Commutative dimonoids

Anatolii V. Zhuchok

Communicated by V. I. Sushchansky

Abstract

We present some congruence on the dimonoid with a commutative operation and use it to obtain a decomposition of a commutative dimonoid.

1. Introduction

Jean-Louis Loday introduced the notion of dimonoid [1]. Dimonoid is a set equipped with two associative operations satisfying some axioms (see, below). If the operations of a dimonoid coincide, then the dimonoid becomes a semigroup. The first result about dimonoids is the description of free dimonoid generated by a given set [1]. Other notion which belongs to the theory of semigroups is a notion of band of semigroups. The decompositions of semigroups are effectively described according to the construction of a band of semigroups. Tamura and Kimura [2] proved, in particular, that every commutative semigroup is a semilattice of archimedean semigroups. The decompositions of some semigroups were studied in the terms of bands in the papers [3-4].

In this work we introduce the notion of diband of dimonoids to describe the decompositions of dimonoids. In section 2 we give the necessary definitions, some properties of dimonoids with one and two commutative operations (Lemmas 1-4) and one example of a dimonoid. In section 3 we first present the least idempotent congruence on an arbitrary dimonoid with a commutative operation (Theorem 1). The main result of this paper is a generalization of the theorem by Tamura and Kimura (Theorem

[^0]2): every commutative dimonoid is a semilattice of archimedean subdimonoids. In section 4 we construct different examples of dimonoids.

2. Preliminaries

A set D equipped with two associative operations \prec and \succ satisfying the following axioms:

$$
\begin{aligned}
& (x \prec y) \prec z=x \prec(y \succ z), \\
& (x \succ y) \prec z=x \succ(y \prec z), \\
& (x \prec y) \succ z=x \succ(y \succ z)
\end{aligned}
$$

for all $x, y, z \in D$, is called a dimonoid.
A map f from dimonoid D_{1} to dimonoid D_{2} is homomorphism, if $(x \prec y) f=x f \prec y f,(x \succ y) f=x f \succ y f$ for all $x, y \in D_{1}$.

Define the notion of diband of dimonoids.
A dimonoid (D, \prec, \succ) will be called idempotent dimonoid or diband, if $x \prec x=x=x \succ x$ for all $x \in D$.

If $\varphi: S \rightarrow T$ is a homomorphism of dimonoids, then corresponding congruence on S will be denoted by Δ_{φ}.

Let S be an arbitrary dimonoid, J be some idempotent dimonoid. If there exists homomorphism

$$
\alpha: S \rightarrow J: x \mapsto x \alpha
$$

then every class of congruence Δ_{α} is a subdimonoid of the dimonoid S, and dimonoid S itself is a union of such dimonoids $S_{\xi}, \xi \in J$ that

$$
\begin{gathered}
x \alpha=\xi \Leftrightarrow x \in S_{\xi}=\Delta_{\alpha}^{x}=\left\{t \in S \mid(x ; t) \in \Delta_{\alpha}\right\}, \\
S_{\xi} \prec S_{\varepsilon} \subseteq S_{\xi \prec \varepsilon}, \quad S_{\xi} \succ S_{\varepsilon} \subseteq S_{\xi \succ \varepsilon}, \\
\xi \neq \varepsilon \Rightarrow S_{\xi} \bigcap S_{\varepsilon}=\emptyset .
\end{gathered}
$$

In this case we say that S is decomposable into a diband of subdimonoids (or S is a diband J of subdimonoids $S_{\xi}(\xi \in J)$). If J is an idempotent semigroup (band), then we say that S is a band J of subdimonoids $S_{\xi}(\xi \in J)$.

As usual N denotes the set of positive integers.
Let (D, \prec, \succ) be a dimonoid, $a \in D, n \in N$. Denote by a^{n} (respectively, $n a$) the degree n of an element a concerning the operation \prec (respectively, \succ).

