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Abstract. We consider codes that are given as two-sided

ideals in a semisimple finite group algebra FqG defined by idem-

potents constructed from subgroups of G in a natural way and

compute their dimensions and weights. We give a criterion to de-

cide when these ideals are all the minimal two-sided ideals of FqG
in the case when G is a dihedral group and extend these results

also to a family of quaternion group codes. In the final section, we

give a method of decoding; i.e., of finding and correcting eventual

transmission errors.

Dedicated to Professor Miguel Ferrero

on occasion of his 70-th anniversary

1. Introduction

Let Fq denote a finite field with q elements. A linear code of length n
over Fq is a subspace of Fn

q . Given a finite group G of order n, the group
algebra FqG is a vector space over Fq, with basis G and thus, isomorphic
to Fn

q as a vector space. An important family of linear codes are the
cyclic codes which are codes C ⊂ Fn

q such that if (x0, . . . , xn−1) ∈ C then
also (xn−1, x0, . . . , xn−2) ∈ C. If we denote by Cn = ⟨a⟩ the cyclic group
of order n, then it is easy to show that a code C ⊂ Fn

q is cyclic if and
only if its image under the map Fn

q → FqCn given by (x0, . . . , xn−1) 7→∑n−1
i=0 xia

i ∈ FqCn is an ideal.
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More generally, a group code over Fq is, by definition, an ideal of the
group algebra FqG of a finite group G (see, for example, [1], [2, section
4.8]).

We recall that the support of an element � =
∑

g∈G �gg in the
group algebra FG of a group G over a field F is the set supp(�) =
{g ∈ G∣ag ∕= 0}. The Hamming distance between two elements � =∑

g∈G �gg and � =
∑

g∈G �gg in FG is

d(�, �) = ∣{g∣�g ∕= �g, g ∈ G}∣

and the weight of an element � is w(�) = d(�, 0) = ∣supp(�)∣.
The weight or minimum distance of an ideal I ⊂ FG is the number

w(I) = min{w(�)∣� ∈ FG,� ∕= 0} = min{∣supp(�)∣∣� ∈ FG,� ∕= 0}.

If cℎar(Fq) ∣∕ n, then this group algebra is semisimple and thus every
ideal is generated by an idempotent element. If H is a subgroup of G,
then the element

Ĥ =
1

∣H∣

∑

ℎ∈H

ℎ

is an idempotent and it is central if and only if H is normal in G.
In the case of the rational group algebra of a finite abelian group G,

it is known that the set of primitive idempotents of ℚG is the set of all
elements of the form

e = Ĥ − Ĥ∗,

where H,H∗ are pairs of subgroups of G such that H ⊂ H∗ and the
quotient H∗/H is cyclic, together with the element Ĝ which is called the
principal idempotent of ℚG [8, Theorem VII.1.4].

In [7] we gave necessary and sufficient conditions for this same formu-
las to describe the set of primitive idempotents of the group algebra of a
finite abelian group over a finite field.

In section §2 we study ideals generated by idempotents of the form
e = Ĥ − Ĥ∗, and by products of idempotents of this form, in group
algebras of finite groups G over arbitrary fields F such that cℎar(F ) ∣∕ ∣G∣.
As an application, in the following section we give necessary and sufficient
conditions for the semisimple group algebras of dihedral groups over a
finite field to have a minimal number of simple components and in section
§4 we describe the minimal central dihedral codes in this case. In section
§5 we give necessary and sufficient conditions for the group algebras of
dihedral and quaternion codes over finite fields to be isomorphic and thus
obtain information on quaternion codes. In the final section, we describe
decoding procedures for these kind of codes.
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Our interest is mainly theoretical, since we wish to determine minimal
codes. These turn out not to be efficient code as their minimal distance
is comparatively small.

2. Ideals of Group Algebras

In what follows, we shall always assume that G is a finite group and Fq a
finite field such that cℎar(Fq) ∣∕ ∣G∣. As mentioned above, if H is a normal
subgroup of G then

Ĥ =
1

∣H∣

∑

ℎ∈H

ℎ

is a central idempotent of FqG.
It is well-known [11, Proposition 3.6.7] that

(FqG) ⋅ Ĥ ∼= Fq[G/H],

so
dimFq

(
(FqG) ⋅ Ĥ

)
= [G : H].

Also, it is easy to see that if � is a transversal of H in G, i.e. a
complete set of representatives of cosets of H in G, then

{tĤ∣t ∈ �}

is a basis of (FqG) ⋅ Ĥ over Fq.

Hence, an element in such an ideal is of the form � =
∑

t∈� attĤ
which means that, when written in the basis G of FqG, it has the same
coefficient along all the elements of the form tℎ for a fixed t ∈ � and any
ℎ ∈ H. Thus, this kind of ideals define repetition codes, which are not
particularly interesting.

Now, we turn our attention to other kind of idempotents that will
define more significant codes.

Proposition 2.1. Let G be a finite group and F a field such that cℎar(F )
does not divide ∣G∣. Let H and H∗ be normal subgroups of G such that

H ⊂ H∗ and set e = Ĥ − Ĥ∗. Then:

(i) dimF (FG)e = ∣G/H∣ − ∣G/H∗∣

(ii) w((FG)e) = 2∣H∣.

(iii) If A is a transversal of H∗ in G and � a transversal of H in H∗

containing 1, then

ℬ = {a(1− t)Ĥ∣a ∈ A, t ∈ � ∖ {1}}

is a basis of (FqG)e over Fq.



Jo
u
rn

al
 A

lg
eb

ra
 D

is
cr

et
e 

M
at

h
.F. S. Dutra, R. A. Ferraz, C. Polcino Milies 31

Proof. Notice that Ĥ = e + Ĥ∗ and eĤ∗ = 0 so (FG)Ĥ = (FG)e ⊕

(FG)Ĥ∗; thus

dimF (FG)Ĥ = dimF (FG)e+ dimF (FG)Ĥ∗.

As H ⊲ G we have that (FG)Ĥ ∼= F (G/H) (see [11, Proposi-

tion 3.6.7]) so dimF (FG)Ĥ = ∣G/H∣, dimF (FG)Ĥ∗ = ∣G/H∗∣ and the
first result follows.

