Classification of irreducible non-dense modules for $A_{2}^{(2)}$

Thomas Bunke

Communicated by V. M. Futorny

Abstract. We obtain a classification of the supports of irreducible $A_{2}^{(2)}$-modules. In particular, we get a classification of all non-dense irreducible $A_{2}^{(2)}$-modules with at least one finitedimensional weight subspace.

Introduction

Let \mathfrak{g} be an affine Kac-Moody algebra with Cartan subalgebra \mathfrak{h}, root system Δ and center $\mathbb{C} c$. A \mathfrak{g}-module V is called a weight if $V=\bigoplus_{\lambda \in \mathfrak{h}^{*}} V_{\lambda}$, $V_{\lambda}=\left\{v \in V \mid h v=\lambda(h) v\right.$ for all $\left.h \in \mathfrak{h}^{*}\right\}$. If V is an irreducible weight \mathfrak{g}-module then c acts on V as a scalar, called level of V. For a weight \mathfrak{g}-module V, the support is the set $\operatorname{supp}(V)=\left\{\lambda \in \mathfrak{h}^{*} \mid V_{\lambda} \neq 0\right\}$. The root lattice Q is the free abelian group over Δ. If V is irreducible then $\operatorname{supp}(V) \subset \lambda+Q$ for some $\lambda \in \mathfrak{h}^{*}$. An irreducible weight \mathfrak{g}-module V is called non-dense, if $\operatorname{supp}(V) \subsetneq \lambda+Q$,

This work contains the classification of irreducible non-dense modules for the Kac-Moody algebra $A_{2}^{(2)}$ with at least one finite-dimensional weight subspace. The classification of non-dense irreducible $A_{1}^{(1)}$-modules with a finite-dimensional weight subspace has been done by V. Futorny

[^0][5]. The classification problem is also solved for all affine Kac-Moody algebras for non-zero level modules with all finite-dimensional weight subspaces (V. Futorny and A. Tsylke [4]). In these cases an irreducible module is either a quotient of a classical Verma module, or of a generalized Verma module, or of a loop module (induced from a Heisenberg subalgebra). That this will hold for irreducible non-dense modules of any affine Kac-Moody algebras has been conjectured by V. Futorny [5]. With this work we confirm the conjecture for non-dense irreducible $A_{2}^{(2)}$-modules with a finite-dimensional weight subspace.

We also obtain a classification of all possible supports for irreducible $A_{2}^{(2)}$-modules. The proof is elementary and involves only the combinatorics of the root system employing heavily the assumption of a ,hole" in the weight lattice $\lambda+Q$, precisely the condition of non-density. This will always result in the „upper", „lower" or the „right" half of the weight lattice $\lambda+Q$ having all (or all but one) zero weight spaces (up to equivalence under the affine Weyl group). Upper and right half refer to the two non-equivalent classes of partitions. It is well known that these are the only ones [5].

If we omit the requirement of a finite-dimensional weight subspace then we do not get a complete classification. In this case we have a classification upto the classification of irreducible graded (with respect to the natural \mathbb{Z}-grading) modules over the Heisenberg subalgebra with non-zero level and all infinite-dimensional components. Nevertheless the classification of all supports provides a characterization of irreducible $A_{2}^{(2)}$-modules.

The proof is structured in form of a binary tree where each leaf corresponds to the construction of a so-called primitive element. This by definition is a vector v with the following property: Let \mathcal{P} be a parabolic subalgebra with Levi decomposition $\mathcal{P}=\mathcal{P}_{0} \oplus \mathcal{P}_{+}$. If we take \mathcal{P} the corresponding parabolics of a classical Verma module, a generalized Verma, or a loop module then v is annihilated by one of the corresponding \mathcal{P}_{+} (here \mathcal{P} is just a Borel subalgebra in the case of a classical Verma module). This primitive vector thus generates an irreducible quotient of a classical Verma module, a generalized Verma module or a loop module respectively [1, 2].

The paper is structured as follows:
In section 2 we review the realization of the twisted Kac-Moody algebra $A_{2}^{(2)}$ and the construction of its root system. Section 3 and 4 gives the definition of generalized Verma modules and loop modules, respectively. In section 5 the category $\tilde{\mathcal{O}}$ for not necessarily finite-dimensional weight modules is introduced following V. Chari [8] and V. Futorny [3]. In sec-
tion 6 we proof the main result and section 7 states the classification of supports for irreducible $A_{2}^{(2)}$-modules.

1. Preliminaries

Let $A_{2}^{(2)}$ be the the Kac-Moody algebra defined by generators and relations due to the generalized Cartan matrix $\left(A_{i j}\right)_{i, j=0,1}=\left(\begin{array}{cc}2 & -1 \\ -4 & 2\end{array}\right)$. Let $\Pi=\left\{\alpha_{0}, \alpha_{1}\right\}$ and $\Pi^{\vee}=\left\{h_{0}, h_{1}\right\}$ be linear independent subsets of the 2-dimensional vector space \mathfrak{h}^{*} and its dual \mathfrak{h} respectively, such that $\alpha_{j}\left(h_{i}\right)=A_{i j}$. Now $A_{2}^{(2)}$ is generated by $e_{0}, e_{1}, f_{0}, f_{1}$ due to the relations

$$
\begin{align*}
{\left[e_{i} f_{i}\right] } & =\delta_{i j} h_{i} \\
{\left[h e_{i}\right] } & =\alpha_{i}(h) e_{i} \tag{1}\\
{\left[h f_{i}\right] } & =-\alpha_{i}(h) f_{i}, h \in \mathfrak{h}, i=0,1
\end{align*}
$$

As $\operatorname{dim} \mathfrak{h}^{*}=\operatorname{dim} \mathfrak{h}=2 n-r k A=3$ there are elements δ and d completing Π and Π^{\vee} to be bases of \mathfrak{h}^{*} and \mathfrak{h}, respectively. Furthermore $A_{2}^{(2)}$ permits a nontrivial 1-dimensional ideal spanned by the central element $c=2 h_{0}+h_{1}$. One can define non-degenerate symmetric invariant bilinear \mathbb{C}-valued form $\langle\cdot \mid \cdot\rangle$ on \mathfrak{h} which can be uniquely extended to a bilinear form $\langle\cdot \mid \cdot\rangle$ on \mathfrak{g}. The standard invariant form on $A_{2}^{(2)}$ is given by

$$
\left\langle h_{0}, h_{0}\right\rangle=2,\left\langle h_{0}, h_{1}\right\rangle=-2,\left\langle h_{0}, d\right\rangle=\frac{1}{2},\left\langle h_{1}, h_{1}\right\rangle=2
$$

all other brackets vanishing.
Realization. Let \mathfrak{g}^{0} a simple Lie algebra. Let σ be a non-twisted graph automorphism of the Dynkin graph of simple roots $\Delta . \sigma$ is also an automorphism of \mathfrak{g}^{0} by $\sigma: \mathfrak{g}_{\beta}^{0} \mapsto \mathfrak{g}_{\sigma(\beta)}^{0}, \beta \in \Delta$. When σ has order 2 , then \mathfrak{g}^{0} decomposes as a module as the set of fix points of σ and the eigenelements to the eigenvalue -1

$$
\mathfrak{g}^{0}=\left(\mathfrak{g}^{0}\right)^{\sigma} \oplus\left(\mathfrak{g}^{0}\right)_{-1}
$$

The example $\sigma\left(E_{\alpha+\beta}\right)=\sigma\left(\left[E_{\alpha} E_{\beta}\right]\right)=\left[E_{\beta} E_{\alpha}\right]=-\left[E_{\alpha} E_{\beta}\right]$ illustrates, how the eigenvalue -1 occurs.

