m+ 1)

for n = 2m.

Corollary 2.2. All entries of the secondary diagonal of a NGLS equal
n− 1.

Proof. αi(n−i+1) = αiσ(i) = n− 1 by Lemma 2.1.

Corollary 2.3. Every NGLS is centrally symmetric.

Proof. From the equation (2) we have

αik + αk(n−i+1) = n− 1, (3)

αk(n−i+1) + α(n−k+1)(n−i+1) = n− 1

Subtracting we obtain α(n−k+1)(n−i+1) = αik.

The next assertion gives an abstract characterization of Gorenstein
loops:

Theorem 2.1. A finite loop L(∗) with an identity e is isomorphic to a
Gorenstein loop if and only if it satisfies the following conditions:

(i) x ∗ x = e for all x ∈ L
and there exists such an element a ∈ L, a 6= e, that

(ii) a ∗ x = x ∗ a for all x ∈ L,
(iii) for all x, y ∈ L

(x ∗ y) ∗ a = y ∗ (x ∗ a). (4)
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Proof. Let C = (αij) be a NGLS with permutation σ, L(∗) its loop with
multiplication i ∗ j = α(i+1)(j+1), i, j = 0, . . . , n− 1. The condition (i) is
evident. Put a = n− 1. From the equation (3) we have

(n− 1) ∗ i = αn(i+1) = n− 1 − α(i+1)1 = n− i− 1 = i ∗ (n− 1) (5)

and (ii) is true. Now from (3) and (5)

(i ∗ j) ∗ a = n− 1 − i ∗ j = n− 1 − α(i+1)(j+1) = α(j+1)(n−i)

= j ∗ (n− i− 1) = j ∗ (i ∗ a).

Conversely, let L(∗) be a loop of order n satisfying (i)-(iii). Prelimi-
narily we prove some properties of L.

Putting sequentially x = a and x = y in (4) we obtain

(x ∗ a) ∗ a = x (6)

x ∗ (x ∗ a) = a. (7)

By (6) the translation x → x ∗ a is a product of cycles of length two;
cycles of length one are absent since a 6= e. In particular, it follows that
|L| = n is even.

Choose a bijection ω : L → S = {0, . . . , n − 1} which satisfies the
conditions: ω(x)+ω(x∗a) = n−1 and ω(e) = 0 (evidently such bijections
exist). In what follows we will identify ω(x) with x and thus consider L
to be defined on S. In particular, e = 0, a = n− 1 and x+ x ∗ a = n− 1.

We can compare with L a normalized Latin square C = (αij)1≤i,j≤n

where αij = (i−1)∗(j−1). Verify that C is a NGLS with the permutation
σ : i→ n− i+ 1 (1 ≤ i ≤ n):

αik + αkσ(i) = (i− 1) ∗ (k − 1) + (k − 1) ∗ (n− i)

= (i− 1) ∗ (k − 1) + (k − 1) ∗ [(i− 1) ∗ a]

= (i− 1) ∗ (k − 1) + [(i− 1) ∗ (k − 1)] ∗ a = n− 1

We apply Theorem 2.1 to study Gorenstein loops of small order.
Let L is a Gorenstein loop. Obviously, if |L| = 4 then L ∼= Z2 × Z2.
We will use following two remarks:
1) For every x ∈ L, x 6= e, a, the subset {e, a, x, x ∗ a} ⊂ L is a

subgroup isomorphic to Z2 × Z2.
2) If H is a subgroup of L, p, p∗ q ∈ H then q ∈ H (since H = p∗H).

Corollary 2.4. There are no Gorenstein loops of order 6.
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Proof. Let |L| = 6, L = {e, a, x, x ∗ a, y, y ∗ a}. Then G = {e, a, x, x ∗ a}
and H = {e, a, y, y ∗ a} are subgroups and L = G ∪H. So x ∗ y belongs
to either G or H. If, e. g., x ∗ y ∈ G then y ∈ G. A contradiction.

Corollary 2.5. Every Gorenstein loop of order 8 is commutative.