Lemma 1. Let (D, \prec, \succ) be a dimonoid with a commutative operation \prec. For all $b, c \in D, m \in N, m>1$,

$$
(b \prec c)^{m}=b^{m} \succ c^{m}=(b \succ c)^{m}
$$

Proof. For any $b, c \in D$ we have

$$
\begin{gathered}
(b \prec c)^{m}=b^{m} \prec c^{m}=b^{m} \prec c^{m-1} \prec c= \\
=\left(c \prec b^{m}\right) \prec c^{m-1}=c \prec\left(b^{m} \succ c^{m-1}\right)= \\
=\left(b^{m} \succ c^{m-1}\right) \prec c=b^{m} \succ\left(c^{m-1} \prec c\right)=b^{m} \succ c^{m}
\end{gathered}
$$

according to the commutativity of \prec and axioms of dimonoid.
We prove that $b^{m} \succ c^{m}=(b \succ c)^{m}$ using an induction on m. For $m=2$ we have

$$
\begin{gathered}
b^{2} \succ c^{2}=(b \prec b) \succ(c \prec c)=b \succ(b \succ(c \prec c))= \\
=b \succ((b \succ c) \prec c)=b \succ(c \prec(b \succ c))= \\
=(b \succ c) \prec(b \succ c)=(b \succ c)^{2}
\end{gathered}
$$

according to the commutativity of \prec and axioms of dimonoid.
Let $b^{k} \succ c^{k}=(b \succ c)^{k}$ for $m=k$. Then for $m=k+1$ we obtain

$$
\begin{gathered}
(b \succ c)^{k+1}=(b \succ c)^{k} \prec(b \succ c)= \\
=\left(b^{k} \succ c^{k}\right) \prec(b \succ c)=b^{k} \succ\left(c^{k} \prec(b \succ c)\right)= \\
=b^{k} \succ\left((b \succ c) \prec c^{k}\right)=b^{k} \succ\left(b \succ\left(c \prec c^{k}\right)\right)= \\
=b^{k} \succ\left(b \succ c^{k+1}\right)=\left(b^{k} \prec b\right) \succ c^{k+1}=b^{k+1} \succ c^{k+1}
\end{gathered}
$$

according to the supposition, the commutativity of \prec and axioms of dimonoid.

Thus, $b^{m} \succ c^{m}=(b \succ c)^{m}$ for $m>1$.
A dimonoid (D, \prec, \succ) will be called commutative, if its both operations are commutative.

Lemma 2. In commutative dimonoid (D, \prec, \succ) the equalities

$$
\begin{gathered}
(x \prec y) \prec z=x \prec(y \succ z)= \\
=(x \succ y) \prec z=x \succ(y \prec z)= \\
=(x \prec y) \succ z=x \succ(y \succ z)
\end{gathered}
$$

hold for all $x, y, z \in D$.

Proof. We have for all $x, y, z \in D$

$$
\begin{gathered}
(x \prec y) \succ z=z \succ(x \prec y)= \\
=(z \succ x) \prec y=(x \succ z) \prec y= \\
=x \succ(z \prec y)=x \succ(y \prec z)=(x \succ y) \prec z, \\
(x \succ y) \prec z=z \prec(x \succ y)=(z \prec x) \prec y= \\
=(x \prec y) \prec z=x \prec(y \succ z)
\end{gathered}
$$

according to the commutativity and axioms of dimonoid. Hence,

$$
(x \prec y) \succ z=x \prec(y \succ z) .
$$

From Lemma 2 it follows that the operations \prec and \succ of a commutative dimonoid (D, \prec, \succ) is indistinguishable for three and more multipliers and the product of these elements doesn't depend on the parenthesizing.

Lemma 3. The operations of any commutative dimonoid (D, \prec, \succ) with an idempotent operation \prec coincide

Proof. We have for all $x, y, z \in D$

$$
(x \prec y) \succ z=(x \prec y) \prec z
$$

according to Lemma 2. Hence, setting $x=y$, we obtain $x \prec z=x \succ z$ for all $x, z \in D$.

Let (D, \prec, \succ) be a dimonoid, $n \in N$. Recall that we denote by $n a$ the degree n of an element $a \in D$ concerning the operation \succ.