Let $\mathfrak{g}^{0}=A_{2}$ and $\hat{\mathfrak{L}}\left(\mathfrak{g}^{0}\right)=\mathbb{C}\left[t, t^{-1}\right] \otimes \mathfrak{g}^{0} \oplus \mathbb{C} c \oplus \mathbb{C} d$ be the (extended) loop algebra with extended Dynkin graph

Define $\delta \in \mathfrak{h}^{*}$ by $\left.\delta\right|_{\mathfrak{h}^{0} \oplus \mathbb{C}}=0$ and $\delta(d)=1$. Denote by $E_{1}=$ $E_{\alpha}, E_{2}=E_{\beta}, F_{1}=F_{\alpha}, F_{2}=F_{\beta}$ the Chevalley generators of \mathfrak{g}^{0}. Then $\hat{\pi}^{0}=\{\alpha, \beta, \delta\}$ is a basis for the root system $\hat{\Delta}^{0}$ of $\hat{\mathfrak{L}}\left(\mathfrak{g}^{0}\right)$. Denote $\theta=\alpha+\beta, \alpha_{0}=\delta-\theta$. The σ-orbits on Δ are given by a high and a low

Figure 1: Extended Dynkin graph of A_{2}.

2-element orbit $\left(\alpha_{0}+\alpha, \alpha_{0}+\beta\right)$ and (α, β), respectively. The fixpoints are $\left(\hat{\Delta}^{0}\right)^{\sigma}=\Delta\left(\pi^{\sigma}\right)=\mathbb{Z} \pi^{\sigma} \cap \hat{\Delta}^{0}$ with respect to the basis $\pi^{\sigma}=\{\theta, \delta\}$.

The twisted graph automorphism τ of this loop algebra is defined by the maps $t^{k} \otimes E_{1} \mapsto(-1)^{k} t^{k} \otimes E_{2}, t^{k} \otimes E_{2} \mapsto(-1)^{k} t^{k} \otimes E_{1}$ and $t^{k} \otimes E_{\theta}$ to $(-1)^{k+1} t^{k} \otimes E_{\theta}$. The generators of $\left(\mathfrak{g}^{0}\right)^{\sigma}$ are given by

$$
E_{1}+E_{2}, \quad F_{1}+F_{2}, \quad H_{\theta}, \quad H_{1}+H_{2},
$$

where $H_{\theta}=\left[E_{\theta} F_{\theta}\right]$. And the generators of $\left(\mathfrak{g}^{0}\right)_{-1}$ are given by

$$
E_{1}-E_{2}, \quad F_{1}-F_{2}, \quad E_{\theta}, \quad F_{\theta}, \quad H_{1}-H_{2}
$$

$\mathfrak{g}=A_{2}^{(2)}$ is realized as the fixed point set $\hat{\mathfrak{L}}\left(\mathfrak{g}^{0}\right)^{\tau}$. Consider therefore the bracket in $\hat{\mathfrak{L}}\left(\mathfrak{g}^{0}\right)=A_{2}^{(1)}$, given by

$$
\begin{aligned}
& {\left[t^{k} \otimes a+\lambda c+\mu d, t^{l} \otimes a^{\prime}+\lambda^{\prime} c+\mu^{\prime} d\right]} \\
& =t^{k+l} \otimes[a, b]+t^{l} \otimes l \mu a^{\prime}-t^{k} \otimes k \mu^{\prime} a+k \delta_{k+l, 0}\left\langle a, a^{\prime}\right\rangle c
\end{aligned}
$$

$a, a^{\prime} \in \mathfrak{g}^{0}, \lambda, \lambda^{\prime}, \mu, \mu^{\prime} \in \mathbb{C}, k, l \in \mathbb{Z}$. The weight spaces with respect to $\hat{\mathfrak{h}}$ are defined as $V_{\lambda}=\{v \in V \mid h \cdot v=\lambda(h) v$ for all $h \in \hat{\mathfrak{h}}\}$. Eventually, the all one-dimensional weight spaces of $\mathfrak{g}\left(\tilde{A}_{2}\right)^{\tau}$ are generated by

$$
\begin{aligned}
e_{2 k \delta}^{(1)} & =t^{2 k} \otimes\left(H_{1}+H_{2}\right) \\
e_{2 k \delta}^{(2)} & =t^{2 k} \otimes H_{\theta}+c \\
e_{(2 k+1) \delta} & =t^{2 k+1} \otimes\left(H_{1}-H_{2}\right) \\
e_{\alpha_{1}+2 k \delta} & =t^{2 k} \otimes\left(E_{1}+E_{2}\right) \\
e_{\alpha_{1}+(2 k+1) \delta} & =t^{2 k+1} \otimes\left(E_{1}-E_{2}\right) \\
e_{2 \alpha_{1}+(2 k+1) \delta} & =t^{2 k+1} \otimes E_{\theta} \\
e_{-\alpha_{1}+k \delta} & =t^{2 k} \otimes\left(F_{1}+F_{2}\right) \\
e_{-\alpha_{1}+(2 k+1) \delta} & =t^{2 k+1} \otimes\left(F_{1}-F_{2}\right) .
\end{aligned}
$$

$$
e_{-2 \alpha_{1}+(2 k+1) \delta}=t^{2 k+1} \otimes F_{\theta}
$$

This gives us the complete root system. The set of simple roots are the disjoint union of short real roots $\Delta^{r e, s}$, long real roots $\Delta^{r e, l}$ and imaginary roots $\Delta^{i m}$, given by $\left\{ \pm \alpha_{1}+\mathbb{Z} \delta\right\},\left\{ \pm 2 \alpha_{1}+(2 \mathbb{Z}+1) \delta\right\}$ and $\{k \delta \mid k \in \mathbb{Z} \backslash\{0\}\}$ respectively.

Figure 2: Dynkin graph of $A_{2}^{(2)}$
The (affine) Weyl group of \mathfrak{g} is an affine reflection group generated by $W=\left\langle t_{\theta}, s\right\rangle$, fulfilling the relations $s^{2}=1, s t_{\theta} s^{-1}=t_{s(\theta)}=t_{-\theta}$ and $t_{\theta}^{k}=t_{k \theta}, k \in \mathbb{Z} \backslash\{0\}$, where $s=s_{1}$ is the fundamental reflection at α_{1}, acting on the root lattice $Q(\pi), \pi=\left\{\alpha_{1}, \delta-\alpha_{1}\right\}$ by

$$
\begin{aligned}
s\left(m \alpha_{1}+n \delta\right) & =-m \alpha_{1}+n \delta \\
t_{\theta}^{k}\left(m \alpha_{1}+n \delta\right) & =m \alpha_{1}+(n-k) \delta, m, k, n \in \mathbb{Z}
\end{aligned}
$$

Lemma 1.1 (Relations). The commutators are given by

$$
\begin{equation*}
\left[e_{k \delta}^{(1)}, e_{m \delta}^{(1)}\right]=2 k \delta_{k+m, 0} c \tag{i}
\end{equation*}
$$

(ii) $\quad\left[e_{k \delta}^{(1)}, e_{ \pm \alpha+m \delta}\right]= \pm e_{ \pm \alpha+(k+m) \delta}$
(iii) $\quad\left[e_{2 k \delta}^{(2)}, e_{ \pm \alpha+m \delta}\right]= \pm e_{ \pm \alpha+(2 k+m) \delta}$
(iv) $\quad\left[e_{2 k \delta}^{(2)}, e_{2 m \delta}^{(2)}\right]=4 k \delta_{k+m, 0} c$
(v) $\quad\left[e_{m \delta}^{(1)}, e_{2 k \delta}^{(2)}\right]=2 k \delta_{2 k+m, 0} c$
(vi) $\quad\left[e_{\alpha+k \delta}, e_{-\alpha+m \delta}\right]= \begin{cases}\left(e_{0 \cdot \delta}^{(1)}+2 k c\right) & \text { if } m=-k \\ e_{(k+m) \delta}^{(1)} & \text { if } m \neq-k\end{cases}$
(vii) $\left[e_{\alpha+k \delta}, e_{\alpha+m \delta}\right]= \begin{cases}e_{2 \alpha+(k+m) \delta} & \text { if } k \text { even and } m \text { odd } \\ 0 & \text { if } k+m \text { even }\end{cases}$
(viii)

$$
\left[e_{2 \alpha+k \delta}, e_{-2 \alpha+m \delta}\right]= \begin{cases}\left(e_{0 . \delta}^{(2)}+2 k c\right) & \text { if } m=-k \text { odd } \\ e_{(k+m) \delta}^{(2)} & \text { if } m \neq-k \text { both odd }\end{cases}
$$

$$
\begin{aligned}
(i x) & {\left[e_{2 k \delta}^{(1,2)}, e_{ \pm 2 \alpha+m \delta}\right]= \pm 2 e_{2 \alpha+(m+2 k) \delta} } \\
(x) & {\left[e_{k \delta}^{(1)}, e_{ \pm 2 \alpha+m \delta}\right]=0 } \\
(x i) & {\left[e_{ \pm \alpha+k \delta}, e_{\mp 2 \alpha+(2 l+1) \delta}\right]=-e_{\mp \alpha+(2 l+k+1) \delta} } \\
(x i i) & {\left[e_{ \pm \alpha+k \delta}+\mu d, e_{\kappa \alpha+l \delta}\right]=l \mu e_{\kappa \alpha+l \delta}+\frac{1}{2} k \delta_{k+l, 0} c, \kappa= \pm 0,1,2 }
\end{aligned}
$$