Proof. Let |L| = 8, L = {e, a, x, x∗a, y, y∗a, z, z∗a} and x∗y 6= y∗x. The
subsets G = {e, a, x, x ∗ a}, H = {e, a, y, y ∗ a} and K = {e, a, z, z ∗ a}
are subgroups. So x ∗ y, y ∗ x ∈ K (as in the proof of Corollary 2.4).
Evidently, x ∗ y, y ∗ x 6= e (else x ∗ x = x ∗ y) and x ∗ y, y ∗ x 6= a (else
y ∗ (x ∗ a) = (x ∗ y) ∗ a = e and x ∗ a = y). Therefore, e. g., x ∗ y = z,
y ∗ x = z ∗ a. Hence y ∗ x = (x ∗ y) ∗ a = y ∗ (x ∗ a) and x = x ∗ a. A
contradiction.

3. Calculations of NGLS

Here we consider NGLS for n ≤ 12. By Corollary 2.4 we have to examine
the following cases: n = 8, n = 10 and n = 12. First we give a full list of
NGLS of the order 8.

Let L8 = (αij) be a NGLS of order 8. By Proposition 2.1 σ(L8) =
(18)(27)(36)(45), by Corollary 2.2 αi(9−i) = 7. Therefore L8 has the
following preliminary form:

L8 =

























0 1 2 3 4 5 6 7
1 0 x y z t 7 6
2 7 − t 0 p s 7 7 − x 5
3 7 − z 7 − s 0 7 7 − p 7 − y 4
4 7 − y 7 − p 7 0 7 − s 7 − z 3
5 7 − x 7 s p 0 7 − t 2
6 7 t z y x 0 1
7 6 5 4 3 2 1 0

























.

Since the matrix L8 is symmetrical (see Corollary 2.5), then we im-
mediately have that the equalities x = 7 − t, y = 7 − z, s = 7 − p hold,
and hence our matrix can be rewritten in the form

L8 =

























0 1 2 3 4 5 6 7
1 0 x y 7 − y 7 − x 7 6
2 x 0 p 7 − p 7 7 − x 5
3 y p 0 7 7 − p 7 − y 4
4 7 − y 7 − p 7 0 p y 3
5 7 − x 7 7 − p p 0 x 2
6 7 7 − x 7 − y y x 0 1
7 6 5 4 3 2 1 0

























.
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From the first line we obviously obtain that x 6∈ {1, 2, 5, 6, 7} and
y 6∈ {1, 3, 4, 6, 7}, which means that x ∈ {3, 4} and y ∈ {2, 5}. Also
from the second line we have p 6∈ {2, 3, 4, 5, 7}, which means that p ∈
{1, 6}.

Since the sets of possible values for x, y and p do not intersect, then
the inclusions x ∈ {3, 4}, y ∈ {2, 5} and p ∈ {1, 6}, together with the
form of L8 in terms of these three variables, form a sufficient condition
for L8 to be a NGLS.

Note that from this description the number 8 of all NGLS of order 8
comes immediately. Here is the list of them:









0 1 2 3 4 5 6 7
1 0 3 2 5 4 7 6
2 3 0 1 6 7 4 5
3 2 1 0 7 6 5 4
4 5 6 7 0 1 2 3
5 4 7 6 1 0 3 2
6 7 4 5 2 3 0 1
7 6 5 4 3 2 1 0









,









0 1 2 3 4 5 6 7
1 0 3 5 2 4 7 6
2 3 0 1 6 7 4 5
3 5 1 0 7 6 2 4
4 2 6 7 0 1 5 3
5 4 7 6 1 0 3 2
6 7 4 2 5 3 0 1
7 6 5 4 3 2 1 0









,









0 1 2 3 4 5 6 7
1 0 3 2 5 4 7 6
2 3 0 6 1 7 4 5
3 2 6 0 7 1 5 4
4 5 1 7 0 6 2 3
5 4 7 1 6 0 3 2
6 7 4 5 2 3 0 1
7 6 5 4 3 2 1 0









,









0 1 2 3 4 5 6 7
1 0 3 5 2 4 7 6
2 3 0 6 1 7 4 5
3 5 6 0 7 1 2 4
4 2 1 7 0 6 5 3
5 4 7 1 6 0 3 2
6 7 4 2 5 3 0 1
7 6 5 4 3 2 1 0









,









0 1 2 3 4 5 6 7
1 0 4 2 5 3 7 6
2 4 0 1 6 7 3 5
3 2 1 0 7 6 5 4
4 5 6 7 0 1 2 3
5 3 7 6 1 0 4 2
6 7 3 5 2 4 0 1
7 6 5 4 3 2 1 0