Lemma 4. Let (D, \prec, \succ) be a dimonoid with a commutative operation \succ. For all $b \in D, m \in N$,

$$
2 b^{m}=(2 m) b
$$

Proof. We use an induction on m. For $m=1$, obviously, the equality is correct. For $m=2$ we have

$$
\begin{gathered}
2 b^{2}=(b \prec b) \succ(b \prec b)=((b \prec b) \succ b) \prec b= \\
=(b \succ(b \succ b)) \prec b=b \succ((b \succ b) \prec b)= \\
=((b \succ b) \prec b) \succ b=(b \succ b) \succ(b \succ b)=2 b \succ 2 b=4 b
\end{gathered}
$$

according to the axioms of dimonoid and the commutativity of \succ.
Let $2 b^{k}=(2 k) b$ for $m=k$. Then for $m=k+1$ we obtain

$$
\begin{gathered}
(2(k+1)) b=(2 k+2) b=(2 k) b \succ 2 b= \\
=2 b^{k} \succ 2 b=\left(b^{k} \succ b\right) \succ\left(b^{k} \succ b\right)= \\
=b^{k} \succ\left(b \succ\left(b^{k} \succ b\right)\right)=\left(b^{k} \prec b\right) \succ\left(b^{k} \succ b\right)= \\
=b^{k+1} \succ\left(b^{k} \succ b\right)=b^{k} \succ\left(b \succ b^{k+1}\right)= \\
=\left(b^{k} \prec b\right) \succ b^{k+1}=b^{k+1} \succ b^{k+1}=2 b^{k+1}
\end{gathered}
$$

according to the supposition, axioms of dimonoid and the commutativity of \succ. Thus, $2 b^{m}=(2 m) b$.

Now we give an example of dimonoid.
Let X and Y be arbitrary disjoint sets, $0 \in X$, and let

$$
\varphi: Y \times Y \rightarrow X, \psi: Y \times Y \rightarrow X
$$

be arbitrary different maps. Define the operations \prec, \succ on $X \bigcup Y$ by

$$
\begin{aligned}
& x \prec y=\left\{\begin{array}{c}
(x, y) \varphi, x, y \in Y, \\
0 \text { otherwise },
\end{array}\right. \\
& x \succ y=\left\{\begin{array}{c}
(x, y) \psi, x, y \in Y, \\
0 \text { otherwise }
\end{array}\right.
\end{aligned}
$$

for all $x, y \in X \bigcup Y$. It is immediate to check that $(X \bigcup Y, \prec, \succ)$ is a dimonoid.

3. Main results

In this section we describe the least idempotent congruence on the dimonoid with a commutative operation \prec and show that every commutative dimonoid (D, \prec, \succ) is a semilattice Y of archimedean subdimonoids $D_{i}, \quad i \in Y$.

We will call a commutative idempotent semigroup as a semilattice.
If ρ is a congruence on the dimonoid D such that D / ρ is an idempotent dimonoid, then we say that ρ is an idempotent congruence.

Let (D, \prec, \succ) be a dimonoid with a commutative operation \prec (respectively, \succ), $a, b \in D$. We say that $a \prec$-divide b (respectively, $a \succ$ divide b) and write $a_{\prec} \mid b$ (respectively, $a_{\succ} \mid b$), if there exists such element $x \in(D, \prec)$ (respectively, $x \in(D, \succ)$) with an identity that $a \prec x=b$ (respectively, $a \succ x=b$).

Define a relation η on the dimonoid (D, \prec, \succ) with a commutative operation \prec by
$a \eta b$ if and only if there exist positive integers

$$
m, n, m \neq 1, n \neq 1 \text { such that } a_{\prec}\left|b^{m}, b_{\prec}\right| a^{n} .
$$

Theorem 1. The relation η on the dimonoid (D, \prec, \succ) with a commutative operation \prec is the least idempotent congruence, and $(D, \prec, \succ) / \eta$ is a commutative idempotent dimonoid which is a semilattice.

Proof. The fact that the relation η is a congruence on the semigroup (D, \prec) has been proved by Tamura and Kimura [2]. Show that η is compatible concerning the operation \succ.