Proof. Compute for example (iii):

$$
\begin{aligned}
{\left[e_{2 k \delta}^{(2)}, e_{ \pm \alpha+m \delta}\right] } & =\left[\left[e_{2 \alpha+(2 k-i) \delta}, e_{-2 \alpha+i \delta}\right], e_{\alpha+m \delta}\right] \text { for an odd } i \\
& =\left[e_{2 \alpha+(2 k-i) \delta},\left[e_{-2 \alpha+i \delta}, e_{\alpha+m \delta}\right]\right] \\
& =\left[e_{2 \alpha+(2 k-i) \delta}, e_{-\alpha+(i+m) \delta}\right]=e_{\alpha+(2 k+m) \delta}
\end{aligned}
$$

Thus $e_{2 k \delta}^{(1)}=e_{2 k \delta}^{(2)}=e_{2 k \delta}$ and the universal enveloping algebra $\mathcal{U}(\mathfrak{g})$ is generated by $\left\{e_{\delta}, e_{-\delta}, e_{\alpha}, e_{-\alpha}\right\}$.

2. Generalized Verma modules

Fix $\alpha=\alpha_{1} \in \Delta^{r e}$ and denote $\mathfrak{g}_{\alpha+k \delta}=t^{k} \otimes \mathfrak{g}_{\alpha}, k \in \mathbb{Z}$ and $\mathfrak{g}_{n \delta}=t^{n} \otimes \mathbb{C} h_{\alpha}$, $n \in \mathbb{Z} \backslash\{0\}$. If $\alpha \in \Delta^{r e, l}$ all even or all odd graded components vanish. Consider a subalgebra $\mathfrak{g}(\alpha) \subset \mathfrak{g}$ generated by \mathfrak{g}_{α} and $\mathfrak{g}_{-\alpha}$. Then $\mathfrak{g}(\alpha) \cong$ $\mathfrak{s l}_{2}$.

Consider the universal enveloping algebra $\mathcal{U}(\mathfrak{g}(\alpha))$. Its center is generated by the Casimir element $z_{\alpha}=\left(h_{\alpha}+1\right)^{2}+4 e_{-\alpha} e_{\alpha}$. Remember $\mathfrak{h}=\mathfrak{h}^{0} \oplus \mathbb{C} c \oplus \mathbb{C} d$. Define

$$
T_{\alpha}=S(\mathfrak{h}) \otimes \mathbb{C}\left[z_{\alpha}\right]
$$

Fix $\lambda \in \mathfrak{h}^{*}$. Consider the 1-dimensional T_{α}-module $\mathbb{C} v_{\lambda, \gamma}$ with the action $\left(h \otimes z_{\alpha}^{k}\right) v_{\lambda}=h(\lambda) \gamma^{k} v_{\lambda}$ and define the $\mathfrak{h}+\mathfrak{g}(\alpha)$-module

$$
V(\lambda, \gamma)=\mathcal{U}(\mathfrak{g}(\alpha)+\mathfrak{h}) \underset{T_{\alpha}}{\otimes} \mathbb{C} v_{\lambda}
$$

It has a unique irreducible quotient, say $V_{\lambda, \gamma}$.
Proposition 2.1 ([3]). If V is an irreducible weight $H+\mathfrak{g}(\alpha)$-module then $V \cong V_{\lambda, \gamma}$ for some $\lambda \in \mathfrak{h}^{*} \gamma \in \mathbb{C}$.

Let $\lambda \in \mathfrak{h}^{*}, \gamma \in \mathbb{C}$. Denote

$$
\mathcal{N}_{\alpha}^{ \pm}=\sum_{\varphi \in \Delta_{+} \backslash\{\alpha\}} \mathfrak{g}_{ \pm \varphi}, \quad E_{\alpha}^{ \pm}=(\mathfrak{h}+\mathfrak{g}(\alpha)) \oplus \mathcal{N}_{\alpha}^{ \pm}
$$

Consider $V_{\lambda, \gamma}$ as $E_{\alpha}^{ \pm}$-module with trivial action of $\mathcal{N}_{\alpha}^{ \pm}$and construct the \mathfrak{g}-module

$$
M_{\alpha}^{ \pm}(\lambda, \gamma)=\mathcal{U}(\mathfrak{g}) \underset{\mathcal{U}\left(E_{\alpha}^{ \pm}\right)}{\otimes} V_{\lambda, \gamma}
$$

The module $M_{\alpha}^{ \pm}(\lambda, \gamma)$ is called a generalized Verma module following [3]. It has a unique irreducible quotient $L_{\alpha}^{ \pm}(\lambda, \gamma)$. Notice that $V_{\lambda, \gamma}$ does not have to be finite-dimensional.

Corollary 2.2 ([3]). Let V be an irreducible weight \mathfrak{g}-module and $0 \neq$ $v \in V_{\lambda}$ such that $\mathcal{N}_{\alpha}^{ \pm} v=0$, then $V \cong L_{\alpha}^{ \pm}(\lambda, \gamma)$ for some $\gamma \in \mathbb{C}$.

3. Loop modules

Consider the Heisenberg subalgebra $G=\sum_{\kappa, n \neq 0} \mathfrak{g}_{n \delta} \oplus \mathbb{C} c \subset \mathfrak{g}$, where $\mathfrak{g}_{n \delta}=0$ for odd n. Set $G_{ \pm}=\sum_{\kappa, n>0} \mathfrak{g}_{ \pm n \delta}$. Let $a \in \mathbb{C}^{*}$ and $\mathbb{C} v_{a}$ be the the 1-dimensional $G_{ \pm} \oplus \mathbb{C} c$-module for which $G_{ \pm} v_{a}=0, c v_{a}=a v_{a}$. Consider the G-module

$$
M^{ \pm}(a)=\mathcal{U}(G) \underset{\mathcal{U}\left(G_{ \pm} \oplus \mathbb{C} c\right)}{\otimes} \mathbb{C} v_{a}
$$

It carries a natural \mathbb{Z}-grading with the i-th component $\sigma\left(\mathcal{U}\left(G_{ \pm}\right)_{-i}\right) v_{a}$.
Define another family of modules, so-called loop modules as in [8]. Let $p: \mathcal{U}(G) \rightarrow \mathcal{U}(G) / \mathcal{U}(G) c$ be the canonical projection. For $r>0$, consider the \mathbb{Z}-graded ring $L_{r}=\mathbb{C}\left[t^{-r}, t^{r}\right]$. Denote by P_{r} the set of graded ring epimorphisms $\Lambda: \mathcal{U}(G) / \mathcal{U}(G) c \rightarrow L_{r}$ with $\Lambda(1)=1$. Define a G-module structure on L_{r} by:

$$
e_{k \delta} t^{s r}=\Lambda\left(g\left(e_{k \delta}\right)\right) t^{s r}=t^{(k+s) r}, k \in \mathbb{Z} \backslash\{0\}, c t^{r s}=0, s \in \mathbb{Z}
$$

Denote this G-module by $L_{r, \Lambda}$. Define Λ_{0} the trivial homomorphism onto \mathbb{C} with $\Lambda_{0}(1)=1$, then $L_{0, \Lambda_{0}}$ is the trivial module.

Proposition 3.1. (i) [8] Every irreducible \mathbb{Z}-graded G-module of level zero is isomorphic to $L_{r, \Lambda}$ for some $r \geq 0, \Lambda \in P_{r}$ up to a shifting of gradation,
(ii) [3] Every irreducible \mathbb{Z}-graded G-module of level $a \in \mathbb{C}^{*}$ with at least one finite-dimensional component is isomorphic to $M^{ \pm}(a)$ up to a shifting of gradation.

