Characterization of regular convolutions

Sankar Sagi

 Communicated by V. V. Kirichenko

Abstract. A convolution is a mapping C of the set \mathbb{Z}^+ of positive integers into the set $\mathcal{P}(\mathbb{Z}^+)$ of all subsets of \mathbb{Z}^+ such that, for any $n \in \mathbb{Z}^+$, each member of $C(n)$ is a divisor of n. If $D(n)$ is the set of all divisors of n, for any n, then D is called the Dirichlet’s convolution [2]. If $U(n)$ is the set of all Unitary(square free) divisors of n, for any n, then U is called unitary(square free) convolution. Corresponding to any general convolution C, we can define a binary relation \leq_C on \mathbb{Z}^+ by ‘$m \leq_C n$ if and only if $m \in C(n)$’. In this paper, we present a characterization of regular convolution.

Introduction

A convolution is a mapping C of the set \mathbb{Z}^+ of positive integers into the set $\mathcal{P}(\mathbb{Z}^+)$ of subsets of \mathbb{Z}^+ such that, for any $n \in \mathbb{Z}^+$, $C(n)$ is a nonempty set of divisors of n. If $C(n)$ is the set of all divisors of n, for each $n \in \mathbb{Z}^+$, then C is the classical Dirichlet convolution [2]. If

$$C(n) = \{d / d|n \text{ and } \left\lfloor\frac{n}{d}\right\rfloor = 1\},$$

then C is the Unitary convolution [1]. As another example if

$$C(n) = \{d / d|n \text{ and } m^k \text{ does not divide } d \text{ for any } m \in \mathbb{Z}^+\},$$

then C is the k-free convolution. Corresponding to any convolution C, we can define a binary relation \leq_C in a natural way by

$$m \leq_C n \quad \text{if and only if } \quad m \in C(n).$$

2010 MSC: 06B10, 11A99.

Key words and phrases: semilattice, lattice, convolution, multiplicative, co-maximal, prime filter, cover, regular convolution.
\leq_{C} is a partial order on Z^+ and is called partial order induced by the convolution C [11], [12]. W. Narkiewicz [2] first proposed the concept of a regular convolution, and in this paper we present a lattice theoretic characterization of regular convolution and prove that the Dirichlet’s convolution is the unique regular convolution that induces a lattice structure on (Z^+, \leq_C).

1. Preliminaries

Let us recall that a partial order on a non-empty set X is defined as a binary relation \leq on X which is reflexive ($a \leq a$), transitive ($a \leq b, b \leq c \implies a \leq c$) and antisymmetric ($a \leq b, b \leq a \implies a = b$) and that a pair (X, \leq) is called a partially ordered set (poset) if X is a non-empty set and \leq is a partial order on X.

For any $A \subseteq X$ and $x \in X$, x is called a lower (upper) bound of A if $x \leq a$ (respectively $a \leq x$) for all $a \in A$. We have the usual notations of the greatest lower bound (glb) and least upper bound (lub) of A in X. If A is a finite subset $\{a_1, a_2, \ldots, a_n\}$, the glb of A (lub of A) is denoted by $a_1 \land a_2 \land \cdots \land a_n$ or $\bigwedge_{i=1}^{n} a_i$ (respectively by $a_1 \lor a_2 \lor \cdots \lor a_n$ or $\bigvee_{i=1}^{n} a_i$).

A partially ordered set (X, \leq) is called a meet semi lattice if $a \land b (=\text{glb}\{a, b\})$ exists for all a and $b \in X$. (X, \leq) is called a join semi lattice if $a \lor b (=\text{lub}\{a, b\})$ exists for all a and $b \in X$. A poset (X, \leq) is called a lattice if it is both a meet and join semi lattice. Equivalently, lattice can also be defined as an algebraic system (X, \land, \lor), where \land and \lor are binary operations which are associative, commutative and idempotent and satisfying the absorption laws, namely $a \land (a \lor b) = a = a \lor (a \land b)$ for all $a, b \in X$; in this case the partial order \leq on X is such that $a \land b$ and $a \lor b$ are respectively the glb and lub of $\{a, b\}$. The algebraic operations \land and \lor and the partial order \leq are related by

$$a = a \land b \iff a \leq b \iff a \lor b = b.$$

Throughout the paper Z^+, N, and P denote the set of positive integers, the set of non-negative integers, and set of prime numbers respectively.