Let $a \eta b, a, b, c \in D$. Then $a \prec c \eta b \prec c$. It means that there exist $x, y \in(D, \prec), m, n \in N \backslash\{1\}$, for which

$$
\begin{align*}
& (a \prec c) \prec x=(b \prec c)^{m} \tag{1}\\
& (b \prec c) \prec y=(a \prec c)^{n} . \tag{2}
\end{align*}
$$

Considering both parts of the equality (1), we obtain

$$
\begin{aligned}
& (a \prec c) \prec x=(x \prec a) \prec c= \\
& =x \prec(a \succ c)=(a \succ c) \prec x
\end{aligned}
$$

according to the commutativity of \prec and an axiom of dimonoid, and $(b \prec c)^{m}=(b \succ c)^{m}$ by Lemma 1. Hence, $(a \succ c) \prec x=(b \succ c)^{m}$. Thus, $a \succ c_{\prec} \mid(b \succ c)^{m}$. Analogously, from the equality (2) we obtain that $b \succ c_{\prec} \mid(a \succ c)^{n}$. Together with preceding it means that $a \succ c \eta b \succ c$.

Dually, a left compatibility of the relation η concerning the operation \succ can be proved. So, η is a congruence on (D, \prec, \succ).

Obviously, $a \eta a \prec a$. Then $a \prec x_{1}=(a \prec a)^{m_{1}},(a \prec a) \prec x_{2}=a^{m_{2}}$ for some $x_{1}, x_{2} \in(D, \prec)$ and $m_{1}, m_{2} \in N \backslash\{1\}$. From two last equalities it follows that

$$
\begin{gathered}
a \prec x_{1}=(a \prec a)^{m_{1}}=(a \succ a)^{m_{1}}, \\
(a \prec a) \prec x_{2}=\left(x_{2} \prec a\right) \prec a= \\
=x_{2} \prec(a \succ a)=(a \succ a) \prec x_{2}=a^{m_{2}},
\end{gathered}
$$

whence $a \eta a \succ a$ and so η is an idempotent. From the commutativity of the operation \prec it follows that $a \prec b \eta b \prec a$. Hence, $(a \prec b) \prec t_{1}=(b \prec$ $a)^{n_{1}},(b \prec a) \prec t_{2}=(a \prec b)^{n_{2}}$ for some $t_{1}, t_{2} \in(D, \prec), n_{1}, n_{2} \in N \backslash\{1\}$ and

$$
\begin{aligned}
& (a \prec b) \prec t_{1}=\left(t_{1} \prec a\right) \prec b=t_{1} \prec(a \succ b)= \\
& =(a \succ b) \prec t_{1}=(b \prec a)^{n_{1}}=(b \succ a)^{n_{1}},
\end{aligned}
$$

$$
\begin{gathered}
(b \prec a) \prec t_{2}=\left(t_{2} \prec b\right) \prec a=t_{2} \prec(b \succ a)= \\
=(b \succ a) \prec t_{2}=(a \prec b)^{n_{2}}=(a \succ b)^{n_{2}}
\end{gathered}
$$

according to the commutativity of the operation \prec, an axiom of dimonoid and Lemma 1. That is, $a \succ b \eta b \succ a$. So, $(D, \prec, \succ) / \eta$ is a commutative idempotent dimonoid. From Lemma 3 it follows that $(D, \prec, \succ) / \eta$ is a semilattice.

The proof will be completed, if we show that η is contained in every idempotent congruence ρ on (D, \prec, \succ).

Let $a \eta b, a, b \in D$. Then $a \prec z=b^{k}, b \prec d=a^{l}$ for some $z, d \in(D, \prec)$ and $k, l \in N \backslash\{1\}$. Since $a \rho a \prec a, b \rho b \prec b$ by the idempotentity of ρ, then we have $a \rho b \prec d, \quad b \rho a \prec z$. So,

$$
a \rho b \prec d \rho b \prec b \prec d \rho b \prec a^{l} \rho b \prec a \rho b^{k} \prec a \rho a \prec z \prec a \rho a \prec z \rho b .
$$

Thus, $a \rho b$ and $\eta \subseteq \rho$.
We say that a commutative dimonoid is archimedean, if its both semigroups are archimedean.

Theorem 2. A semigroup (D, \prec) of a commutative dimonoid $D=(D, \prec$, \succ) is archimedean (respectively, regular) if and only if a semigroup (D, \succ) of the commutative dimonoid D is archimedean (respectively, regular). Every commutative dimonoid D is a semilattice Y of archimedean subdimonoids $D_{i}, \quad i \in Y$.