,









0 1 2 3 4 5 6 7
1 0 4 5 2 3 7 6
2 4 0 1 6 7 3 5
3 5 1 0 7 6 2 4
4 2 6 7 0 1 5 3
5 3 7 6 1 0 4 2
6 7 3 2 5 4 0 1
7 6 5 4 3 2 1 0









,









0 1 2 3 4 5 6 7
1 0 4 2 5 3 7 6
2 4 0 6 1 7 3 5
3 2 6 0 7 1 5 4
4 5 1 7 0 6 2 3
5 3 7 1 6 0 4 2
6 7 3 5 2 4 0 1
7 6 5 4 3 2 1 0









,









0 1 2 3 4 5 6 7
1 0 4 5 2 3 7 6
2 4 0 6 1 7 3 5
3 5 6 0 7 1 2 4
4 2 1 7 0 6 5 3
5 3 7 1 6 0 4 2
6 7 3 2 5 4 0 1
7 6 5 4 3 2 1 0









.

So we proved the next:

Theorem 3.1. There are 8 normalized Gorenstein Latin squares of order
8. All of them are doubly symmetric.

Now let n = 10 and L10 be a NGLS of order 10. By Proposition
2.1 σ(L10) = (1, 10)(2, 9)(3, 8)(4, 7)(5, 6). Therefore L10 has the following
preliminary form:















0 1 2 3 4 5 6 7 8 9
1 0 X Y Z 9−G 9−D 9−A 9 8
2 A 0 S T 9−H 9−B 9 9−X 7
3 D B 0 W 9−C 9 9−S 9−Y 6
4 G H C 0 9 9−W 9−T 9−Z 5
5 9−Z 9−T 9−W 9 0 C H G 4
6 9−Y 9−S 9 9−C W 0 B D 3
7 9−X 9 9−B 9−H T S 0 A 2
8 9 9−A 9−D 9−G Z Y X 0 1
9 8 7 6 5 4 3 2 1 0















. (8)

Our computations show that for n = 10 there exist 1024 normalized
Gorenstein Latin squares.

Theorem 3.2. There are no 10×10 normalized Gorenstein Latin squares
which are doubly symmetric.
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Proof. The formula (8) gives the following form for the doubly symmetric
NGLS L10 of the order 10:















0 1 2 3 4 5 6 7 8 9
1 0 X Y Z 9−Z 9−Y 9−X 9 8
2 X 0 S T 9−T 9−S 9 9−X 7
3 Y S 0 W 9−W 9 9−S 9−Y 6
4 Z T W 0 9 9−W 9−T 9−Z 5
5 9−Z 9−T 9−W 9 0 W T Z 4
6 9−Y 9−S 9 9−W W 0 S Y 3
7 9−X 9 9−S 9−T T S 0 X 2
8 9 9−X 9−Y 9−Z Z Y X 0 1
9 8 7 6 5 4 3 2 1 0















.

Note that the numbers {X, 9 −X,Y, 9 − Y } from the second column
of L10 are pairwise different. Obviously, S 6∈ {X, 9 − X,Y, 9 − Y }. Let
S ∈ {Z, 9 − Z}. Since Z 6∈ {0, 1, 4, 5, 8, 9}, then 9 − Z 6∈ {0, 1, 4, 5, 8, 9}.
So, the condition S ∈ {Z, 9 − Z} gives that S 6∈ {0, 1, 4, 5, 8, 9}. Looking
at the position (3, 4) (S = α34) we obtain that S 6∈ {2, 3, 6, 7}. Therefore,
S 6∈ {0, 1, 2, 3, 4, 5, 6, 7, 8, 9}, a contradiction which gives us S 6∈ {Z, 9 −
Z}.