As eĤ = (Ĥ − Ĥ∗)Ĥ = Ĥ − Ĥ∗, it follows that (FG)e ⊂ (FG)Ĥ .
Let T be a transversal of H ⊂ G. An arbitrary element � ∈ FG can be
written in the form � =

∑
t∈T �tt with �t ∈ FH so elements in the code

are of the form (
∑

t∈T �tt)Ĥ with at ∈ F .
Notice that, if only one coefficient at were different from 0, we would

have that Ĥ ∈ (FG)e, a contradiction. This shows that w((FG)e) ≥
2∣H∣.

On the other hand, if ℎ ∈ H∗ ∖H, we have that

(1− ℎ)e = (1− ℎ)(Ĥ − Ĥ∗) = (1− ℎ)Ĥ.

As supp(Ĥ) ∩ supp(ℎĤ) = ∅, we have that w((1 − ℎ)e) = 2∣H∣. Hence,
w((FG)e) = 2∣H∣.

To prove (iii) we shall show first that the elements of ℬ do belong to

(FqG)e. In fact, since (1− t)Ĥ∗ = 0, we have that

a(1− t)Ĥ = a(1− t)Ĥ(Ĥ − Ĥ∗) = a(1− t)Ĥe ∈ (FqG)e.

Now, we shall show that the elements in ℬ are linearly independent.
So, assume that we have a linear combination over Fq:

0 =
∑

a,t

xat(a(1− t)Ĥ =
∑

a

(∑

t

xat

)
aĤ −

∑

a,t

xatatĤ.

Notice that, for a fixed pair a ∈ A, t ∈ � the element atĤ has a support
that is disjoint with the support of every other element in this linear
combination; hence, xat = 0, for all a ∈ A, t ∈ � .

On the other hand, we have that the cardinality of ℬ is

∣ℬ∣ = ∣A∣ (∣� ∣ − 1) =

∣∣∣∣
G

H∗

∣∣∣∣
(∣∣∣∣

H∗

H

∣∣∣∣− 1

)

=

∣∣∣∣
G

H

∣∣∣∣−
∣∣∣∣
G

H∗

∣∣∣∣ = dimFq
(FG)e,

and the proof is complete.
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We wish to extend the results of Proposition 2.1 to an ideal generated
by a product of idempotents of the type under consideration. For the
applications we have in mind, it will suffice to do so for a product of two
idempotents, but the result extends easily, by induction.

Lemma 2.2. Let Hi ⊂ H∗
i , be normal subgroups of a group G, i = 1, 2,

such that H∗
1 ∩H∗

2 = {1}. Set e = (Ĥ1 − Ĥ∗
1 )(Ĥ2 − Ĥ∗

2 ). Then:

(i) dimF (FG)e = ∣G∣
∣H1H2∣

(
1− ∣H1∣

∣H∗

1
∣

)(
1− ∣H2∣

∣H∗

2
∣

)

(ii) w ((FG)e) = 4∣H1H2∣.

(iii) If A is a transversal of H∗ in G and �i a transversal of Hi in H∗
i

containing 1, i = 1, 2. Then

ℬ = {a(1− t1)(1− t2)Ĥ∣a ∈ A, ti ∈ �i, ti ∕= 1, i = 1, 2}

is a basis of (FqG)e over Fq.

Proof. We compute

e = (Ĥ1 − Ĥ∗
1 )(Ĥ2 − Ĥ∗

2 ) = Ĥ1H2 − Ĥ1H∗
2 − Ĥ∗

1H2 + Ĥ∗
1H

∗
2 .

If we set f1 = Ĥ1H2 − Ĥ1H∗
2 , f2 = Ĥ∗

1H2 − Ĥ∗
1H

∗
2 and ℐ = (FG)e,

we see that e = f1 − f2 and that e and f2 are orthogonal, so

dimFℐ = dimF (FG)f1 − dimF (FG)f2.

Also

dimF (FG)f1 = ∣G/H1H2∣ − ∣G/H1H
∗
2 ∣

and

dimF (FG)f2 = ∣G/H∗
1H2∣ − ∣G/H∗

1H
∗
2 ∣,

so

dimFℐ =
∣G∣

∣H1H2∣

(
1−

∣H1∣

∣H∗
1 ∣

)(
1−

∣H2∣

∣H∗
2 ∣

)
.

To compute the weight of this code we consider elements  ∈ H∗
1 ∖H1

and � ∈ H∗
2 ∖H2. We claim that � = (1 − )(1 − �)Ĥ1H2 ∈ ℐ. In fact,

we have

�e1e2 = (1− )(1− �)Ĥ1H2(Ĥ1 − Ĥ∗
1 )(Ĥ2 − Ĥ∗

2 )

= (1− )(Ĥ1 − Ĥ∗
1 )(1− �)(Ĥ2 − Ĥ∗

2 )

= (1− )Ĥ1(1− �)Ĥ2 = �,
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so � = �e1e2 ∈ ℐ. Since w(�) = 4∣H1H2∣ it follows that w(ℐ) ≤ 4∣H1H2∣.

Let T be a transversal of H1H2 in G. Since e = eĤ1H2, any element
x ∈ ℐ can be written in the form

x =
∑

t∈T

attĤ1H2,

where at ∈ F . We claim that such an element x ∕= 0 cannot be written
as a sum with less than four terms. As in Lemma 2.1, it is easy to see
that x cannot have only one coefficient different from 0. Assume, by way
of contradiction, that we have in ℐ an element of the form

x = (a1t1 + a2t2)Ĥ1H2,

with t1 ∕= t2. As x = x(Ĥ1 − Ĥ∗
1 ) we have

(a1t1 + a2t2)Ĥ∗
1H2 = 0.