If $\alpha \in \Delta^{r e, s}$ denote $\mathfrak{n}_{\alpha}^{s}=\sum_{n \in \mathbb{Z}} \mathfrak{g}_{\alpha+n \delta}$ and $\mathfrak{n}_{\alpha}=\mathfrak{n}_{\alpha}^{s} \oplus \sum_{i \in \mathbb{Z}} \mathfrak{g}_{2 \alpha+(2 i+1) \delta}$. If $\alpha \in \Delta^{r e, l}$ then there exist $\beta \in \Delta^{r e, s}$ and $k \in \mathbb{Z}$ such that $\alpha=2 \beta+k \delta$. Denote $\mathfrak{n}_{\alpha}=\mathfrak{n}_{\beta}^{s} \oplus \sum_{n \in \mathbb{Z}} \mathfrak{g}_{2 \beta+(2 n+1) \delta}$. The definition of \mathfrak{n}_{α} depends only
on $\alpha \in \Delta_{+}$or $\alpha \in \Delta_{-}$. Write \mathfrak{n}_{+}or \mathfrak{n}_{-}in these cases, respectively. In either case $\mathfrak{g}=\mathfrak{n}_{-\alpha} \oplus(\mathfrak{h}+G) \oplus \mathfrak{n}_{\alpha}$. Set

$$
(\mathfrak{h}+G) \oplus \mathfrak{n}_{\alpha}=\mathfrak{b}
$$

Let V be a \mathbb{Z}-graded G-module of level $a \in \mathbb{C}$ and $\lambda \in \mathfrak{h}^{*}$ with $\lambda(c)=a$. Define a \mathfrak{b}-module structure on V by the action $h v_{i}=(\lambda+i \delta)(h) v_{i}$, $\mathfrak{n}_{\alpha} v_{i}=0$ for all $h \in \mathfrak{h}, v_{i} \in V_{i}, i \in \mathbb{Z}$.

Consider the \mathfrak{g}-module

$$
M_{\alpha}(\lambda, V)=\mathcal{U}(\mathfrak{g}) \underset{\mathcal{U}(\mathfrak{b})}{\otimes} V
$$

Proposition 3.2. (i) $M_{\alpha}(\lambda, V)$ is $S\left(\mathfrak{n}_{-\alpha}\right)$-free.
(ii) $M_{\alpha}(\lambda, V)$ has a unique irreducible quotient $L_{\alpha}(\lambda, V)$.

4. The category $\tilde{\mathcal{O}}$ for $A_{2}^{(2)}$

If \mathfrak{g} is a twisted affine Kac-Moody algebra, π a basis for its root lattice then we define the category $\tilde{\mathcal{O}}=\tilde{\mathcal{O}}(\mathfrak{g})$ of weight \mathfrak{g}-modules as follows.
Definition 4.1 ([7]). A \mathfrak{g}-module M lies in $\tilde{\mathcal{O}}$ if and only if
(i) M is a weight module, i.e.

$$
M=\bigoplus_{\lambda \in \mathfrak{h}^{*}} M_{\lambda}, \text { and }
$$

(ii) there exist finitely many elements $\lambda_{1}, \ldots, \lambda_{k} \in \mathfrak{h}^{*}$ such that $\operatorname{supp}(M) \subset$ $\tilde{D}\left(\lambda_{1}\right) \cup \cdots \cup \tilde{D}\left(\lambda_{k}\right)$, where

$$
\tilde{D}\left(\lambda_{i}\right)=\left\{\mu \in \mathfrak{h}^{*} \mid \lambda_{i}-\mu \in Q_{+} \cup \Delta^{i m}\right\}, Q_{+}=\sum_{\alpha \in \pi} \mathbb{Z}_{+} \alpha
$$

and $\operatorname{supp}(M)=\left\{\lambda \in \mathfrak{h}^{*} \mid M_{\lambda} \neq 0\right\}$ as usually.
$\tilde{\mathcal{O}}$ is closed under the operations of taking submodules, quotients and finite direct sums.
Let \mathfrak{g} be again $A_{2}^{(2)}$ and $\alpha \in \pi$, then $\tilde{D}\left(\lambda_{i}\right)=$ $\left\{\lambda_{i}+k \alpha+n \delta \mid k \leq 0, n \in \mathbb{Z}\right\}$ and $\tilde{D}\left(\lambda_{1}\right) \cup \cdots \cup \tilde{D}\left(\lambda_{k}\right)=\tilde{D}\left(\lambda_{j}\right)$ for j such that $\left(\lambda_{j} \mid \alpha\right)$ is maximal. So $V \in \tilde{\mathcal{O}}$ if and only if there exists an $N \in \mathbb{Z}$ such that $\operatorname{supp}(V) \subset\{k \alpha+n \delta \mid k \leq N, n \in \mathbb{Z}\}$. As in [3], Proposition 3.2 leads to the description of the classes of isomorphisms of irreducible modules in $\tilde{\mathcal{O}}$.

Proposition 4.2. [/3]/] Let \tilde{V} be an irreducible object in $\tilde{\mathcal{O}}$. Then there exist $\lambda \in \mathfrak{h}^{*}$ and an irreducible G-module V such that $\tilde{V} \cong L_{\alpha}(\lambda, V)$.

Theorem 4.3 ([7]). Let \tilde{V} be an irreducible object in $\tilde{\mathcal{O}}$.
(i) If \tilde{V} is of level zero then $\tilde{V} \cong L_{\alpha}\left(\lambda, L_{r, \Lambda}\right)$ for some $\lambda \in \mathfrak{h}^{*}$, $\lambda(c)=0, \Lambda \in P_{r}$.
(ii) If \tilde{V} is of level $a \in \mathbb{C}^{*}$ and $\operatorname{dim} \tilde{V}_{\mu}<\infty$ for at least one $\mu \in$ $\operatorname{supp}(\tilde{V})$ then then $\tilde{V} \cong L_{\alpha}\left(\lambda, M^{ \pm}(a)\right)$ for some $\lambda \in \mathfrak{h}^{*}, \lambda(c)=a$.

Remark 4.4. By [7] the level zero modules are the only irreducible integrable ones in $\tilde{\mathcal{O}}$.

5. Classification of non-dense \mathfrak{g}-modules

In this section we prove the main result. The major part is the content of a Lemma which proves the result assuming the whole in the root lattice at $\lambda+k \delta, k \in \mathbb{Z}_{+}$. The proof is structured in form of a binary tree where in each leaf we construct a vector that generates an irreducible quotient. The result is an analog to the $A_{1}^{(1)}$-case treated in [3].

Definition 5.1. An irreducible weight \mathfrak{g}-module V is called dense if $\operatorname{supp}(V)=\lambda+Q$ for some $\lambda \in \mathfrak{h}^{*}$ and non-dense otherwise.

Now we can state the main theorem.
Theorem 5.2. If \tilde{V} is an irreducible non-dense \mathfrak{g}-module then either $\tilde{V} \cong L_{\alpha}^{+}(\lambda, \gamma)$ or $\tilde{V} \cong L_{\alpha}^{-}(\lambda, \gamma)$ or $\tilde{V} \cong L_{\alpha}(\lambda, V)$ for some $\alpha \in \Delta^{r e}$, $\lambda \in \mathfrak{h}^{*}, \lambda(c)=a, \gamma \in \mathbb{C}$ and some irreducible G-module V.

The rest of the section is devoted to the proof the Theorem.
Definition 5.3. A subset $P \subset \Delta$ is called closed if $\beta_{1}, \beta_{2} \in P, \beta_{1}+\beta_{2} \in$ Δ imply $\beta_{1}+\beta_{2} \in P$. It is called partition if in addition $P \cap-P=\varnothing$ and $P \cup-P=\Delta$. Two partitions are called equivalent if they lie on the same $W \times\{ \pm 1\}$ orbit.

Denote by $\mathbb{Z}_{\geq s}$ the set $\{s, s+1, \ldots\}$ by \mathbb{Z}_{+}the set of positive integers. From ([5] Chapt. 2) we derive that there exist to non-equivalent partitions of the rootsystem of \mathfrak{g}, in particular $P_{1}=\Delta_{+}$and $P_{0}=$ $\left\{\alpha+\mathbb{Z} \delta \mid \alpha \in \Delta_{+}^{0}\right\} \cup \mathbb{Z}_{+} \delta$. They are called real (or classical) and imaginary, respectively.