Consider the second row of L10. We see that all elements X, 9 −
X,Y, 9 − Y, Z, 9 − Z are pairwise different. Also from the third row
and the fourth column we obtain that S 6∈ {X, 9 − X,Y, 9 − Y }. This
together with the condition S 6∈ {Z, 9 − Z} gives us that all elements
of the list {X, 9 − X,Y, 9 − Y, Z, 9 − Z, S, 9 − S} are pairwise different.
Note that each of these 8 numbers is neither 0 nor 9, whence {X, 9 −
X,Y, 9 − Y, Z, 9 − Z, S, 9 − S} = {1, 2, 3, 4, 5, 6, 7, 8}. Now take α35 = T .
Since T 6∈ {0, 9}, then T ∈ {X, 9 − X,Y, 9 − Y, Z, 9 − Z, S, 9 − S}. It
obviously follows, looking at the third row and the fifth column, that
T 6∈ {X, 9 −X,S, 9 − S,Z, 9 − Z}. Then {T, 9 − T} = {Y, 9 − Y }. Since
Y 6∈ {0, 1, 3, 6, 8, 9}, 9−Y 6∈ {0, 1, 3, 6, 8, 9} and T 6∈ {2, 4, 5, 7}, it follows
that T 6∈ {0, 1, 2, 3, 4, 5, 6, 7, 8, 9}. So, we can make the final conclusion
that there is no doubly symmetric NGLS of order 10.

Note that a Gorenstein loop of order 10 can be non-commutative:

Example 3.1.
































0 1 2 3 4 5 6 7 8 9
1 0 3 2 6 7 4 5 9 8
2 4 0 1 3 8 5 9 6 7
3 5 4 0 1 2 9 8 7 6
4 2 1 7 0 9 8 6 3 5
5 3 6 8 9 0 7 1 2 4
6 7 8 9 2 1 0 4 5 3
7 6 9 5 8 3 1 0 4 2
8 9 5 4 7 6 2 3 0 1
9 8 7 6 5 4 3 2 1 0

































.
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Our computations give us the number of normalized Gorenstein Latin
squares for n = 12. This number is 448512.

The following normalized Gorenstein Latin square is an example of a
non-symmetric Latin square of order 12:

Example 3.2.











































0 1 2 3 4 5 6 7 8 9 10 11
1 0 3 2 5 4 8 9 6 7 11 10
2 4 0 5 3 1 10 6 7 11 8 9
3 5 4 0 1 7 2 10 11 6 9 8
4 2 5 1 0 3 9 11 10 8 6 7
5 3 1 9 2 0 11 8 4 10 7 6
6 7 10 4 8 11 0 2 9 1 3 5
7 6 8 10 11 9 3 0 1 5 2 4
8 9 6 11 10 2 7 1 0 4 5 3
9 8 11 7 6 10 1 3 5 0 4 2
10 11 7 6 9 8 4 5 2 3 0 1
11 10 9 8 7 6 5 6 3 2 1 0











































.

According to Corollary 2.5 all normalized Gorenstein Latin squares
of order 8 are symmetrical. Earlier we had the conjecture that all NGLS
whose order is the power of two are symmetrical. However we give the
following non-symmetric Latin square of order 16:

Example 3.3.



















































0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
1 0 3 2 5 4 7 6 9 8 11 10 13 12 15 14
2 3 0 1 6 7 4 5 10 11 8 9 14 15 12 13
3 2 1 0 7 6 5 4 11 10 9 8 15 14 13 12
4 5 6 7 0 1 2 3 12 14 13 15 8 9 10 11
5 4 7 6 2 0 3 1 13 12 15 14 9 8 11 10
6 7 4 5 1 3 0 2 14 15 12 13 10 11 8 9
7 6 5 4 3 2 1 0 15 13 14 12 11 10 9 8
8 9 10 11 12 14 13 15 0 1 2 3 4 5 6 7
9 8 11 10 13 12 15 14 2 0 3 1 5 4 7 6
10 11 8 9 14 15 12 13 1 3 0 2 6 7 4 5
11 10 9 8 15 13 14 12 3 2 1 0 7 6 5 4
12 13 14 15 8 9 10 11 4 5 6 7 0 1 2 3
13 12 15 14 9 8 11 10 5 4 7 6 1 0 3 2
14 15 12 13 10 11 8 9 6 7 4 5 2 3 0 1
15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0



















































.
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4. Gorenstein quasigroups

Unfortunately, we know no general properties of Gorenstein quasigroups
except Lemma 2.1 and Corollary 2.1. Here we consider two classes of
Gorenstein quasigroups.