Theorem 1 ([12]). Let \leq_{C} be the binary relation induced by convolution C. Then

1. \leq_{C} is reflexive if and only if $n \in C(n)$.
2. \leq_{C} is transitive if and only, for any $n \in Z^+$, $\bigcup_{m \in C(n)} C(m) \subseteq C(n)$.
3. \leq_{C} is always antisymmetric.
Corollary 1 ([12]). The binary relation \leq_C induced by convolution C on \mathbb{Z}^+ is a partial order if and only if $n \in C(n)$ and $\bigcup_{m \in C(n)} C(m) \subseteq C(n)$ for all $n \in \mathbb{Z}^+$.

Definition 1 ([12]). Let X and Y be non-empty sets and R and S be binary relations on X and Y respectively. A bijection $f : X \to Y$ is said to be a relation isomorphism of (X, R) into (Y, S) if, for any elements a and b in X,

$$aRb \text{ in } X \text{ if and only if } f(a)Sf(b) \text{ in } Y.$$

Theorem 2 ([12]). Let $\theta : \mathbb{Z}^+ \to \sum_P N$ be the bijection defined by

$$\theta(n)(p) = \text{the largest } a \text{ in } N \text{ such that } p^a \text{ divides } n,$$

Then a convolution C is multiplicative if and only if θ is a relation isomorphism of (\mathbb{Z}^+, \leq_C) onto $(\sum_P N, \leq_C)$.

Theorem 3 ([9], [10]). For any multiplicative convolution C, (\mathbb{Z}^+, \leq_C) is a lattice if and only if (N, \leq^p_C) is a lattice for each prime p.

Now we state the following theorems on co-maximality and prime filters.

Theorem 4 ([5]). Let (S, \wedge) be any meet semi lattice with smallest element 0 satisfying the descending chain condition. Also, suppose that every proper filter of S is prime. Then the following are equivalent to each other.

1. For any x and $y \in S$, $x \parallel y \iff x \wedge y = 0$.
2. $S - \{0\}$ is a disjoint union of maximal chains.
3. Any two incomparable filters of S are co-maximal.

Theorem 5 ([5]). Let C be any multiplicative convolution such that (\mathbb{Z}^+, \leq_C) is a meet semi lattice. Then any two incomparable prime filters of (\mathbb{Z}^+, \leq_C) are co-maximal if and only if any two incomparable prime filters of (N, \leq^p_C) are co-maximal, for each $p \in P$.

Theorem 6 ([3]). Let p be a prime number. Then every proper filter in (N, \leq^p_C) is prime if and only if $[p^a]$ is a prime filter in (\mathbb{Z}^+, \leq_C) for all $n > 0$.

Theorem 7 ([3]). A filter F of (\mathbb{Z}^+, \leq_C) is prime if and only if there exists unique $p \in P$ such that F^p is a prime filter of (N, \leq^p_C) and $F^q = N$ for all $q \neq p$ in P and, in this case,

$$F = \{ n \in \mathbb{Z}^+ \mid \theta(n)(p) \in F^p \}.$$
Theorem 8 ([3]). Let F be a filter of (Z^+, \leq_C). Then $F = [p^a]$ for some prime number p and a positive integer a which is join-irreducible in (Z^+, \leq_C).

Definition 2. Any complex valued function defined on the set Z^+ of positive integers is called an arithmetical function. The set of all arithmetical functions is denoted by \mathcal{A}.

The following is a routine verification using the properties of addition and multiplication of complex numbers.

Theorem 9. For any arithmetical functions f and g, define

$$(f + g)(n) = f(n) + g(n) \quad \text{and} \quad (f \cdot g)(n) = f(n)g(n)$$

for any $n \in Z^+$.

Then $+ \text{ and } \cdot$ are binary operations on the set \mathcal{A} of arithmetical functions and $(\mathcal{A}, +, \cdot)$ is a commutative ring with unity in which the constant map $\overline{0}$ and $\overline{1}$ are the zero element and unity element respectively.

Definition 3. Let C be a convolution and f and g arithmetical functions and \mathcal{C} be the field of complex numbers. Define $fCg: Z^+ \rightarrow \mathcal{C}$ by

$$(fCg)(n) = \sum_{d \in C(n)} f(d)g\left(\frac{n}{d}\right).$$

We can consider C as a binary operation, as defined above, on the set \mathcal{A} of arithmetical functions. W.Narkiewicz proposed the following definition.