Lemma 5.4. Let P be a partition, $P \ni \delta, P^{r e}=P \cap \Delta^{r e}, P_{ \pm}=P \cap$ $\Delta_{ \pm}, \beta \in \Delta^{r e}$.

$$
\begin{gathered}
\text { If }\left|P^{r e} \cap\left\{\beta+\mathbb{Z}_{\geq 0} \delta\right\}\right|<\infty \text { or }\left|P^{r e} \cap\left\{-\beta+\mathbb{Z}_{\geq 0} \delta\right\}\right|<\infty \text { then } \\
P^{r e}=\{\varphi+\mathbb{Z} \delta\} \cup\{2 \varphi+(2 \mathbb{Z}+1) \delta\}
\end{gathered}
$$

for some $\varphi \in \Delta^{r e, s}$ else $P^{r e}=\Delta_{+}(\tilde{\pi})$ for some basis $\tilde{\pi}$ of Δ.

Proof. Recall that there exist exactly two non-equivalent classes of partitions, those equivalent to $\Delta_{+}^{r e}(\pi)$ and to $\left\{\alpha+\mathbb{Z} \delta \mid \alpha \in \Delta_{+}^{0}\right\} \cup \Delta_{+}^{i m}$ respectively. Now with [5] Propostion 2.3 (ii) the statement follows.

Corollary 5.5. Let $\Gamma \subset \Delta$ be a partition containg δ. If $\left|\Delta_{+}^{r e} \cap \Gamma\right|=$ $\left|\Delta_{-}^{r e} \cap \Gamma\right|=\infty$, then there exists an $n \in \mathbb{Z}$ such that $\Gamma=\Delta_{+}(\tilde{\pi})$ for $\tilde{\pi}=\left\{\varphi^{\prime}, \delta-\varphi^{\prime}\right\}, \varphi^{\prime}=\varphi+n \delta$, explicitely

$$
\begin{aligned}
\Delta_{+}(\tilde{\pi})= & \left\{\varphi+\mathbb{Z}_{\geq n} \delta\right\} \cup\left\{-\varphi+\mathbb{Z}_{\geq-n+1} \delta\right\} \cup\left\{2 \varphi+\left(2 \mathbb{Z}_{\geq n}+1\right) \delta\right\} \cup \\
& \cup\left\{-2 \varphi+\left(2 \mathbb{Z}_{\geq-n+1}-1\right) \delta\right\} \cup \mathbb{Z}_{+} \delta
\end{aligned}
$$

Proof. Recall the action of the affine Weyl group and apply it to the Lemma.

Definition 5.6. Let \mathfrak{a} be a subalgebra of \mathfrak{g}. A non-zero element v of a \mathfrak{g}-module V is called \mathfrak{a}-primitive if $\mathfrak{a} v=0$. A non-zero element v of $a \mathfrak{g}$ module V is called primitive iff $\mathcal{N}_{\varphi}^{+} v=0, \mathcal{N}_{\varphi}^{-} v=0$ or $\mathfrak{n}_{\varphi} v=0$ for some $\varphi \in \Delta^{\text {re }}$, i.e. iff it is $\mathcal{N}_{\varphi}^{+}$-primitive or $\mathcal{N}_{\varphi}^{-}$-primitive or \mathfrak{n}_{φ}-primitive. Denote $N(v) \subset \Delta$ the set of roots ψ such that $e_{\psi} v=0$.

Remark 5.7. (i) Primitive vectors were originally called admissible. For $\varphi \in \Delta^{r e}$, a \mathfrak{n}_{φ}-primitive element $v \in V$ is also called singular.
(ii) If some $v \in V$ is \mathcal{N}_{+}-primitive then it is obviously already $\mathcal{N}_{\varphi}^{+}-$ primitive.
(iii) On order to classify \mathfrak{g}-modules we have to look for primitive elements. Each of those generate irreducible quotient in terms of $\tilde{V} \cong$ $L_{\alpha}^{ \pm}(\lambda, \gamma)$, or $\tilde{V} \cong L_{\alpha}(\lambda, V)$ as in Corollary 2.2 and the proof of Proposition 4.2 , respectively.

Lemma 5.8. If the \mathfrak{g}-module V contains a non-zero vector $v \in V_{\lambda}$ such that $e_{\varphi} v=0$ for some $\varphi \in \Delta^{r e}$ and $\lambda+k \delta \notin \operatorname{supp}(V)$ for some $k \in \mathbb{Z} \backslash\{0\}$ then V contains a primitive vector.

Proof. We will assume that $k>0$. The case $k<0$ can be considered analogously. We prove the Lemma by induction on k. Let $k=1$.