Proof. Let (D, \prec) be an archimedean semigroup, $a, b \in D$. Then $a \prec$ $x=b^{m}, b \prec y=a^{n}$ for some $x, y \in D, m, n \in N$. Multiply both parts of the equality $a \prec x=b^{m}$ by b^{m} and the equality $b \prec y=a^{n}$ by a^{n} :

$$
\begin{gathered}
(a \prec x) \succ b^{m}=a \succ\left(x \prec b^{m}\right)= \\
=a \succ\left(b^{m} \prec x\right)=b^{m} \succ b^{m}=(2 m) b, \\
(b \prec y) \succ a^{n}=b \succ\left(y \prec a^{n}\right)= \\
=b \succ\left(a^{n} \prec y\right)=a^{n} \succ a^{n}=(2 n) a
\end{gathered}
$$

according to Lemmas 2 and 4 and the commutativity of \prec. So, $a_{\succ} \mid(2 m) b$, $b_{\succ} \mid(2 n) a$. That is, (D, \succ) is an archimedean semigroup.

Conversely, let $a \succ x=m b, b \succ y=n a$ for some $x, y \in D, m, n \in N$. Take $k, p \in N \backslash\{1\}$ such that $k+m, p+n$ is even and multiply both parts of the equality $a \succ x=m b$ by $k b$ and the equality $b \succ y=n a$ by $p a$:

$$
\begin{gathered}
k b \succ(a \succ x)=(k b \prec a) \succ x=x \succ(k b \prec a)= \\
=(x \succ k b) \prec a=a \prec(x \succ k b)
\end{gathered}
$$

according to the axioms and the commutativity of dimonoid,

$$
\begin{gathered}
k b \succ m b=(k+m) b=2 b^{\frac{k+m}{2}}= \\
=b^{\frac{k+m}{2}} \succ b^{\frac{k+m}{2}}=(b \prec b)^{\frac{k+m}{2}}= \\
=\left(b^{2}\right)^{\frac{k+m}{2}}=b^{k+m}
\end{gathered}
$$

by Lemmas 1 and 4. Thus, $a_{\prec} \mid b^{k+m}$. Analogously, $b \prec(y \succ p b)=a^{p+n}$, that is, $b_{\prec} \mid a^{p+n}$.

The corresponding statement about regularity of the semigroup of a dimonoid follows immediately from Lemma 2.

Now we shall prove the second part of the theorem. By Theorem 1 η is the least idempotent congruence on $D, D / \eta$ is a semilattice and $D \rightarrow D / \eta: x \mapsto[x]$ is a homomorphism ($[x]$ is a class of the congruence η, which contains x). By Tamura and Kimura [2] it follows that every class A of the congruence η is a archimedean subsemigroup of the semigroup (D, \prec). According to the preceding computation A is an archimedean subsemigroup of the semigroup (D, \succ).

If the operations of a commutative dimonoid coincide, then from Theorem 2 we obtain the theorem by Tamura and Kimura [2] about the decomposition of a commutative semigroup into a semilattice of archimedean subsemigroups.

4. Some examples

In this section we construct the examples of different dimonoids. First we consider the examples of dimonoids with one and two commutative operations.
a) Let (X, \prec) be a zero semigroup, (X, \succ) be a right zero semigroup. Then (X, \prec, \succ) is dimonoid with commutative operation \prec. It is easy to see that the least idempotent congruence $\eta=X \times X$ on (X, \prec, \succ).
b) Let (S, \prec) be a zero semigroup (0 is a zero), (S, \succ) be a commutative semigroup with a zero 0 such that $S \succ S \succ S=0$. Then (S, \prec, \succ) is commutative dimonoid. It is easy to see that the least idempotent congruence $\eta=S \times S$ on (S, \prec, \succ).

We give an example of such dimonoid.

Let (X, \prec) be a zero semigroup, that is, $x \prec y=0$ for all $x, y \in X$. Fix elements a, b of the set $X, a \neq b$ and define on X the operation \succ, assuming

$$
x \succ y=\left\{\begin{array}{c}
a, x=y=b, \\
0 \quad \text { otherwise }
\end{array}\right.
$$

for all $x, y \in X$. It is easy to see that (X, \prec, \succ) is a commutative dimonoid.
c) Let X be an arbitrary set such that $0, a, b, c, d \in X$ and $a \neq$ $b, b \neq c, c \neq d, d \neq a$. Define on the set X the operations \prec and \succ, assuming

$$
\begin{aligned}
& x \prec y=\left\{\begin{array}{l}
b, x=y=a, \\
0 \quad \text { otherwise },
\end{array}\right. \\
& x \succ y=\left\{\begin{array}{cc}
d, x=y=c, \\
0 & \text { otherwise }
\end{array}\right.
\end{aligned}
$$

for all $x, y \in X$. It is immediate to check that (X, \prec, \succ) is commutative dimonoid. In this case the least idempotent congruence $\eta=X \times X$.