Since t1H
∗
1H2 and t2H

∗
1H2 are cosets of H∗

1H2 they are either equal
or disjoint. Hence, we must have t1H

∗
1H2 = t2H

∗
1H2 and there exist

elements ℎ∗1 ∈ H∗
1 and ℎ2 ∈ H2 such that t1 = t2ℎ

∗
1ℎ2. In a similar

way, multiplying by Ĥ2 − Ĥ∗
2 we see that there exist elements ℎ1 ∈ H1

and ℎ∗2 ∈ H∗
2 such that t1 = t2ℎ1ℎ

∗
2. This clearly implies that ℎ∗1ℎ

−1
1 =

ℎ−1
2 ℎ∗2 ∈ H∗

1 ∩H∗
2 = {1}. So ℎ∗1 ∈ H1, ℎ

∗
2 ∈ H2 and t1H1H2 = t2H1H2, a

contradiction.
Finally, if x = (a1t1+a2t2+a3t3)Ĥ1H2, multiplying by Ĥ1− Ĥ∗

1 and

by Ĥ2 − Ĥ∗
2 we get (a1t1 + a2t2 + a3t3)Ĥ∗

1H2 = 0 and (a1t1 + a2t2 +

a3t3)Ĥ1H∗
2 = 0 respectively. Then, it is easy to conclude, as before, that

t1H1H2 = t2H1H2 = t3H1H2, a contradiction.
The proof of (iii) is very similar to that of part (iii) in Proposition 2.3.

As
a(1− t1)(1− t2)Ĥ(Ĥ1 − Ĥ∗

1 )(Ĥ2 − Ĥ∗
2 ) =

= aĤ(1− t1)(Ĥ1 − Ĥ∗
1 )(1− t2)(Ĥ2 − Ĥ∗

2 ) =

= aĤ(1− t1)Ĥ1(1− t2)Ĥ2 = a(1− t1)(1− t2)Ĥ,
it follows that ℬ ⊂ (FqG)e.

To prove that the elements of ℬ are linearly independent assume, as
before, that there exists a linear combination

0 =
∑

a,t1,t2

xat1t2a(1− t1)(1− t2)Ĥ =

=
∑

a

(∑

t1t2

xat1t2

)
aĤ −

∑

t2

∑

a,t1

xat1t2at1Ĥ
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−
∑

t1

∑

a,t2

xat1t2at2Ĥ +
∑

a,t1,t2

xat1t2at1t2Ĥ.

Clearly, the support of the elements of the form at1t2Ĥ are disjoint
with the support of every other element in this sum, so we get that
xat1t2 = 0 for all a ∈ A, ti ∈ �i, i = 1, 2.

Finally, notice that the number of elements in ℬ is

∣ℬ∣ =
∣G∣

∣H∗
1H

∗
2 ∣

(
∣H∗

1 ∣

∣H1∣
− 1

)(
∣H∗

2 ∣

∣H2∣
− 1

)

=
∣G∣

∣H1H2∣

(
1−

∣H1∣

∣H∗
1 ∣

)(
1−

∣H2∣

∣H∗
2 ∣

)

= dimFq
(FqG)e.

An easy induction now proves the first two statements of the following.

Proposition 2.3. Let Hi ⊂ H∗
i , be normal subgroups of a group G, 1 ≤

i ≤ k, such that H∗
i ∩N∗

i = {1}, where Ni denotes the subgroup generated

by all H∗
j with j ∕= i. Set e = (Ĥ1 − Ĥ∗

1 )(Ĥ2 − Ĥ∗
2 ) ⋅ ⋅ ⋅ (Ĥk − Ĥ∗

k). Then,

(i) dimF (FG)e = ∣G∣
∣H1H2⋅⋅⋅Hk∣

(
1− ∣H1∣

∣H∗

1
∣

)(
1− ∣H2∣

∣H∗

2
∣

)
⋅ ⋅ ⋅
(
1− ∣Hk∣

∣H∗

k
∣

)

(ii) w ((FG)e) = 2k∣H1H2 ⋅ ⋅ ⋅Hk∣.

(iii) If A is a transversal of H∗ in G and �i a transversal of Hi in H∗
i

containing 1, 1 ≤ i ≤ k. Then, the set ℬ =

{a(1− t1)(1− t2) ⋅ ⋅ ⋅ (1− tk)Ĥ∣a ∈ A, ti ∈ �i, ti ∕= 1}

is a basis of (FqG)e over Fq.

If e1, . . . , en are central idempotents in a ring R and we set e =
e1 ⋅ ⋅ ⋅ ek, it is easy to see that Re = Re1 ∩ ⋅ ⋅ ⋅ ∩Rek. Since Δ(G : H∗) =

(FqG)(1−Ĥ∗) (see [11, Proposition 3.6.7]) and Ĥ(1−Ĥ∗) = Ĥ−Ĥ∗ = e
we see immediately that

(FqG)e = (FqG)Ĥ ∩Δ(G : H∗).

Also, if Hi ⊂ H∗
i , are normal subgroups of a group G, 1 ≤ i ≤ k, and

we set e =
∏k

i=1(Ĥi − Ĥ∗
i ), it follows easily, by induction, that:

(FqG)e =
(
∩k
i=1(FqG)Ĥi

)
∩
(
∩k
i=1Δ(G : H∗

i )
)
.
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3. Semisimple dihedral group algebras

Let Fq be a finite field with q elements and let Dn be the dihedral group
of order 2n, i.e.

Dn = ⟨a, b∣an = b2 = 1, bab = a−1⟩.

We shall assume throughout that cℎar(Fq) does not divide 2n. It was
shown in [7] that, for an arbitrary semisimple group algebra FG of a finite
group G, the number of simple components of FG is greater or equal to
the number of simple components of ℚG, where ℚ denotes the field of
rational numbers. We shall determine conditions on q and n for FqDn

to have minimum number of simple components, i.e., to have precisely
the same number of simple components as ℚG. To do so, we will first
determine the structure of ℚDn.

We begin by exhibiting the primitive central idempotents of the al-
gebra ℚ⟨a⟩. Let n = pn1

1 ⋅ ⋅ ⋅ pnt
t . According to [8, Theorem VII.1.4] these

are elements of the form
�1�2 . . . �t,

with either

�i =
ˆ

⟨an/p
ni
i ⟩ or �i = K̂i − Ĥi, (1)

where Ki and Hi are all the pi-subgroups of ⟨a⟩ such that Ki ⊂ Hi and
∣Hi/Ki∣ = pi for 1 ≤ i ≤ t.