1. In the first step assume that $\varphi \in \Delta^{r e, s}$, so $e_{\varphi} v=0$.

As $\lambda+\delta \notin \operatorname{supp}(V)$ we have $e_{\delta} v=0$ and $e_{\varphi+m \delta} v=0$ for all $m \geq$ 0 (by induction on m : $e_{\varphi+(m+1) \delta} v=\left[e_{\delta}, e_{\varphi+m \delta}\right] v=0$ by induction assumption). If $e_{\varphi-n \delta} v=0$ for all $n>0$ then $\mathfrak{n}_{\varphi}^{s} v=0$. Because of $\left[e_{\varphi+k \delta}, e_{\varphi+m \delta}\right]=e_{2 \varphi+(k+m) \delta}$, also $\mathfrak{n}_{\varphi}^{l} v=\sum_{i \in \mathbb{Z}} \mathfrak{g}_{2 \varphi+i \delta} v=0$ and v is primitive.
1.1. If $e_{-\varphi+n \delta} v=0$ for all $n<0$ then $\mathfrak{n}_{-\varphi} v=0$.
1.2. Thus we can assume $e_{-\varphi+n \delta} v \neq 0$ for some $n \in \mathbb{Z}$. If $n<0$ then v is already \mathcal{N}_{+}-primitive. If $n=0$ we have immediately $\mathcal{N}_{-2 \varphi+\delta}^{+} v=0$ as in Corollary 5.5.
1.2.1. If $e_{l \delta} v \neq 0$ for some $l \in \mathbb{Z}_{+}$then set $v_{l \delta}=e_{l \delta} v$ for the least of such l. By hypothesis $e_{-(l-1) \delta} v_{l \delta} \in V_{\lambda+\delta}=0$ and also $e_{\varphi-k \delta} v_{l \delta}=\left[e_{-(l-1) \delta}, e_{\varphi-k+(l-1) \delta}\right] v_{l \delta}=0$ for all $k \leq l-1$ and thus for all $k \in \mathbb{Z}$. We thus derived $\mathfrak{n}_{\varphi} v=0$.
1.2.2. Thus we can assume $e_{l \delta} v=0$ for all $l \in \mathbb{Z}_{+}$.
1.2.2.1. If possible choose $n>0$ the greatest number such that $e_{-\varphi+n \delta} v \neq 0$ and set $v_{-\varphi+n \delta}=e_{-\varphi+n \delta} v$. By assumption $e_{\varphi-(n-1) \delta} v_{-\varphi+n \delta} \in$ $V_{\lambda+\delta}=0$. Therefore $\left\{\varphi+\mathbb{Z}_{\geq-n+1} \delta\right\} \cup\left\{-\varphi+\mathbb{Z}_{\geq n+1} \delta\right\} \subset N\left(v_{-\varphi+n \delta}\right)$. Thus,
$\left\{\varphi^{\prime}+\mathbb{Z}_{\geq 2} \delta\right\} \cup\left\{-\varphi+\mathbb{Z}_{\geq 0} \delta\right\} \subset N\left(v_{-\varphi+n \delta}\right)$ for $\varphi^{\prime}=\varphi-(n+1) \delta$. If not already zero set $v_{n \delta}=e_{\varphi^{\prime}-(n+1) \delta} v_{-\varphi^{\prime}+(2 n+1) \delta}$ (otherwise $v_{-\varphi^{\prime}+(2 n+1) \delta}$ is immediately \mathcal{N}_{+}-primitive). Again, if possible set $v_{\varphi^{\prime}}=e_{\varphi^{\prime}-n \delta} v_{n \delta} \neq$ 0 (otherwise $v_{n \delta}$ is immediately \mathcal{N}_{+}-primitive). But now, $e_{\varphi^{\prime}+\delta} v_{\varphi^{\prime}} \in$ $V_{\lambda+\delta}=0$ by assumption and $v_{\varphi^{\prime}}$ is $\mathcal{N}_{-2 \varphi^{\prime}+\delta^{+}}^{+}$primitive for some $\varphi^{\prime} \in \Delta^{r e}$.
1.2.2.2. Thus we can assume that $e_{-\varphi+n \delta} v \neq 0$ for all $n \in \mathbb{Z}_{+}$. Choose an arbitrary n out of such and set $v_{-\varphi+n \delta}=e_{-\varphi+n \delta} v$. Then $e_{\varphi-(n-1) \delta} v_{-\varphi+n \delta} \in V_{\lambda+\delta}=0$. Assume $e_{\varphi-l \delta} v_{-\varphi+n \delta} \neq 0$ for some $l \geq n$ and set $v_{(n-l) \delta}=e_{\varphi-l \delta} v_{-\varphi+n \delta}$ (otherwise $v_{-\varphi+n \delta}$ is \mathfrak{n}_{φ}-primitive) and we are in a situation analougously to case 1.2.2.1.
2. In the second step choose $\varphi=2 \alpha+\delta \in \Delta^{r e, l}$ i.e. $e_{2 \alpha+\delta} v=0$ by assumption and $e_{\delta} v \in V_{\lambda+\delta}=0$.
2.1. If $e_{-2 \alpha+\delta} v=0$ then $\left[e_{2 \alpha+\delta}, e_{-2 \alpha+\delta}\right] v=e_{2 \delta} v=0$ and $e_{ \pm 2 \alpha+m \delta} v=$ 0 for all $m \in \mathbb{Z}_{+}$thus $e_{\psi} v=0$ for all $\psi \in \Delta_{+}^{r e, l}$. We can assume that $e_{\alpha} v=0$ (if $\tilde{v}=e_{\alpha} v \neq 0$, by assumption $e_{-\alpha+\delta} \tilde{v}=0$, hence $\left[e_{2 \alpha-\delta} e_{-\alpha+\delta}\right] \tilde{v}=e_{\alpha} \tilde{v}=0$, contradiction) then $\left[e_{\alpha}, e_{-2 \alpha+\delta}\right] v=e_{-\alpha+\delta} v=$ 0 and $\left[e_{k \delta}, e_{\alpha}\right] v=e_{\alpha+k \delta} v=0$ for all $k \in \mathbb{Z}_{\geq 0}$ thus $\mathcal{N}_{+} v=0$ and v is primitive,
2.2. Otherwise, if $e_{-2 \alpha+\delta} v \neq 0$ assume again that $e_{\alpha-k \delta} v \neq 0$ for some $k \in \mathbb{Z}_{+}$and set $v_{\alpha-k \delta}=e_{\alpha-k \delta} v$. By assumption $e_{\alpha+(k+1) \delta} v_{-\alpha-k \delta}=0$.
2.2.1. If $e_{-\alpha-k \delta} v_{-\alpha-k \delta}=0$ then $N\left(v_{-\alpha-k \delta}\right) \cup\left\{-2 \varphi^{\prime}+\delta, 2 \varphi^{\prime}+\delta\right\}$ contains the partition $\Delta_{+}(\tilde{\pi}), \tilde{\pi}=\left\{\varphi^{\prime}, \delta-\varphi^{\prime}\right\}, \varphi^{\prime}=\alpha+k \delta$. Note that $e_{2 \delta} v_{-\varphi^{\prime}}=\left[e_{\varphi^{\prime}+\delta}, e_{-\varphi^{\prime}+\delta}\right] v_{-\varphi^{\prime}}=0$. Assume both of the $e_{ \pm 2 \varphi^{\prime}+\delta} v_{-\varphi^{\prime}}$ not to be zero and $e_{-\varphi^{\prime}-l \delta} v_{-\varphi^{\prime}} \neq 0$ for some $l \in \mathbb{Z}_{+}$(otherwise we are done). Choose l to be minimal in that sense and set $v_{-2 \varphi^{\prime}-l \delta}=e_{-\varphi^{\prime}-l \delta} v_{-\varphi^{\prime}} \neq 0$, then $e_{2 \varphi^{\prime}+(l+1) \delta} v_{-\varphi^{\prime}} \in V_{\lambda+\delta}=0$ wich gives $\mathcal{N}_{-2 \varphi^{\prime}+\delta}^{+} v_{-2 \varphi^{\prime}-l \delta}=0$ with respect to $\Delta_{+}\left(\pi^{\prime \prime}\right), \varphi^{\prime \prime}=-\varphi^{\prime}-(l-1) \delta$.
2.2.2. Else $v_{-2 \varphi^{\prime}}=e_{-\varphi^{\prime}} v_{-\varphi^{\prime}} \neq 0$. By assumption $e_{2 \varphi^{\prime}+\delta} v_{-2 \varphi^{\prime}}=0$.

Now $N\left(v_{-2 \varphi^{\prime}}\right) \cup\left\{\varphi^{\prime}, \delta,-2 \varphi^{\prime}+\delta\right\} \cup\left\{-\varphi^{\prime}+\mathbb{Z}_{+} \delta\right\}$ contains the partition $\Delta_{+}(\tilde{\pi}), \tilde{\pi}=\left\{\varphi^{\prime}, \delta-\varphi^{\prime}\right\}, \varphi^{\prime}=\alpha+k \delta$. Assuming successively $v_{-\varphi^{\prime}}=$ $e_{\varphi^{\prime}} v_{-2 \varphi^{\prime}} \neq 0$ (otherwise there is an l, minimal by choice, as in 2.2.1. etc.), $v_{0}=e_{\varphi^{\prime}} v_{-\varphi^{\prime}} \neq 0, v_{\varphi^{\prime}}=e_{\varphi^{\prime}} v_{0} \neq 0\left(\right.$ now $e_{-\varphi^{\prime}+\delta} v_{\varphi^{\prime}}=e_{\delta} v_{\varphi^{\prime}}=0$), $v_{-\varphi^{\prime}+\delta}=e_{-2 \varphi^{\prime}+\delta} v_{\varphi^{\prime}} \neq 0$ we argued $e_{\varphi^{\prime}} v_{-\varphi^{\prime}+\delta} \in V_{\lambda+\delta}=0$ down to zero and thus proved the basis of induction.

Assume now that the Lemma is proved for all $k^{\prime}=1, \ldots, k-1$ and consider another tree of cases:

1. If there exists an $n \in\{1, \ldots, k-1\}$ such that $e_{i \delta} v=0$ for all $i=0, \ldots, n-1$ but $e_{n \delta} v \neq 0$. Set $v_{n \delta}=e_{n \delta} v$ and we can apply induction hypothesis.
2. Thus assume $e_{i \delta} v=0$ for all $i=1, \ldots, k$. Let $\varphi \in \Delta^{r e}$ such that $e_{\varphi} v=0$. We can also assume that $e_{-\varphi+l \delta} v \neq 0$ for some $l \in \mathbb{Z}_{+}$ (otherwise $\mathfrak{n}_{-\varphi} v=0$ and we are done). Choosing the highest of such l, we have thus established $N(v) \supset\left\{\varphi+\mathbb{Z}_{\geq 0} \delta\right\} \cup\left\{\varphi+\left(2 \mathbb{Z}_{\geq 0}+1\right) \delta\right\} \cup\{-\varphi+$ $\left.\mathbb{Z}_{\geq l+1} \delta\right\} \cup\left\{-2 \varphi+\left(2 \mathbb{Z}_{\geq l+1}+1\right) \delta\right\} \cup \mathbb{Z}_{+} \delta$. Assume also $\varphi-\delta \notin N(v)$ as otherwise, we reduce immediately to the case $l^{\prime}=l-1$.
2.1. If $l=0$ like in Corollary 5.5 we obtain a partition for which $\mathcal{N}_{-2 \varphi+\delta}^{+} v=0$.
2.2. For $l>0$ we may define $v_{-\varphi+l \delta}=e_{-\varphi+l \delta} v \neq 0$. Still $e_{i \delta} v_{-\varphi+l \delta}=$ $e_{-\varphi+(l+i) \delta} v+e_{-\varphi+l \delta} e_{i \delta} v=0$ for all $i=1, \ldots, k$ and $e_{-\varphi+i \delta} v_{-\varphi+l \delta}=e_{-2 \varphi+(l+i) \delta} v+e_{-\varphi+l \delta} e_{-\varphi+i \delta} v=0$ for $i=l+2$ (because $i+l$ is even in this case) and thus for all $i \geq l+2$.