Now we construct the examples of dimonoids which are not necessarily commutative.
d) Let S be a semigroup and let f be its idempotent endomorphism. On S define the multiplications by

$$
x \prec y=x(y f), x \succ y=(x f) y
$$

for all $x, y \in S$.
Proposition 1. (S, \prec, \succ) is dimonoid.
Proof. For any $x, y, z \in S$ we obtain

$$
\begin{gathered}
(x \prec y) \prec z=x(y f) \prec z=x(y f)(z f)=x((y z) f), \\
x \prec(y \prec z)=x \prec y(z f)=x(y(z f)) f= \\
=x(y f)\left(z f^{2}\right)=x(y f)(z f)=x((y z) f), \\
x \prec(y \succ z)=x \prec((y f) z)=x((y f) z) f= \\
=x\left(y f^{2}\right)(z f)=x(y f)(z f)=x((y z) f), \\
(x \succ y) \succ z=(x f) y \succ z=\left(x f^{2}\right)(y f) z= \\
=(x f)(y f) z=(x y) f z, \\
x \succ(y \succ z)=x \succ((y f) z)=(x f)(y f) z=(x y) f z,
\end{gathered}
$$

$$
\begin{gathered}
(x \prec y) \succ z=x(y f) \succ z=(x(y f)) f z= \\
=(x f)\left(y f^{2}\right) z=(x f)(y f) z=(x y) f z, \\
(x \succ y) \prec z=(x f) y \prec z=(x f) y(z f), \\
x \succ(y \prec z)=x \succ(y(z f))=(x f) y(z f) .
\end{gathered}
$$

Comparing these expressions, we conclude that (S, \prec, \succ) is dimonoid.
e) Let S and T be semigroups, $\theta: T \rightarrow S$ is a homomorphism. On $S \times T$ define the multiplications by

$$
(s, t) \prec(p, g)=(s, t g),(s, t) \succ(p, g)=((t \theta) p, t g)
$$

for all $(s, t),(p, g) \in S \times T$.
Proposition 2. $(S \times T, \prec, \succ)$ is dimonoid.
Proof. Obviously, the operation \prec is associative. For any $(s, t),(p, g),(a, b) \in$ $S \times T$ we have

$$
\begin{gathered}
((s, t) \succ(p, g)) \succ(a, b)=((t \theta) p, t g) \succ(a, b)=((t g) \theta a, t g b), \\
(s, t) \succ((p, g) \succ(a, b))=(s, t) \succ((g \theta) a, g b)= \\
=((t \theta)(g \theta) a, t g b)=((t g) \theta a, t g b), \\
((s, t) \prec(p, g)) \succ(a, b)=(s, t g) \succ(a, b)=((t g) \theta a, t g b), \\
(s, t) \prec((p, g) \succ(a, b))=(s, t) \prec((g \theta) a, g b)= \\
=(s, t g b)=((s, t) \prec(p, g)) \prec(a, b), \\
((s, t) \succ(p, g)) \prec(a, b)=((t \theta) p, t g) \prec(a, b)=((t \theta) p, t g b), \\
(s, t) \succ((p, g) \prec(a, b))=(s, t) \succ(p, g b)=((t \theta) p, t g b) .
\end{gathered}
$$

Comparing these expressions, we conclude that $(S \times T, \prec, \succ)$ is dimonoid.
f) Let X^{*} be a set of words in the alphabet X. If $w \in X^{*}$, then the first (respectively, the last) letter of a word w we denote by $w^{(0)}$ (respectively, $w^{(1)}$).

Assume the operations \prec, \succ on the set X^{*} by

$$
w \prec u=w^{(0)} w^{(1)}, \quad w \succ u=u^{(0)} u^{(1)}
$$

for all $w, u \in X^{*}$.