Definition 4 ([2]). A convolution C is called regular if the following are satisfied.

1. $(\mathcal{A}, +, C)$ is a commutative ring with unity, where $+$ is the point-wise addition. This ring will be denoted by \mathcal{A}_C.
2. If f and g are multiplicative arithmetical functions, then so is the product fCg (f is said to be multiplicative if $f(mn) = f(m)f(n)$.)
3. The constant function $\overline{1}$, defined by $\overline{1}(n) = 1$ for all $n \in Z^+$, is a unit in the ring \mathcal{A}_C.

It can be easily verified that the arithmetical function e, defined by

$$e(n) = \begin{cases} 1 & \text{if } n = 1, \\ 0 & \text{if } n > 1 \end{cases}$$

is the unity (the identity element with respect to the binary operation C).
W. Narkiewicz proved the following two theorems.

Theorem 10 ([2]). A convolution C is regular if and only if the following conditions are satisfied for any m, n and $d \in Z^+$.

1. C is multiplicative convolution; i.e., $(m, n) = 1 \Rightarrow C(mn) = C(m)C(n)$.
2. $d \in C(m)$ and $m \in C(n) \Rightarrow d \in C(n)$ and $\frac{m}{d} \in C(\frac{n}{d})$.
3. $d \in C(n) \Rightarrow n \in C(\frac{n}{d})$.
4. $1 \in C(n)$ and $n \in C(n)$.
5. For any prime number p and any $a \in Z^+$, $C(p^a) = \{1, p^t, p^{2t}, \cdots, p^{rt}\}$, $rt = a$ for some positive integer t and $p^t \in C(p^{2t})$, $p^{2t} \in C(p^{3t})$, \cdots, $p^{(r-1)t} \in C(p^a)$.

Theorem 11 ([2]). Let \mathcal{K} be the class of all decompositions of the set of non-negative integers into arithmetic progressions (finite or infinite) each containing 0 and no two progressions belonging to same decomposition have a positive integer in common. Let us associate with each $p \in P$, a member π_p of \mathcal{K}. For any $n = p_1^{a_1}p_2^{a_2}\cdots p_r^{a_r}$, where p_1, p_2, \cdots, p_r are distinct primes and $a_1, a_2, \cdots, a_r \in N$, define

$$C(n) = \{p_1^{b_1}p_2^{b_2}\cdots p_r^{b_r} | b_i \leq a_i, \text{ and } b_i \text{ and } a_i \text{ belong to the same progression in } \pi_{p_i}\}.$$

Then C is a regular convolution and, conversely every regular convolution can be obtained in this way.

From the above theorems, it is clear that any regular convolution C is uniquely determined by a sequence $\{\pi_p\}_{p \in P}$ of decompositions of N into arithmetical progressions (finite or infinite) and we denote this by expression $C \sim \{\pi_p\}_{p \in P}$.

Definition 5. For any two elements a and b in a partially ordered set (X, \leq), a is said to be covered by b (b is a cover of a) if $a < b$ and there is no $c \in X$ such that $a < c < b$. This is denoted by $a- < b$.

We note that $\theta : Z^+ \to \sum_P N$ defined by

$$\theta(a)(p) = \text{the largest } n \text{ in } N \text{ such that } p^n \text{ divides } a,$$

for any $a \in Z^+$ and $p \in P$

is a bijection.

2. **Main results**

In the following two theorems, we prove that any regular convolution C gives a meet semi lattice structure on (Z^+, \leq_C) and the convolution C is
completely characterized by certain lattice theoretic properties of \((Z^+, \leq_C)\).

In particular Dirichlet’s convolution is the only regular convolution \(C\) which
gives a lattice structure on \((Z^+, \leq_C)\).

Theorem 12. Let \(C\) be a convolution and \(\leq_C\) the relation on \(Z^+\) induced
by \(C\). Then \(C\) is a regular convolution if and only if the following properties
are satisfied.