Let Li = supp(�i), 1 ≤ i ≤ t. Then ⟨L1×⋅ ⋅ ⋅×Lt⟩ = ⟨am⟩, a subgroup
of ⟨a⟩ and it is easy to see that every such subgroup correspondes to
exactly one of the idempotents above. So, each idempotents corresponds
to precisely one divisor d of n and shall be denoted by ed.

Since every subgroup of ⟨a⟩ is normal in Dn, it follows that the idem-
potents ed, d∣n, are central in ℚDn.

We can write the idempotent e1 = ⟨̂a⟩ as the sum of the idempotents:

e11 =
1 + b

2
e1 and e12 =

1− b

2
e1 (2)

and, when n is even, we also write the idempotent e2 as the sum of:

e21 =
1 + b

2
e2 and e22 =

1− b

2
e2. (3)

A straightforward computation shows that {e11, e12} ∪ {ed∣d∣n, d ∕=
1} and {e11, e12, e21, e22} ∪ {ed∣d ∕= 1, 2} are sets of pairwise orthogonal
central idempotents whose sums are equal to 1.

To prove that these are the sets of primitive central idempotents, we
shall compute the number of simple components of ℚDn.
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Let G be a group, F any field such that cℎar(F ) ∣∕ ∣G∣ and e the
exponent of G. Let � be a primitive etℎ root of unity. For each element �
in Gal(F (�), F ) we have that �� = �r for some positive integer r, and we
define an action of � on G by g� = gr, for all g ∈ G. We note that, if Γg is
the class sum of the class of an element g, then Γ�

g = Γg� . Two conjugacy
classes of G are said to be F -conjugate if they correspond under this
action.

The Theorem of Witt-Berman [4, Theorems 21.5 and 21.25] shows
that the number of simple components of the group algebra FDn equals
the number of F -conjugate classes of Dn (for a proof in purely group ring
theoretical terms, see [5]).

The conjugacy classes of Dn are:

{1}, {a, a−1}, . . . {a
n−1

2 , a−
n+1

2 }, {b, ab, . . . , an−1b},

if n is odd, and

{1}, {a, a−1}, . . . {a
n−2

2 , a−
n+2

2 }, {a
n
2 }

{b, a2b, . . . , an−2b}, {ab, a3b, . . . , an−1b},

if n is even, so we set

A0 = 1, Ai = ai + a−i, 1 ≤ i ≤
n− 1

2
, B =

n−1∑

j=0

ajb,

and
ℬ = {A0, A1, . . . , An−1

2

, B}

if n is odd and

A0 = 1, Ai = ai + a−i, 1 ≤ i ≤
n− 2

2
, An

2
= a

n
2

and

B0 =

n−2

2∑

j=0

a2jb, B1 =

n−2

2∑

j=0

a2j+1b,

and
ℬ = {A0, A1, . . . , An−2

2

, An
2
, B0, B1}

if n is even.
With this notation, the number of simple components of FDn is the

number of orbits of elements in ℬ under the action of Gal(F (�), F ).
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Let e be the exponent of Dn; i.e., e = 2n if n is odd and e = n if
n is even. The group Gal(ℚ(�),ℚ) is isomorphic to the group of units
U(ℤn) ∼= U(ℤe). Hence, two elements of the form ai and aj are ℚ-
conjugates if and only if there exists an integer r, such that gcd(r, n) = 1
and j ≡ ir (mod n); i.e., if and only if gcd(i, n) = gcd(j, n). So, the
conjugacy class of an element Ai in ℬ is

Ai = {Aj ∣gcd(i, n) = gcd(j, n)}.

In particular, if gcd(i, n) = d we have that Ai = Ad and the number
of ℚ-classes containing elements of this form is equal to the number of
divisors of n, which we shall denote by d(n).

Consequently, the number of ℚ-classes, and thus of simple compo-
nents of ℚDn, is d(n) + 1 if n is odd and d(n) + 2 if n is even. Since
this number coincides with the number of orthogonal central idempotents
found above, we have shown the following, which is implicit in [9, p. 230].

Theorem 3.1. The set of primitive central idempotents of the group
algebra ℚDn is

{e11, e12} ∪ {ed∣d∣n, d ∕= 1} if n is odd,

and
{e11, e12, e21, e22} ∪ {ed∣d ∕= 1, 2} if n is even.

Notice that expressions on equations (1), (2) and (3) also define idem-
potents over a finite field Fq, which are pairwise orthogonal and add up to
1. To decide whether these are, in fact, the primitive central idempotents
of FqDn we must determine when they are as many as the number of
simple components of this algebra. In view of Theorem 3.1, this is equiv-
alent to decide when ℚDn and FqDn have the same number of simple
components. We shall determine conditions on n for this to happen.

Lemma 3.2. Let Fq be a finite field and let � be an etℎ-root of unity,
where e is the exponent of Dn. Then, the number of simple components
of FqDn equals the number of simple components of ℚDn if and only if,
denoting by q the residue class of q in ℤn, we have that either ⟨q⟩ = U(ℤn)
or ⟨q⟩ is a subgroup of index 2 in U(ℤn) and −1 ∕∈ ⟨q⟩.

Proof. Set q = ∣Fq∣. We recall that Gal(Fq(�),Fq) is a cyclic group,
generated by the Frobenius automorphism � 7→ �q.

Assume first that n is odd. Clearly, A0 and B are fixed under the
action of Gal(Fq(�),Fq). The orbit of Ai is

Si = {ai + a−i, aiq + a−iq, aiq
2

+ a−iq2 , . . . , aiq
s−1

+ a−iqs−1

},
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where s is the least positive integer such that aiq
s
= ai.

Set
Ai = {Ar∣gcd(r, n) = gcd(i, n)}.

Clearly, Si ⊂ Ai. So, the number of simple components of FqDn

equals the number of simple components of ℚDn if and only if Si = Ai

for all indexes i. A similar argument holds if n is even.
Assume now that Si ⊂ Ai for all indeces i. Hence, in particular

S1 ⊂ A1 = {Ar∣gcd(r, n) = 1}.