Proposition 3. $\left(X^{*}, \prec, \succ\right)$ is dimonoid.
Proof. Obviously, the operations \prec and \succ are associative. For any $w, u, \omega \in$ X^{*} we obtain

$$
\begin{gathered}
(w \prec u) \prec \omega=w^{(0)} w^{(1)} \prec \omega=w^{(0)} w^{(1)}=w \prec(u \succ \omega), \\
w \succ(u \succ \omega)=w \succ \omega^{(0)} \omega^{(1)}=\omega^{(0)} \omega^{(1)}=(w \prec u) \succ \omega, \\
(w \succ u) \prec \omega=u^{(0)} u^{(1)} \prec \omega=u^{(0)} u^{(1)}= \\
=w \succ u^{(0)} u^{(1)}=w \succ(u \prec \omega) .
\end{gathered}
$$

Let ($X \times X, \prec^{\prime}, \succ^{\prime}$) be an idempotent dimonoid with operations

$$
(x, y) \prec^{\prime}(a, b)=(x, y),(x, y) \succ^{\prime}(a, b)=(a, b)
$$

for all $(x, y),(a, b) \in X \times X$. Denote this dimonoid by \tilde{X} and for all $i, j \in X$ assume

$$
A_{(i, j)}=\left\{w \in X^{*} \mid\left(w^{(0)}, w^{(1)}\right)=(i, j)\right\}
$$

The next assertion describes the structure of the dimonoid (X^{*}, \prec, \succ).
Proposition 4. The dimonoid $\left(X^{*}, \prec, \succ\right)$ is a diband \tilde{X} of zero semigroups $A_{(i, j)},(i, j) \in \tilde{X}$.

Proof. Define a map α by

$$
\alpha:\left(X^{*}, \prec, \succ\right) \rightarrow \tilde{X}: w \mapsto\left(w^{(0)}, w^{(1)}\right)
$$

The map α is a homomorphism. Indeed, if $w, u \in X^{*}$, then

$$
\begin{aligned}
& (w \prec u) \alpha=\left(w^{(0)} w^{(1)}\right) \alpha=\left(w^{(0)}, w^{(1)}\right)= \\
& =\left(w^{(0)}, w^{(1)}\right) \prec^{\prime}\left(u^{(0)}, u^{(1)}\right)=w \alpha \prec^{\prime} u \alpha \\
& (w \succ u) \alpha=\left(u^{(0)} u^{(1)}\right) \alpha=\left(u^{(0)}, u^{(1)}\right)= \\
& =\left(w^{(0)}, w^{(1)}\right) \succ^{\prime}\left(u^{(0)}, u^{(1)}\right)=w \alpha \succ^{\prime} u \alpha .
\end{aligned}
$$

It is clear that $A_{(i, j)},(i, j) \in \tilde{X}$ is an arbitrary class of the congruence Δ_{α}. Moreover, if $w, u \in A_{(i, j)}$, then $w \prec u=w \succ u=i j$, hence $A_{(i, j)}$ is zero semigroup with the zero $i j$.

References

[1] J.-L. Loday, Dialgebras, In: Dialgebras and related operads, Lecture Notes in Math. 1763, Springer-Verlag, Berlin, 2001, pp.7-66.
[2] T. Tamura, N. Kimura, On decomposition of a commutative semigroup, Kodai Math. Sem. Rep., N.4, 1954, pp.109-112.
[3] A.H. Clifford, Bands of semigroups, Proc. Amer. Math. Soc., N.5, 1954, pp.499504.
[4] A.V. Zhuchok, Decompositions of free products, Visnyk Kyiv. Univ., Ser. Phis.Math. Nauk, N.2, 2002, pp.41-49 (In Ukrainian).

Contact information

A. V. Zhuchok Department of Mechanics and Mathematics, Kyiv National Taras Shevchenko University, Volodymyrska str., 64, 01033 Kyiv, Ukraine E-Mail: zhuchok_a@mail.ru

Received by the editors: 18.11.2008 and in final form 26.07.2009.

[^0]: 2000 Mathematics Subject Classification: 08A05.
 Key words and phrases: dimonoid with a commutative operation, commutative dimonoid, semilattice of dimonoids.