1. \(\theta: (Z^+, \leq_C) \to \sum_{p \in P} (N, \leq^p_C)\) is a relation isomorphism.
2. \((Z^+, \leq_C)\) is a meet semi lattice.
3. Any two incomparable prime filters of \((Z^+, \leq_C)\) are co-maximal.
4. \(F\) is a prime filter of \((Z^+, \leq_C)\) if and only if \(F = [p^a]\) for some
\(p \in P\) and \(a \in Z^+\).
5. For any \(m\) and \(n\) in \(Z^+\), \(m <_C n \implies 1 <_C \frac{n}{m} <_C n\).

Proof. Suppose that \(C\) is a regular convolution. By Theorem 11,
\(C \sim \{\pi_p\}_{p \in P}\), where each \(\pi_p\) is a decomposition of \(N\) into arithmetic
progressions (finite or infinite) in which each progression contains 0 and
no positive integer belongs to two distinct progressions. For any \(a, b \in N\)
and \(p \in P\), let us write for convenience,

\[\langle a < b \rangle \in \pi_p \iff a\text{ and }b\text{ belong to the same progression of }\pi_p.\]

Since \(C\) is regular, \(C\) satisfies properties (1)–(5) of Theorem 10. From
(2) and (4) of Theorem 10 and Corollary 1, it follows that \(\leq_C\) is a partial
order on \(Z^+\). Since \(C\) is multiplicative, it follows from Theorem 2 that
\(\theta: Z^+ \to \sum_{p \in P} N\) is an order isomorphism. Therefore the property (1) is
satisfied. For simplicity and convenience, we shall write \(\bar{n}\) for \(\theta(n)\). For
each \(n \in Z^+\), \(\bar{n}\) is the element in the direct sum \(\sum_{p \in P} N\) defined by

\[\bar{n}(p) = \text{the largest } a \text{ in } N \text{ such that } p^a \text{ divides } n.\]

\(n \mapsto \bar{n}\) is an order isomorphism of \((Z^+, \leq_C)\) onto \(\sum_{p \in P} (N, \leq^p_C)\), where for
each \(p \in P\), \(\leq^p_C\) is the partial order on \(N\) defined by

\[a \leq^p_C b \iff p^a \in C(p^b).\]

For any \(m\) and \(n\) in \(Z^+\), let \(m \wedge n\) be the element in \(Z^+\) defined by

\[\overline{m \wedge n}(p) = \begin{cases} 0 & \text{if } \langle \overline{m}(p), \overline{n}(p) \rangle \notin \pi_p, \\ \min\{\overline{m}(p), \overline{n}(p)\} & \text{otherwise.} \end{cases}\]

for all \(p \in P\). If \(\langle \overline{m}(p), \overline{n}(p) \rangle \in \pi_p\), then

\[\overline{m}(p) \leq^p_C \overline{n}(p) \text{ or } \overline{n}(p) \leq^p_C \overline{m}(p)\]
and hence $m \wedge \overline{n} \preceq \overline{m} \wedge \overline{n}$ for all $p \in P$. Therefore $m \wedge n$ is a lower bound of m and n in $(\mathbb{Z}^+, \preceq_C)$. Let k be any other lower bound of m and n. For any $p \in P$, if $(\overline{m}(p), \overline{n}(p)) \in \pi_p$, then, since

$$k(p) \preceq_C^p \overline{m}(p) \quad \text{and} \quad k(p) \preceq_C^p \overline{n}(p),$$

we have

$$k(p) \preceq_C^p m \wedge \overline{n}(p).$$

If $(\overline{m}(p), \overline{n}(p)) \notin \pi_p$, then

$$k(p) = 0 = m \wedge \overline{n}(p).$$

Thus $k \preceq m \wedge n$. Therefore, $m \wedge n$ is the greatest lower bound of m and n in $(\mathbb{Z}^+, \preceq_C)$. Thus $(\mathbb{Z}^+, \preceq_C)$ is a meet semi lattice and hence the property (2) is satisfied.

To prove (3), by Theorem 5, it is enough if we prove that any two incomparable prime filters of (N, \preceq_C^p) are co-maximal for all $p \in P$. For any positive a and b, if a and b are incomparable in (N, \preceq_C^p), then $(a, b) \notin \pi_p$ and hence a and b have no upper bound and therefore $a \vee b$ does not exist in (N, \preceq_C^p). Also, each progression in π_p is a maximal chain in (N, \preceq_C^p) and, for any a and $b \in N$, a and b are comparable if and only if $(a, b) \in \pi_p$.