So, for each r coprime with n we have that ar + a−r = aq
t
+ a−qt for

some positive integer t. This means that either ar = aq
t

or ar = a−qt .
This shows that, given any element r ∈ ℤn we have that either r ∈ ⟨q⟩ or
−r ∈ ⟨q⟩; thus [U(ℤn) : ⟨q⟩] ≤ 2, as stated. We still need to prove that
−1 ∕∈ ⟨q⟩ when ⟨q⟩ ∕= U(ℤn). Since for each r coprime with n either r
or −r is in ⟨q⟩, if −1 were in this group, we would have ⟨q⟩ = U(ℤn), a
contradiction.

Conversely, first we notice that if ⟨q⟩ = U(ℤn), then clearly S1 = A1.
So, assume that ⟨q⟩ is a subgroup of index 2 in U(ℤn) and −1 ∕∈ ⟨q⟩.

Since −1 ∕∈ ⟨q⟩ we have that either r ∈ ⟨q⟩ or −r ∈ ⟨q⟩ for each r such
that gcd(r, n) = 1, which shows that S1 = A1.

If d is a divisor of n, we shall denote by q∗ the congruence class of
q in U(ℤn/d). Since U(ℤn) = ⟨q⟩ ∪ ⟨−q⟩, the natural projection shows
that U(ℤn/d) = ⟨q∗⟩∪⟨−q∗⟩. Hence, for every positive integer r such that
gcd(r, n) = d we have that (r/d)∗ ∈ U(ℤn/d) so one of ±r/d is in ⟨q∗⟩ and

there exist integers t, j such that r/d = ±qj+t(n/d) so ar/d = a±qj .at(n/d)

and taking d-powers, we obtain that ar = a±dqj . This shows that also
Sd = Ad.

Theorem 3.3. The number of simple components of FqDn and ℚDn are
equal if and only if one of the following conditions holds:

(i) n = 2 or 4 and q is odd.

(ii) n = 2m, with m ≥ 3 and q is congruent to either 3 or 5, modulo 8.

(iii) n = pm with p an odd prime and the class q is a generator of the
group U(ℤpm).

(iv) n = pm with p an odd prime, the class q is a generator of the group
U2(ℤpm) = {x2∣x ∈ U(ℤpm} and −1 is not a square modulo pm.
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(v) n = 2pm with p an odd prime and the class q is a generator of the
group U(ℤ2pm).

(vi) n = 2pm with p an odd prime, the class q is a generator of the group
U2(ℤpm) = {x2∣x ∈ U(ℤ2pm}) and −1 is not a square modulo 2pm.

(vii) n = 4pm with p an odd prime and both q and −q have order '(pm)
modulo 4pm.

(viii) n = pm1

1 pm2

2 with p1, p2 odd primes, ('(pm1

1 ), '(pm2

2 )) = 2 and both
q and −q have order '(pm1

1 )'(pm2

2 )/2 modulo pm1

1 pm2

2 .

(ix) n = 2pm1

1 pm2

2 with p1, p2 odd primes, ('(pm1

1 ), '(pm2

2 )) = 2 and both
q and −q have order '(pm1

1 )'(pm2

2 )/2 modulo pm1

1 pm2

2 .

Proof. Assume that the number of simple components of FqDn and ℚDn

are equal. Then, according to the previous lemma, the order of q in U(ℤn)
must be equal to either '(n) or '(n)/2, where ' denotes Euler’s Totient
function and, in the second case, we must also have that −1 ∕∈ ⟨q⟩.

Let n = 2mpm1

1 ⋅ ⋅ ⋅ pmt
t , be the decomposition of n into prime factors,

with m ≥ 0. Then

ℤn
∼= ℤ2m ⊕ ℤp

m1
1

⊕ ⋅ ⋅ ⋅ ⊕ ℤp
mt
t

and

U(ℤn) ∼= U(ℤ2m)× U(ℤp
m1
1

)× ⋅ ⋅ ⋅ × U(ℤp
mt
t
).

The group U(ℤ2m) is cyclic if and only if m ≤ 2 and, in the case when
m > 2, then it is isomorphic to C2m−2 × C2 [10, Theorem 2.43]. Each
direct factor U(ℤp

mi
i
) is cyclic if and only if pi is odd [10, Theorem 2.41].

We shall divide our proof in several cases.

(a) The order of q in U(ℤn) is equal to '(n). In this case, U(ℤn) is
cyclic and thus contains only one subgroup of order 2. Since '(pmi

i ) is
even any factor of the form U(ℤmi

pi ) contains a subgroup of order 2. So
either n is of the form n = 2m with m = 1 or 2, or then t = 1 with m = 0
or 1; i.e. n = 2, 4, pm or 2pm . In these cases, either (i), (iii) or (v) holds.
Notice that, in the case when n = 4 we must have q ≡ 3 (mod 4).

(b) The order of q in U(ℤn) is equal to '(n)/2 and U(ℤn) is cyclic.
Since the only subgroup of index 2 in a cyclic group is the subgroup of
all squares, we see that (iv) or (vi) follows and also (i) in the case when
n = 4 and q ≡ 1 (mod 4).



Jo
u
rn

al
 A

lg
eb

ra
 D

is
cr

et
e 

M
at

h
.40 Semisimple group codes

(c) The order of q in U(ℤn) is equal to '(n)/2 and U(ℤn) is not cyclic.
Notice that, in this case, the exponent of U(ℤn) is precisely '(n)/2, so
this group contains a direct cyclic factor of that order and as '(n)/2 =
∣U(ℤn)∣/2 then U(ℤn) ∼= C'(n)/2 × C2. Hence, the maximal elementary
abelian 2-groups are of the form C2 × C2.

Since every factor of the form U(ℤp
mi
i
), with pi odd, has even order,

the decomposition of U(ℤn) above can have at most two of these factors,
so either n = 2m, n = 4pm, n = pm1

1 pm2

2 , or n = 2pm1

1 pm2

2 . We shall study
separately these cases.

(c − (i)) n = 2m. Notice that [10, Theorem 2.43] actually gives a
decomposition of U(ℤ2m) as

U(ℤ2m) = ⟨−1⟩ × ⟨5⟩.

In this group, there are only two cyclic subgroups of index 2, namely
⟨5⟩ and ⟨−5⟩, so q is congruent to ±5r (mod 2m), for some odd positive
integer r, with m > 2, and hence also to ±5r (mod 8). Writing r = 2k+1
we have:

q ≡ (±5)2k(±5) ≡ ±5 (mod 8).