Let P (∗) and Q(◦) be quasigroups. Recall that an isotopy is a triple
(λ, µ, ν) of bijections from P to Q such that λ(x) ◦µ(y) = ν(x ∗ y) for all
x, y ∈ P . We will write Q = P (λ,µ,ν) and regard λ and µ as permutations
of rows and columns of the corresponding Latin square.

Generally speaking, the Gorenstein property is not preserved under
isotopy. However we have:

Proposition 4.1. Let P be a Gorenstein quasigroup and ε the identical
permutation. Then Q = P (λ,λ,ε) is also a Gorenstein quasigroup for any
permutation λ.

Proof. Let C = (αij) and D = (βij) are the Latin squares of P and Q
respectively and σ is the permutation for C. Set

τ(i) = λ−1[σ(λ(i− 1) + 1) − 1] + 1

and prove that D is a Gorenstein Latin square with the permutation τ .

Indeed,

βik + βkτ(i) = λ(i− 1) ∗ λ(k − 1) + λ(k − 1) ∗ (σ(λ(i− 1) + 1) − 1)

= αλ(i−1)+1,λ(k−1)+1 + αλ(k−1)+1,σ(λ(i−1)+1) = n− 1

The equality βii = 0 is easily verified.

Proposition 4.1 means that Q is obtained from P by simultaneous per-
mutation of rows and columns. So we can obtain Gorenstein quasigroups
from a given Gorenstein loop P .

Entropic quasigroups give other examples.

Definition 4.1. A quasigroup Q is called entropic or medial if it sat-
isfies the identity (xu)(vy) = (xv)(uy) for all x, y, u, v ∈ Q (see [4, 14]).

By the well-known theorem of Toyoda [16] every entropic quasigroup
Q(∗) can be obtained from an abelian group Q(⊕) in the following way:

x ∗ y = ϕx⊕ ψy ⊕ c (9)

where ϕ and ψ are commuting automorphisms of Q(⊕) and c ∈ Q is some
fixed element.
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We shall consider a partial case only: the entropic quasigroup Q(∗)
is given on the set S = {0, . . . , n − 1}, the group Q(⊕) is cyclic and
x⊕ y ≡ x+ y(modn). We call Q(∗) a cyclic quasigroup.

Suppose that Q(∗) satisfies the condition: x ∗ x = 0 for all x ∈ Q(∗).
Putting x = y = 0 in (9) we get c = 0. Again from (9) we have:
0 = x ∗ x = ϕx ⊕ ψx for all x, and the equation (9) transforms into
x ∗ y = ϕ(x⊖ y).

The automorphism ϕ has the form ϕ(x) ≡ rx(modn) for such r < n
that g.c.d.(r, n) = 1. Finally we have

x ∗ y = r(x− y)(modn). (10)

Proposition 4.2. The cyclic quasigroup Q with operation (10) is a Goren-
stein quasigroup with a cyclic permutation.

Proof. Let C = (αij) is the Latin square of Q(∗). Find the permutation
σ = σ(C) from the equation (2) which has the form

r(i− k)(modn) + r(k − σ(i))(modn) = n− 1 (11)

in our case.
Since g.c.d.(r, n) = 1, there is such s < n that rs ≡ 1(modn). Set

k ≡ i+ s(modn):

(−1)(modn) + r(i+ s− σ(i))(modn) = n− 1,

whence
σ(i) ≡ i+ s(modn). (12)

Since g.c.d.(s, n) = 1, this permutation is cyclic.
Conversely, if a permutation σ satisfies (12), one can easily see that

equation (11) holds.

Corollary 4.1. There are Gorenstein quasigroups of arbitrary orders.

Example 4.1. The matrix

















0 n− 1 n− 2 . . . 2 1
1 0 n− 1 . . . 3 2
2 1 0 . . . 4 3
. . . . . . . . . . . . . . . . . .
n− 2 n− 3 n− 4 . . . 0 n− 1
n− 1 n− 2 n− 3 . . . 1 0

















is the Cayley table of an entropic Gorenstein quasigroup with permutation
σ = (12 . . . n).
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5. Final remarks: some related concepts

In conclusion we discuss some mathematical objects related to Gorenstein
Latin squares.

5.1. Exponent matrices

Denote by Mn(Z) the ring of square n× n-matrices over the integers Z.
Let E ∈ Mn(Z). We shall call a matrix E = (αij) an exponent matrix

if αij + αjk ≥ αik for i, j, k = 1, . . . , n and αii = 0 for i = 1, . . . , n.