Therefore $(\mathbb{Z}^+, \preceq_C^p)$ is a disjoint union of maximal chains. Thus, by Theorem 4, any two incomparable prime filters of (N, \preceq_C^p) are co-maximal. Therefore, by Theorem 5, any two incomparable prime filters of $(\mathbb{Z}^+, \preceq_C)$ are co-maximal. This proves (3).

(4) follows from Theorem 6 and Theorem 7 and from the discussion made above.

To prove (5), let m and $n \in \mathbb{Z}^+$ such that $m <_C n$. By Theorem 10 (3), we get that $\frac{m}{n} \leq_C n$. Let us write

$$n = p_1^{b_1} p_2^{b_2} \cdots p_r^{b_r} \quad \text{and} \quad m = p_1^{a_1} p_2^{a_2} \cdots p_r^{a_r}$$

where p_1, p_2, \cdots, p_r are distinct primes and each $b_i > 0$ such that $0 \preceq_C^{p_i} a_i <_C^{p_i} b_i$. Since $m \neq n$, there exists i such that $a_i \preceq_C^{p_i} b_i$. Now, if $a_j \preceq_C^{p_i} b_j$ for some $j \neq i$, then the element $k = p_1^{c_1} p_2^{c_2} \cdots p_r^{c_r}$, where

$$c_s = \begin{cases} a_s & \text{if } s \neq i, \\ b_s & \text{if } s = i. \end{cases}$$

will be between m and n (that is, $m <_C k <_C n$) which is a contradiction.

Therefore $a_j = b_j$ for all $j \neq i$ and hence $\frac{n}{m} = p_i^{a_i - b_i}$.

Since \(\langle a_i, b_i \rangle \in \pi_i \), there exists \(t > 0 \) such that

\[
b_i = ut \quad \text{and} \quad a_i = vt
\]

for some \(u \) and \(v \) with \(v < u \). Also, \(vt, (v + 1)t, \cdots, ut \) are all in the same progression. Since \(m - \langle c n \rangle \), it follows that \(u = v + 1 \) and hence \(\frac{n}{m} = \pi_i \). Since \(0 - \langle t \rangle \) in \((N, \leq \pi_i^c) \), we get that

\[
1 - \langle c \rangle \pi_i^t = \frac{n}{m} \leq c n.
\]

This proves (5).

Conversely suppose that \(C \) satisfies properties (1)–(5), since \([p^a] \) is prime filter of \((Z^+, \leq_C)\) for all \(p \in P \) and \(a \in Z^+ \), by Theorem 6, every proper filter of \((N, \leq \pi_i^p)\) is prime, for any \(p \in P \). Since any two incomparable prime filters of \((Z^+, \leq_C)\) are co-maximal, by Theorem 8 and Theorem 5, we get that \((Z^+, \leq_C^p)\) is a disjoint union of maximal chains.

Fix \(p \in P \). Then

\[
Z^+ = \bigcap_{i \in I} Y_i
\]

where each \(Y_i \) is a maximal chain in \((Z^+, \leq_C^p)\) such that, for any \(i \neq j \in I \), \(Y_i \cap Y_j = \emptyset \) and each element of \(Y_i \) is incomparable with each element of \(Y_j \). Now, we shall prove that each \(Y_i \) is an arithmetical progression (finite or infinite).

Let \(i \in I \). Since \(N \) is countable, \(Y_i \) is at most countable. Also, since \((N, \leq \pi_i^p)\) satisfies the descending chain condition, we can express

\[
Y_i = \{ a_1 - \langle c \rangle a_2 - \langle c \rangle a_3 - < \ldots \}
\]

By using induction on \(r \), we shall prove that \(a_r = ra_1 \) for all \(r \).

Clearly, this is true for \(r = 1 \). Assume that \(r > 1 \) and \(a_s = sa_1 \) for all \(1 \leq s < r \). Since \((r - 1)a_1 = a_{r-1} - < a_r \) in \((N, \leq \pi_i^p)\), we have

\[
p^{a_{r-1}} - \langle c \rangle p^{a_r} \text{ in } (Z^+, \leq_C^p)
\]

and hence, by condition (5),

\[
1 - \langle c \rangle p^{a_r - a_{r-1}} \leq_C p^{a_r}.
\]

Therefore, \(0 \neq a_r - a_{r-1} \leq_C p a_r \) and hence \(a_r - a_{r-1} \in Y_i \) (since \(a_r \in Y_i \)).