Hence, q ≡ 3 or 5 (mod 8) and (ii) follows.

(c − (ii)) n = 4pm. As '(4pm) = 2'(pm) we have that (vii) follows
immediately.

(c− (iii)) n = pm1

1 pm2

2 . Since ∣U(ℤn)∣ = '(pm1

1 )'(pm2

2 ) we readily see
that the order of q modulo pm1

1 pm2

2 is '(pm1

1 )'(pm2

2 )/2 and, as −1 ∕∈ ⟨q⟩,
it is also the order of −q, so (viii) follows.

(c− (iv) n = 2pm1

1 pm2

2 . In this case, (ix) follows, as above.

Now, we note that if (i) holds and q ≡ 3 (mod 4) holds, the consider-
ations in (a) show that the converse holds in this case. If q ≡ 1 (mod 4),
the arguments in (b) show that the converse holds also in this case.

Assume that (ii) holds. Since, as mentioned in (c − (i)), for m ≥ 3
we have that U(ℤ2m) = ⟨5⟩× ⟨−1⟩ and thus also U(ℤ2m) = ⟨−5⟩× ⟨−1⟩,
we have that o(5) = o(−5) = 2m−2 and hence every element in U(ℤ2m)

is of the form 5
2i
, 5

2i+1
,−5

2i
or −5

2i+1
, for some positive integer i. Also,

we have

5
2i
≡ 1 (mod 8), 5

2i+1
≡ 5 (mod 8),

−5
2i
≡ 7 (mod 8), −5

2i+1
≡ 3 (mod 8).

So, if q ≡ 3 or 5 (mod 8) we have that q ≡ 5
2i+1

or −5
2i+1

(mod 2m)
and thus ⟨q⟩ = ⟨5⟩ or ⟨q⟩ = ⟨−5⟩. Then clearly −1 ∕∈ ⟨q⟩ and the converse
holds.
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If one of (iii), (iv), (v) or (vi) holds, then the converse follows directly
from Lemma 3.2.

Assume (vii) holds. If n = 4pm with p an odd prime then U(ℤn) ∼=
C2 × C'(pm). Since in (vii) we assume that o(q) = '(pm) it is clear that
this element generates a subgroup of index 2. We must show that −1 ∕∈
⟨q⟩. Assume, by way of contradiction, that −1 ∈ ⟨q⟩. Since this group is
cyclic, of order '(pm) and o(−1) = 2 we must have −1 = q'(p

m)/2.
If the exponent were odd, we would have

(−q)'(p
m)/2 = (−1)'(p

m)/2q'(p
m)/2 = 1,

contradicting the fact that o(−q) = '(pm). So, '(pm)/2 is even and, since
q is odd, we have q'(p

m)/2 ≡ 1 (mod 4), so q'(p
m)/2 is not congruent to

−1 (mod 4pm), as desired.
Assume now that either (viii) or (ix) holds. In both cases, U(ℤn) ∼=

C'(p
m1
1

) × C'(p
m2
2

) so ⟨q⟩ is a subgroup of index 2 (notice that
C'(p

m1
1

) × C'(p
m2
2

) contains a cyclic group of index 2 if and only if

gcd('(pm1

1 ), '(pm2

2 )) = 2, so this condition is implicit in our hypothe-
ses).

As in the previous case, it suffices to show that −1 ∕∈ ⟨q⟩ and the proof
is the same as above, taking into account that, in this case, if −1 ∈ ⟨q⟩

we would have −1 = qr with r =
'(p

m1
1

)'(p
m2
2

)
2 .

4. Dihedral codes

We recall that a dihedral (central) code over a finite field F is any
ideal I in the group algebra FDn of a dihedral group Dn. A minimal
dihedral code is an ideal I which is minimal in the set of all ideals of
FqDn; i.e., generated by a primitive central idempotent.

In this section, we shall determine the dimensions and weights of
minimal dihedral codes in the cases described in Theorem 3.3.

We recall that, according to Theorems 3.1 and 3.3, the idempotents
determining these codes are

{e11, e12} ∪ {ed∣d∣n, d ∕= 1} if n is odd,

and
{e11, e12, e21, e22} ∪ {ed∣d∣n, d ∕= 1, 2} if n is even.

where the idempotents of the form ed, d∣n are as described in formula (1).

Lemma 4.1. Let F a field such that cℎar(F ) ∣∕ ∣Dn∣. For 1 ≤ i, j ≤ 2 we
have

dimF (FDn)eij = 1
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and
w[(FDn)eij ] = 2n.

Proof. Notice that

FDnâ ∼= F ⟨b⟩ = (F ⟨b⟩)
1 + b

2
⊕ (F ⟨b⟩)

1− b

2
∼= F ⊕ F.

So,

(dimF (FDn)
1 + b

2
â = (dimF (FDn)

1− b

2
â = 1.

If n is even, if we denote by a and b the images of a and b in Dn/⟨a
2⟩,

we have that

(FDn)â2 ∼= F (⟨b⟩ × ⟨a⟩) ∼= F ⊕ F ⊕ F ⊕ F ⊕ F.

The principal idempotents of F (⟨b⟩ × ⟨a⟩) are

1 + b

2
⋅
1 + a

2

1− b

2
⋅
1 + a

2

1 + b

2
⋅
1− a

2

1− b

2
⋅
1− a

2

The corresponding idempotents in FDn are

(
1 + b

2
⋅
1 + a

2

)
â2 = e11

(
1− b

2
⋅
1 + a

2

)
â2 = e12

(
1 + b

2
⋅
1− a

2

)
â2 = e21

(
1− b

2
⋅
1− a

2

)
â2 = e22

and the result follows.
Since the code generated by one of the idempotents eij , 1 ≤ i, j ≤ 2

is of dimension 1, elements of the code differ in a scalar multiple of eij
and, as supp(eij) = Dn, so our claim follows.

In what follows, we shall compute the parameters of the minimal
ideals generated by all the other principal idempotents, different from
the ones given above.

In Table 1.1, we describe the dimensions and weights of minimal cen-
tral codes in the case when n involves only one prime.