An exponent matrix E is called reduced if αij + αji > 0 for i 6= j,
i.e. E has no symmetric zeros.

Definition 5.1. A reduced exponent matrix E = (αij) ∈Mn(Z) is called
Gorenstein if there exists a permutation σ of {1, 2, . . . , n} such that
αik + αkσ(i) = αiσ(i) for i, k = 1, . . . , n.

The permutation σ is denoted by σ(E). Obviously, σ(E) has no cycles
of length 1.

Gorenstein matrices are closely related to prime semiperfect semidis-
tributive rings A with non-zero Jacobson radical and inj.dimAAA = 1
[11].

Example 5.1. The following exponent matrix

Tn,α =























0 0 . . . . . . . . . 0
α 0 0 . . . . . . 0

α
. . .

. . .
. . .

...
...

. . .
. . .

. . .
. . .

...

α
. . . α 0 0

α . . . . . . α α 0























is Gorenstein with σ(Tn,α) = (12 . . . n).

There exist Gorenstein loops whose Cayley tables are not exponent
matrices. The first example of such a loop was given by B.V. Novikov
([8], example 14.7.3):
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Example 5.2. The matrix

C =











































0 1 2 3 4 5 6 7 8 9 10 11
1 0 5 2 3 4 7 8 9 6 11 10
2 5 0 4 1 3 8 10 7 11 6 9
3 2 4 0 5 1 10 6 11 7 9 8
4 3 1 5 0 2 9 11 6 10 8 7
5 4 3 1 2 0 11 9 10 8 7 6
6 7 8 10 9 11 0 2 1 3 4 5
7 8 10 6 11 9 2 0 5 1 3 4
8 9 7 11 6 10 1 5 0 4 2 3
9 6 11 7 10 8 3 1 4 0 5 2
10 11 6 9 8 7 4 3 2 5 0 1
11 10 9 8 7 6 5 4 3 2 1 0











































is the Cayley table of a Gorenstein loop. We see that

α17 + α79 = 7 < α19 = 8.

Therefore the matrix C is not exponent. Observe that C is doubly symmet-
ric, i.e., symmetric with respect to the main and the secondary diagonals.

Note that a reduced exponent matrix turns out to be a distance matrix
of some finite metric space if and only if it is symmetric. In particular,
K(4) and K(8) from Examples 1.1 and 1.2 are distance matrices of metric
spaces with 4 and 8 elements, respectively.

5.2. Cayley tables of elementary Abelian 2-Groups

and finite metric spaces

In this subsection we cite results which were obtained in [9], §7.6, and [6].
Introduce the following notation:

Γ0 = (0), Γ1 =

(

0 1
1 0

)

, Γ2 =









0 1 2 3
1 0 3 2
2 3 0 1
3 2 1 0









,

Un =











1 1 . . . 1
1 1 . . . 1
...

...
. . .

...
1 1 . . . 1











∈Mn(Z), Xk−1 = 2k−1U2k−1 ;
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Γk =

(

Γk−1 Γk−1 +Xk−1

Γk−1 +Xk−1 Γk−1

)

for k = 1, 2, . . . .

The matrix Γ1 =

(

0 1
1 0

)

is the Cayley table of the cyclic group G1

of order 2 and is a Gorenstein matrix with permutation σ(Γ1) = (12).

Proposition 5.1. ([9], §7.6) Γk is an exponent matrix for any positive
integer k.

Proposition 5.2. ([9], §7.6). Γk is the Cayley table of the elementary
Abelian group Gk of order 2k.

Proposition 5.3. ([9], §7.6). The matrix Γk is Gorenstein with permu-
tation

σ(Γk) =

(

1 2 3 . . . 2k − 1 2k

2k 2k − 1 2k − 2 . . . 2 1

)

.

Theorem 5.1. ([6] and [9], §7.6 ) Suppose that a Latin square Ln with
first row and first column (0 1 . . . n − 1) is an exponent matrix. Then
n = 2k and Ln = Γk is the Cayley table of the direct product of k copies
of the cyclic group of order 2.