Also, since \(0 - \langle a_r - a_{r-1} \rangle \) in \((N, \leq \pi_i^p)\), we have \(a_r - a_{r-1} = a_1 \) and therefore \(a_r = a_{r-1} + a_1 = (r - 1)a_1 + a_1 = ra_1 \). Hence, for any prime \(p \)
and \(a \in \mathbb{Z}^+ \),
\[
\mathcal{C}(p^a) = \{1, p^t, p^{2t}, \ldots, p^{st}\} \quad \text{and} \quad st = a
\]
for some positive integers \(t \) and \(s \) and
\[
p^t \in \mathcal{C}(p^{2t}), p^{2t} \in \mathcal{C}(p^{3t}), \ldots, p^{(s-1)t} \in \mathcal{C}(p^a).
\]
The other conditions given in Theorem 10 are clearly satisfied. Thus, by Theorem 10, \(\mathcal{C} \) is a regular convolution.

\[\square \]

Theorem 13. Let \(\mathcal{C} \) be a convolution, then the following conditions are equivalent to each other.
1. \((\mathbb{Z}^+, \leq_C)\) is a lattice.
2. \((\mathbb{N}, \leq^p_C)\) is a lattice for each \(p \in P \).
3. \((\mathbb{N}, \leq_C)\) is a totally ordered set for each \(p \in P \).
4. For any \(p \in P \) and \(a, b \in \mathbb{N} \), \(a \leq^p_C b \iff a \leq b \).
5. For any \(n \) and \(m \in \mathbb{Z}^+ \), \(n \leq_C m \iff n \text{ divides } m \).
6. \(\mathcal{C}(n) = \) The set of positive divisors of \(n \).

Proof. Since \(\mathcal{C} \) is regular, \(\mathcal{C} \sim \{\pi_p\}_{p \in P} \).

1. \(\implies \) (2) follows from Theorem 3.

2. \(\implies \) (3) Let \(p \in P \). Suppose that \((\mathbb{N}, \leq^p_C)\) is a lattice. If \(\pi_p \) contains two progressions, then choose an element \(a \) in one progression \(S \) and \(b \) in another progression \(T \) in \(\pi_p \). Since \(a \leq^p_C b \) and \(b \leq_C a \), \(a \lor b \in S \cap T \). A contradiction.

Therefore \(\pi_p \) contains only one progression, which must be
\[
N = \{0 <^p_C 1 <^p_C 2 <^p_C 3 <^p_C \ldots \}.
\]

Thus \((\mathbb{N}, \leq^p_C)\) is a totally ordered set.

3. \(\implies \) (4) It is trivial.

4. \(\implies \) (5) Let \(m \) and \(n \in \mathbb{Z}^+ \) and we write \(n = \prod_{i=1}^r P_i^a_i \) and \(m = \prod_{i=1}^r P_i^{b_i} \), where \(p_1, p_2, \ldots, p_r \) are distinct primes and \(a_i, b_i \in \mathbb{N} \). Now,
\[
n \text{ divides } m \iff a_i \leq b_i \text{ for all } 1 \leq i \leq r \\
\iff a_i \leq^p_C b_i \text{ for all } 1 \leq i \leq r \\
\iff n \leq_C m.
\]

5. \(\implies \) (6) For any \(n \in \mathbb{Z}^+ \),
\[
\mathcal{C}(n) = \{m \in \mathbb{Z}^+ \mid m \leq_C n\} = \{m \in \mathbb{Z}^+ \mid m \text{ divides } n\} = \mathcal{D}(n).
\]
(6) \implies (1) If \(C = D \), then \(\leq_C \leq_D \) and, for any \(n, m \in \mathbb{Z}^+ \),
\[
 n \wedge m = \gcd\{n, m\}
\]
and \(n \vee m = \text{lcm}\{n, m\} \) in \((\mathbb{Z}^+, \leq_C)\). \hfill \Box

The above Theorem implies that the Dirichlet’s convolution \(D \) is the only regular convolution for which \((\mathbb{Z}^+, \leq_C)\) is a lattice.

References

Contact Information

Sankar Sagi
Assistant Professor of Mathematics, College of Applied Sciences, Sohar, Sultanate of Oman
E-Mail(s): sagi_sankar@yahoo.co.in

Received by the editors: 09.10.2015
and in final form 03.02.2018.