By assumption $e_{\varphi+(k-l) \delta} v_{-\varphi+l \delta} \in V_{\lambda+k \delta}=0$. Thus if $l>k$ choose the largest $m<k-l$ such that $e_{\varphi+m \delta} v_{-\varphi+l \delta} \neq 0$ and denote this vector $v_{(m+l) \delta}$. If $0<m+l<k$ then we are in the case of the induction hypothesis, else $m+l \leq 0$. So we can assume that $m \leq-l$. But this means $e_{\varphi-(l-1) \delta} v_{-\varphi+l \delta}=0$ by choice of m. Set $\varphi^{\prime}=\varphi-(l-1) \delta$ and we have $N\left(v_{-\varphi^{\prime}+\delta}\right) \supset\left\{\varphi^{\prime}+\mathbb{Z}_{\geq 0} \delta\right\} \cup\left\{\varphi^{\prime}+\left(2 \mathbb{Z}_{\geq 0}+1\right) \delta\right\} \cup\left\{-\varphi^{\prime}+\mathbb{Z}_{\geq 3} \delta\right\} \cup$ $\left\{-2 \varphi^{\prime}+\left(2 \mathbb{Z}_{\geq 3}+1\right) \delta\right\} \cup \mathbb{Z}_{+} \delta$.
2.2.1. Assume $e_{\varphi^{\prime}-(k-1) \delta} v_{-\varphi^{\prime}+\delta} \neq 0$ and set $v_{-k \delta}=e_{\varphi^{\prime}-k \delta} v_{-\varphi^{\prime}+\delta}$ (otherwise clear). Note that it may only happen that $e_{i \delta} v_{-k^{\prime} \delta} \neq 0$ for $i \leq 2$, because
$\left[e_{\varphi^{\prime}}, e_{-\varphi^{\prime}+i \delta}\right] v_{-\varphi^{\prime}+\delta}=e_{i \delta} v_{-\varphi^{\prime}+\delta}=0$ for all $i \geq 3$.
We proceed with a little iteration:

```
010 k
0 2 0 ~ I F ~ e ~ e i \delta ~ v - k ^ { \prime } \delta \neq 0 ~ f o r ~ s o m e ~ i \in \{ 1 , 2 \}
    THEN set }\mp@subsup{v}{(i-\mp@subsup{k}{}{\prime})\delta}{}=\mp@subsup{e}{i\delta}{}\mp@subsup{v}{-\mp@subsup{k}{}{\prime}\delta}{}\mathrm{ for the highest of such i
    ELSE {PRINT''v-\mp@subsup{k}{}{\prime}\delta'' :
        STOP}
030 IF (i-k')\geq1 &&(this can actually at most be equal 1 be-
cause the previous note)
    THEN {PRINT''v}\mp@subsup{v}{(i-\mp@subsup{k}{}{\prime})\delta}{}\mathrm{ fulfills the condition of induction hy-
pothesis":
        STOP}
    ELSE {set k' = - (i-k'): GOTO 020}
040 END
```

It is easy to see, that the iteration always terminates. Assume the program returns $v_{-k^{\prime} \delta}$. Note that $k^{\prime} \in\{0, \ldots, k\}$. Set $j=k-k^{\prime} \in$ $\{0, \ldots k\}$. In order to annihilate the missing vector, we have to climb up. We do this by means of the following loop:

```
110 WHILE \(-k^{\prime} \neq-1\)
    IF \(e_{-\varphi^{\prime}+2 \delta} v_{-k^{\prime} \delta} \neq 0\)
        THEN set \(v_{-\varphi^{\prime}-\left(k^{\prime}-2\right) \delta}=e_{-\varphi^{\prime}+2 \delta} v_{-k^{\prime} \delta}\)
        ELSE \{PRINT' ' \(v_{-k^{\prime}} \delta^{\prime \prime}\) :
            STOP\} \&\&(call this ,singular case I")
        IF \(e_{\varphi^{\prime}-\delta} v_{-\varphi^{\prime}-\left(k^{\prime}-2\right) \delta} \neq 0\)
        THEN set \(v_{-\left(k^{\prime}-1\right) \delta}=e_{\varphi^{\prime}-\delta} v_{-\varphi^{\prime}-\left(k^{\prime}-2\right) \delta}: \quad k^{\prime}=k^{\prime}-1\)
        ELSE \{PRINT' ' \(v_{-\varphi^{\prime}-\left(k^{\prime}-2\right) \delta ' ~: ~}^{\text {' }}\)
            STOP\} \&\& (call this ,singular case II")
    WHILEEND
120 PRINT' 'v \(v_{\delta}\) fulfills the condition of induction hypothesis"
130 END
```

In both of the singular cases we end up in the following situation $N\left(w_{k^{\prime}}\right) \supset\left\{\psi+\mathbb{Z}_{\geq 0} \delta\right\} \cup\left\{\psi+\left(2 \mathbb{Z}_{\geq 0}+1\right) \delta\right\} \cup\left\{-\psi+\mathbb{Z}_{\geq 2} \delta\right\} \cup\left\{-2 \psi+\left(2 \mathbb{Z}_{\geq 2}+1\right) \delta\right\} \cup$ $\mathbb{Z}_{+} \delta$ for some $\psi \in \Delta^{r e}$ and one of the vectors $v_{-k^{\prime} \delta}$ and $v_{-\varphi^{\prime}-\left(k^{\prime}-2\right) \delta}$. Note that $-k^{\prime} \leq 0$. We proceed with another loop for $v_{-k^{\prime} \delta}$ (singular case I). Singular case II $\left(v_{-\varphi^{\prime}-\left(k^{\prime}-2\right) \delta}\right)$ goes analogously.

```
210 WHILE - }\mp@subsup{k}{}{\prime}\not=1\mathrm{ or 2
    IF }\mp@subsup{e}{-\mp@subsup{\varphi}{}{\prime}+\delta}{}\mp@subsup{v}{-\mp@subsup{k}{}{\prime}\delta}{}\not=
        THEN set v-\mp@subsup{\varphi}{}{\prime}-(\mp@subsup{k}{}{\prime}-1)\delta}=\mp@subsup{e}{-\mp@subsup{\varphi}{}{\prime}+\delta}{}\mp@subsup{v}{-\mp@subsup{k}{}{\prime}\delta}{
        ELSE {PRINT''v-k'\delta' :
            STOP} &&(call this ,,singular case A")
    IF }\mp@subsup{e}{-\mp@subsup{\varphi}{}{\prime}+\delta}{}\mp@subsup{v}{-\mp@subsup{\varphi}{}{\prime}-(\mp@subsup{k}{}{\prime}-1)\delta}{}\not=
        THEN set v-2\mp@subsup{\varphi}{}{\prime}-(\mp@subsup{k}{}{\prime}-2)\delta}=\mp@subsup{e}{-\mp@subsup{\varphi}{}{\prime}+\delta}{}\mp@subsup{v}{-\mp@subsup{\varphi}{}{\prime}-(\mp@subsup{k}{}{\prime}-1)\delta}{
        ELSE {PRINT''}\mp@subsup{v}{-(\mp@subsup{k}{}{\prime}-1)\delta', :}{
            STOP} &&(call this ,,singular case B")
    IF e}\mp@subsup{e}{2\mp@subsup{\varphi}{}{\prime}-\delta}{}\mp@subsup{v}{-2\mp@subsup{\varphi}{}{\prime}-(\mp@subsup{k}{}{\prime}-2)\delta}{}\not=
        THEN set v-(k'-1)\delta}=\mp@subsup{e}{2\mp@subsup{\varphi}{}{\prime}-\delta}{}\mp@subsup{v}{-2\mp@subsup{\varphi}{}{\prime}-(\mp@subsup{k}{}{\prime}-2)\delta}{}\mathrm{ and }\mp@subsup{k}{}{\prime}=\mp@subsup{k}{}{\prime}-
        ELSE {PRINT''v-2\mp@subsup{\varphi}{}{\prime}-(\mp@subsup{k}{}{\prime}-2)\delta' ':
            STOP} &&(call this „singular case C")
    WHILEEND
220 PRINT '' }\mp@subsup{v}{-k}{\prime
230 END
```

As in the previous loop, the program returns always a vector, say w.
In the singular case A and B we have $-\varphi^{\prime}+\delta \in N(w)$, thus $\mathcal{N}_{-2 \varphi^{\prime}+\delta}^{+} w=$ 0.