Conversely, the Cayley table Γk of the elementary Abelian group

Gk = Z/(2) × . . .× Z/(2) = (2) × . . .× (2)

(k factors) of order 2k is a Latin square and a Gorenstein symmetric
matrix with the first row (0, 1, . . . , 2k − 1) and permutation

σ(Γk) =

(

1 2 3 . . . 2k − 1 2k

2k 2k − 1 2k − 2 . . . 2 1

)

.

Now we consider the case when a Latin square Ln with first row and
first column (0 1 . . . n − 1) is a distance matrix D = D(M) of a finite
metric space M = {m1, . . . ,mn}. Obviously, if Ln = D(M) then Ln is
an exponent matrix. So we obtain the following theorem:

Theorem 5.2. Suppose that a normalized Latin square Ln is a distance
matrix D = D(M) of a finite metric space M = {m1, . . . ,mn}. Then
n = 2k and Ln = Γk is the Cayley table of the direct product of k copies
of the cyclic group of order 2.

Conversely, the Cayley table Γk of the elementary Abelian group

Gk = Z/(2) × . . .× Z/(2) = (2) × . . .× (2)

(k factors) of order 2k is a Latin square and the distance matrix D =
D(M) of a finite metric space with 2k elements.



M. Dokuchaev, V. Kirichenko, B. Novikov, M. Plakhotnyk37

5.3. d-Matrices

The notion of a d-matrix was introduced in [9, §7.5].

Definition 5.2. Let A ∈ Mn(R) and A ≥ 0 (i.e., if A = (aij) then

aij ≥ 0). We say that A is a d-matrix for some d > 0, if
n
∑

j=1
aij = d

and
n
∑

i=1
aij = d for all i, j.

Obviously, every Latin square Ln, defined on the set {0, 1, . . . , n−1},

is a d-matrix with d = (n−1)n
2 . Consider the matrix Tn = 2

(n−1)nLn. It is

clear that Tn is a doubly stochastic matrix and T 2
n is positive. Therefore,

Tn is a primitive matrix and Tn is the transition matrix of a regular
ergodic homogenous Markov chain.

Denote by eij the (n × n)-matrix with 1 in the (i, j) position and
zeroes elsewhere. These n2 matrices eij are called the matrix units and
form a basis of Mn(R) over R. Let σ ∈ Sn be a permutation of {1, . . . , n}.

The matrix Pσ =
n
∑

i=1
eiσ(i) is called a permutation matrix of σ.

Let B = (bij) ∈ Mn(R) be a non-negative matrix. A normal set of

elements of B is a set of n elements b1j1 , . . . , bnjn
of B, where

(

1 2 . . . n
j1 j2 . . . jn

)

is an element of the symmetric group Sn of degree n.

Lemma 5.1. ([9, p.343]) Let B = (bij) ∈ Mn(R) be a non-negative
matrix and

n
∑

i=1

bij =

n
∑

j=1

bij = ω.

Then there exists a normal set b1i1 , . . . , bnin of strictly positive elements
of B.

Let Ln = (αij) be a Latin square, defined on {0, 1, . . . , n− 1}. With

every k ∈ {1, . . . , n−1} we associate the permutation σ =

(

1 . . . n
t1 . . . tn

)

such that αiti = k. The permutation σk exists by the definition of a Latin

square. Therefore, Ln =
n−1
∑

k=1

kPσ(k), where Pσ(k) is a permutation matrix

of σ(k).
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Example 5.3. The Latin square

L4 =









0 1 2 3
1 0 3 2
3 2 0 1
2 3 1 0









is the following sum of permutation matrices:

L4 =









0 1 0 0
1 0 0 0
0 0 0 1
0 0 1 0









+ 2 ×









0 0 1 0
0 0 0 1
0 1 0 0
1 0 0 0









+ 3 ×









0 0 0 1
0 0 1 0
1 0 0 0
0 1 0 0









.

It is easy to see that the vector (1, . . . , 1)T is the eigenvector of Ln

with the eigenvalue n(n−1)
2 .

By Perron-Frobenius theorem (see, for example, [7]) every another

eigenvector ~v of Ln with eigenvalue n(n−1)
2 is ~v = (α, α, . . . , α), where

α 6= 0 and if λ 6= n(n−1)
2 is an eigenvalue of Ln, then |λ | < n(n−1)

2 .
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