In the case when n is of the form n = pm1

1 ⋅ ⋅ ⋅ pmt
t the cyclic group ⟨a⟩ of

order n is a direct product of cyclic groups Ci of orders pmi

i , 1 ≤ i ≤ t, and
the primitive idempotents e of F ⟨a⟩ are products of the form e = e1 ⋅ ⋅ ⋅ et
where each ei is a primitive idempotent of FCi, 1 ≤ i ≤ t. Taking this fact
into account, there is an easy way to compute weights and dimensions in
some of the cases under consideration.
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n e dim[FDn)e] w[(FDn)e]

4 1− a2 4 2

2m e2i = Ĉ2i − Ĉ2i+1 2m−i 2i+1

pm epi = Ĉpi − Ĉpi+1 2'(pm−i) 2pi

Table 1.1.

Lemma 4.2. Assume that n = pm1

1 pm2

2 where p1, p2 are different primes.

Let ei(1) = Ĥ1−Ĥ∗
1 be an idempotent of F ⟨ap

m2
2 ⟩, the algebra of the group

of order pm1

1 corresponding to the subgroup H1 of order pi1 and, similarly,

let ej(2) = Ĥ2 − Ĥ∗
2 be an idempotent of F ⟨ap

m1
1 ⟩ corresponding to a

subgroup H2 of order pj2. Then

dimK [FDn]ei(1)ej(2) = 2'(pm1−i
1 )'(pm2−j

2 ).

w ([FDn]e(1)e(2)) = 4∣H1H2∣.

Proof. We know, from Lemma 2.2 that:

dimK [FDn]ei(1)ej(2) =

=
∣G∣

∣H1H2∣

(
1−

∣H1∣

∣H∗
1 ∣

)(
1−

∣H2∣

∣H∗
2 ∣

)

= 2pm1−i
1 pm2−j

2

(
1−

1

p1

)(
1−

1

p2

)

= 2'(pm1−i
1 )'(pm2−j

2 ).

The value of the weight follows directly from Lemma 2.1.

Using the information above we give, in Table 1.2, the idempotents
and corresponding dimensions and weights of the ideals they generate in
the case when n involves two different primes. To simplify notations, we
shall denote by Ck the cyclic subgroup of ⟨a⟩ of order k.

Finally, in Table 1.3 we consider the case when n = 2pm1

1 pm2

2 .

5. Quaternion codes

In this section, we shall consider group algebras of generalized quaternion
groups Qn with n even; i.e, groups given by the presentation:

Qn = ⟨�, �∣�n = 1�2 = �n/2, �−1�� = �−1⟩
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n dim[ℐ] w[ℐ]

2pm e2 = Ĉ2 epi = Ĉpi − Ĉpi+1 2'(pm−i) 4pi

e2 = 1− Ĉ2 ep = Ĉpm 2 2pi

e2 = 1− Ĉ2 epi = Ĉpi − Ĉpi+1 2'(pm−i) 4pi

4pm e = Ĉ4 eip = Ĉpi − Ĉpi+1 2'(pm−i) 8pi

e2i = Ĉ2i − Ĉ2i+1 ep = Ĉpm '(2i) 2.2ipm

e2i = Ĉ2i − Ĉ2i+1 epi = Ĉpi − Ĉpi+1 2'(2i)'(pj) 4.2ipj

pm1

1
pm2

2
ep1 = Ĉ

p
m1
1

e
p
j
2

= Ĉ
p
j
2

− Ĉ
p
j+1

2

2'(pm2−j
2

) 2pm1

1
pj
2

epi
1
= Ĉpi

1
− Ĉ

p
i+1

1

ep2 = Ĉ
p
m2
2

2'(pm1−i
1

) 2pi
1
pm2

2

epi
1
= Ĉpi

1
− Ĉ

p
i+1

1

e
p
j
2

= Ĉ
p
j
2

− Ĉ
p
j+1

2

2'(pm1−i
1

)'(pm2−j
2

) 4pi
1
pj
2

Table 1.2.

e e1 e2 dim[(FDn)ee1e2] w[(FDn)ee1e2]

Ĉ2 Ĉm1
p1 Ĉ

p
j
2

− Ĉ
p
j+1

2

2'(pm2−j
2

) 4pm1

1
pj
2

Ĉ2 Ĉpi
1
− Ĉ

p
i+1

1

Ĉm2
p2 2'(pm1−i

1
) 4pi

1
pm2

2

1− Ĉ2 Ĉ
p
m1
1

Ĉ
p
j
2

− Ĉ
p
j+1

2

2'(pm2−j
2

) 4pm1

1
pj
2

1− Ĉ2 Ĉpi
1
− Ĉ

p
j+i
1

Ĉ
p
m2
2

2'(pm1−i
1

) 4pi
1
pm2

2

Ĉ2 Ĉpi
1
− Ĉ

p
j+i
1

Ĉ
p
j
2

− Ĉ
p
j+1

2

2'(pm1−i
1

'(pm2−j
2

) 8pi
1
pj
2

1− Ĉ2 Ĉpi
1
− Ĉ

p
j+i
1

Ĉ
p
j
2

− Ĉ
p
j+1

2

2'(pm1−i
1

'(pm2−j
2

) 8pi
1
pj
2

Table 1.3.

with n ≥ 2. Then ∣Qn∣ = 2n and this group can be explicitely described
as

Qn = {1, �, �2, . . . , �n−1, �, ��, �2�, . . . , �n−1�}.

We begin with the following.

Theorem 5.1. The group algebras FqDn and FqQn are isomorphic if
and only if 4∣n or q ≡ 1 (mod 4).

Proof. We shall first describe the structure of FqQn. Write:

FqQn
∼= Fq(Qn/Q

′
n)⊕Δ(Qn,Q

′
n).

If 4∣n then Qn/Q
′
n is the Klein group of order 4 and it is clear that

Fq(Qn/Q
′
n)

∼= Fq ⊕ Fq ⊕ Fq ⊕ Fq. Notice that, if 4 ∣∕ n then Qn/Q
′
n is a

cyclic group of order 4 so, if q ≡ 1 (mod 4), then Fq is a splitting field
for Qn/Q

′
n and again Fq(Qn/Q

′
n)

∼= Fq ⊕ Fq ⊕ Fq ⊕ Fq whereas, if q ≡ 3
(mod 4), then Fq(Qn/Q

′
n)

∼= Fq ⊕ Fq ⊕ E, where [E;Fq] = 2.