In the singular case C we have $2 \varphi^{\prime}-\delta \in N(w)$, thus $\mathcal{N}_{-2 \varphi^{\prime \prime}+\delta}^{+} w=0$ with respect to $\Delta_{+}\left(\left\{\varphi^{\prime \prime}, \delta-\varphi^{\prime \prime}\right\}\right)$ for $\varphi^{\prime \prime}=-\varphi^{\prime}+\delta$ and thus a primitive vector, which proves the Lemma.

Proposition 5.9. Let V be an irreducible non-dense \mathfrak{g}-module. Then V contains a primitive element.

Proof. Let $\lambda \in \operatorname{supp}(V)$ and $\lambda+\varphi \notin \operatorname{supp}(V)$ for some $\varphi \in \Delta$. Choose a non-zero vector $v \in V_{\lambda}$. Consider another tree of cases in order to construct a primitive element or provide the assumption of the Lemma above.

1. Assume $\varphi \in \Delta^{i m}$, i.e. $\varphi=k \delta, k \in \mathbb{Z} \backslash\{0\}$.
1.1. If $e_{\alpha} v=0$ for some $\alpha \in \Delta^{r e, s}$ then the statement follows from the Lemma above,
1.2. else $e_{\alpha} v \neq 0$.
1.2.1. If $e_{-\alpha} v=0$ then the statement follows from the Lemma.
1.2.2. else $v^{\prime}=e_{-\alpha} v \neq 0$. As $\lambda+k \delta \notin \operatorname{supp}(V)$ we have $\lambda^{\prime}+\alpha+k \delta \notin$ $\operatorname{supp}(V)$ for $\lambda^{\prime}=\lambda-\alpha$. Thus $e_{\alpha+k \delta} v^{\prime}=0$. Also $e_{\alpha+n \delta} v^{\prime}=0$ for all $n=k, 2 k, 3 k, \ldots$.
1.2.2.1. If $e_{\alpha+l \delta} v^{\prime}=0$ for all $l^{\prime} \in \mathbb{Z}$ then v^{\prime} is \mathfrak{n}_{α}-primitive,
1.2.2.2. else we may define $v^{\prime \prime}=e_{\alpha+l^{\prime} \delta} v^{\prime} \neq 0$ for some $l^{\prime} \in \mathbb{Z}$, $l^{\prime} \neq k, 2 k, 3 k, \ldots$ Then $\lambda^{\prime \prime}+\left(k-l^{\prime}\right) \delta \notin \operatorname{supp}(V)$ for $\lambda^{\prime \prime}=\lambda^{\prime}+\alpha+l^{\prime} \delta$
but still $e_{-\alpha+n \delta} v^{\prime \prime}=0$ for any $n=k, 2 k, 3 k, \ldots$ and $-\alpha+k \delta \in \Delta^{r e}$ what brings us in the situation of the Lemma.
2. Assume $\varphi \in \Delta^{r e}$. Then we have $e_{\varphi} v \in V_{\lambda+\varphi}=0$ by assumption.
2.1. If there exists $v^{\prime}=e_{\varphi-n \delta} v \neq 0$ for some $n \in \mathbb{Z} \backslash\{0\}$ then $v^{\prime} \in V_{\lambda^{\prime}}$ for $\lambda^{\prime}=\lambda+\varphi-n \delta$ and $V_{\lambda^{\prime}+n \delta}=0$. But these are the assumptions of case 1 in this proof.
2.2. If $e_{\varphi-n \delta} v=0$ for all $n \in \mathbb{Z}$ then v is \mathfrak{n}_{φ}-primitive.

Now Theorem 5.2 follows from the Proposition, Corollary 2.2 and Proposition 4.2.

6. Classification of supports

Now we are able to classify all possible supports of irreducible \mathfrak{g}-modules. Denote $\mathbb{Z}_{+} \pi=\left\{\sum_{x_{i} \in \pi} a_{i} x_{i} \neq 0 \mid a_{i} \in \mathbb{Z}_{\geq 0}\right\}$ for a set π.

Theorem 6.1. Let $\pi=\{\varphi, \delta-\varphi\}$ be a basis of the root lattice. The support of an irreducible \mathfrak{g}-module is of one (and only one) of the following equivalence classes (w.r.t. the affine Weyl group) for some $\lambda \in \mathfrak{h}^{*}$,

$$
\begin{aligned}
\text { (i) } S_{\text {dense }} & =\lambda+Q \\
\text { (ii) } S_{\text {Verma }} & \subset \lambda \pm \mathbb{Z}_{+} \pi, \text { for a highest or lowest weight module } \\
\text { (iii) } S_{\text {real }}^{ \pm} & =\lambda \pm \mathbb{Z}_{+} \pi \text { (2 classes), } \\
(\text { iv }) S_{\text {real }, \varphi}^{ \pm} & =\lambda \pm \mathbb{Z}_{+} \pi+\mathbb{Z} \varphi \text { (2 classes), } \\
\text { (v) } S_{\text {real, } \alpha}^{(\pm, \pm)} & =\lambda \pm \mathbb{Z}_{+} \pi+\mathbb{Z} \alpha \text { where } \alpha=2 \varphi \pm \delta \text { (4 classes), } \\
\text { (vi) } S_{\text {im }}^{(\pm, \pm)}= & \lambda+\mathbb{Z}_{ \pm} \delta \cup\left\{\mathbb{Z}_{ \pm} \varphi+\mathbb{Z} \delta\right\} \text { for } \lambda(c) \neq 0 \text { (4 classes), } \\
\text { (vii) } S_{\lambda(c)=0}= & \left\{\lambda \pm \mathbb{Z}_{+} \varphi+\mathbb{Z} \delta\right\} \cup\{\lambda\} \\
& \text { for } \lambda(c)=0 \text { and } L_{r, \Lambda}=L_{0, \Lambda_{0}} \\
\text { (viii) } S_{\text {trivial }}= & \lambda, \text { if } \lambda(c)=\lambda(h)=0 .
\end{aligned}
$$

Proof. Follows immediately from Proposition 5.9.

References

[1] Kac, V., Infinite dimensional Lie algebras, 3rd Ed., Cambridge, 1990
[2] Carter, R., Lie algebras of finite and affine type, Cambridge, 2005
[3] Futorny, V., Irreducible non-dense $A_{1}^{(1)}$-modules, Pacific J. of Math. Vol. 172, No. 1, 83-97, 1996
[4] Futorny, V., Tsylke, .A., Irreducible non-zero level modules with finite- dimensional weight spaces for Affine Lie algebras, J. of Algebra 238, 426-441, 2001
[5] Futorny, V., Representations of Affine Lie algebras, Queen's Papers in Pure and Applied Mathematics 106, v. 1, Kingston, 1997.
[6] Futorny, V., Imaginary Verma modules for affine Lie algebras, Canad. Math. Bull., 37, 213-218, 1994
[7] Chari, V., Pressley, A., Integrable Representations of Twisted Affine Lie Algebras, J. of Algebra 113, 438-46, 1986
[8] Chari, V., Integrable Representations of Affine Lie Algebras, Invent. math. 85, 317-335, 1986

Contact information

Thomas Bunke Universidade de São Paulo, Instituto de Matemática e Estatística, Rua do Matão 1010, 05508-090 São Paulo, Brasil
E-Mail: tbunke@ime.usp.br

Received by the editors: 06.04.2009 and in final form 06.04.2009.

[^0]: The author is grateful for the guidance by Vyacheslav Futorny and the financial support by DAAD

 2000 Mathematics Subject Classification: 17B67; 17B65.
 Key words and phrases: affine Kac-Moody algebra, weight module, support, irreducible module.