Write Δ(Qn,Q
′
n) = B1⊕ ⋅ ⋅ ⋅ ⊕Bt a sum of simple algebras and recall

that these are all the non-commutative simple components of FqQn [11,



Jo
u
rn

al
 A

lg
eb

ra
 D

is
cr

et
e 

M
at

h
.F. S. Dutra, R. A. Ferraz, C. Polcino Milies 45

Prop 3.6.11]. We claim that they are 2 × 2 matrix algebras over their
respective centers.

The class sums of this algebra form a basis for its center, which we
denote Z(FqQn); they are:

Λ0 = 1, Λ1 = �1 + �−1
1 , . . . ,

Λn
2
−1 = �

n
2
−1 + �−(n

2
−1), Λn

2
= �

n
2 ,

Ω0 = � + �2� + ⋅ ⋅ ⋅+ �n−2�, Ω1 = �� + �3� + ⋅ ⋅ ⋅+ �n−1�.

So, dimFq
Z(FqQn) = n/2 + 3.

Write

Z(FqQn) ∼= Fq(Qn/Q
′
n)⊕Z(Δ(Qn,Q

′
n))

and

Z(Δ(Qn,Q
′
n)) = Z(B1)⊕ ⋅ ⋅ ⋅ ⊕ Z(Bt),

so dimFq
Δ(Qn,Q

′
n) = 2n− 4 and dimFq

Z(Δ(Qn,Q
′
n)) = n/2− 1. Since

dimFq
Fq(Qn/Q

′
n) = 4 and dimZ(Bi)Bi ≥ 4, 1 ≤ i ≤ t, we have that

2n− 4 = dimFq
Δ(Qn,Q

′
n)

=
t∑

i=1

dimFq
Bi ≥ 4

t∑

i=1

dimFq
Z(Bi)

= 4dimFq
Z(Δ(Qn,Q

′
n)) = 4(

n

2
− 1) = 2n− 4.

Hence, dimZ(Bi)Bi = 4, for 1 ≤ i ≤ t, as claimed.

We also have that

FqDn
∼= Fq(Dn/D

′
n)⊕Δ(Dn, D

′
n),

where Fq(Dn/D
′
n)

∼= Fq⊕Fq⊕Fq⊕Fq and a similar argument shows that
all simple components of Δ(Dn, D

′
n) are 2× 2 matrix algebras over their

respective centers (this fact is well-known and also follows from [3, §47]
or [9, p. 229]).

By comparing the sum of commutative simple components, it is clear
that FqDn and FqQn are isomorphic only if 4∣n or q ≡ 1 (mod 4). To
show that these conditions are also sufficient write

FqDn
∼= Fq ⊕ Fq ⊕ Fq ⊕ Fq ⊕M2(E1)⊕ ⋅ ⋅ ⋅ ⊕M2(Et)

and

FqQn
∼= Fq ⊕ Fq ⊕ Fq ⊕ Fq ⊕M2(K1)⊕ ⋅ ⋅ ⋅ ⊕M2(Ks)
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where Ei,Kj denote the centers of the respective noncommutative sim-
ple components. Clearly, it will be enough to show that Z(FqDn) ∼=
Z(FqQn); i.e., that E1 ⊕ ⋅ ⋅ ⋅ ⊕ Et

∼= K1 ⊕ ⋅ ⋅ ⋅ ⊕Ks.

We recall, once again that, for a group G, if � : G → G denotes the
map given by g� = gq, ∀g ∈ G then the number of simple components
of FqG and hence also of Z(FqG) is equal to the number of orbits of
class sums under this action. Moreover, if {F1, . . . Fk} is the set of simple
components of Z(FqG), there is a bijection between this set and the set
{S1, . . . , Sk} of orbits, such that dimFq

Fi = ∣Si∣, 1 ≤ i ≤ k [6, Theorem
1.3].

Since ⟨a⟩ and ⟨�⟩ are both cyclic groups of order n, the classes Ai and
Λi, 0 ≤ i ≤ n/2, define the same number of orbits, with corresponding
equal cardinality.

Also, it is easy to show that B�
0 = B0 and B�

1 = B1.

Since o(�) = 4 and q is odd, we have that �� = � or �� = �3. If 4∣n
then �3 = �a

n
2 ∈ Ω0 so, in both cases we have Ω�

0 = Ω0 and Ω�
1 = Ω1. If

q ≡ 1 (mod 4), then �� = �. Hence, in all possible cases the set of orbits
of class sums in both group algebras are esentially equal and we obtain
the desired isomorphism.

As an immediate consequence of the result above and Theorem 3.3
we obtain the following.

Theorem 5.2. The number of simple components of FqQn and ℚQn are
equal if and only if one of the following conditions holds:

(i) n = 4 and q is odd.

(ii) n = 2m, with m ≥ 3 and q is congruent to either 3 or 5, modulo 8.

(iii) n = 4pm with p an odd prime and both q and −q have order '(pm)
modulo 4pm.

Proof. First, notice that if 4 ∣∕ n, then Qn/Q
′
n is cyclic of order 4, so

the abelian part of the rational quaternion group algebra in this case is
ℚQn/Q

′
n
∼= ℚ ⊕ ℚ ⊕ ℚ(i) (even when q ≡ 1 (mod 4)). Hence, in this

case, FqQn has more simple components than ℚQn.

On the other hand, if 4∣n the result follows immediately from Theo-
rem 3.3.

In the cases of Theorem 5.2 above, due to the isomorphism between
FqDn and FqQn it is clear that both algebras have the same number of
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simple components. As the elements of the form

{e11, e12, e21, e22} ∪ {ed∣d ∕= 1, 2}

described in section §3 are also a set of orthogonal idempotents which
add up to 1 for FqQn and their number is equal to the number of simple
components, it follows that they are the primitive idempotents of this
algebra.

The results of section §2 then apply and show that the minimal codes
have the same dimensions and weights as the corresponding ones in the
dihedral case.
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