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Abstract. We obtain a classification of the supports of ir-

reducible A
(2)
2 -modules. In particular, we get a classification of

all non-dense irreducible A
(2)
2 -modules with at least one finite-

dimensional weight subspace.

Introduction

Let g be an affine Kac-Moody algebra with Cartan subalgebra h, root sys-
tem Δ and center ℂc. A g-module V is called a weight if V =

⊕

�∈h∗ V�,
V� = {v ∈ V ∣ ℎv = � (ℎ) v for all ℎ ∈ h∗}. If V is an irreducible weight
g-module then c acts on V as a scalar, called level of V . For a weight
g-module V , the support is the set supp (V ) = {� ∈ h∗ ∣ V� ∕= 0}. The
root lattice Q is the free abelian group over Δ. If V is irreducible then
supp (V ) ⊂ �+Q for some � ∈ h∗. An irreducible weight g-module V is
called non-dense, if supp (V ) ⊊ �+Q,

This work contains the classification of irreducible non-dense mod-
ules for the Kac-Moody algebra A

(2)
2 with at least one finite-dimensional

weight subspace. The classification of non-dense irreducible A
(1)
1 -modules

with a finite-dimensional weight subspace has been done by V. Futorny
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[5]. The classification problem is also solved for all affine Kac-Moody al-
gebras for non-zero level modules with all finite-dimensional weight sub-
spaces (V. Futorny and A. Tsylke [4]). In these cases an irreducible mod-
ule is either a quotient of a classical Verma module, or of a generalized
Verma module, or of a loop module (induced from a Heisenberg subalge-
bra). That this will hold for irreducible non-dense modules of any affine
Kac-Moody algebras has been conjectured by V. Futorny [5]. With this

work we confirm the conjecture for non-dense irreducible A
(2)
2 -modules

with a finite-dimensional weight subspace.

We also obtain a classification of all possible supports for irreducible

A
(2)
2 -modules. The proof is elementary and involves only the combina-

torics of the root system employing heavily the assumption of a „hole”
in the weight lattice � + Q, precisely the condition of non-density. This
will always result in the „upper”, „lower” or the „right” half of the weight
lattice �+Q having all (or all but one) zero weight spaces (up to equiva-
lence under the affine Weyl group). Upper and right half refer to the two
non-equivalent classes of partitions. It is well known that these are the
only ones [5].

If we omit the requirement of a finite-dimensional weight subspace
then we do not get a complete classification. In this case we have a
classification upto the classification of irreducible graded (with respect
to the natural ℤ-grading) modules over the Heisenberg subalgebra with
non-zero level and all infinite-dimensional components. Nevertheless the
classification of all supports provides a characterization of irreducible

A
(2)
2 -modules.

The proof is structured in form of a binary tree where each leaf cor-
responds to the construction of a so-called primitive element. This by
definition is a vector v with the following property: Let P be a parabolic
subalgebra with Levi decomposition P = P0 ⊕P+. If we take P the cor-
responding parabolics of a classical Verma module, a generalized Verma,
or a loop module then v is annihilated by one of the corresponding P+

(here P is just a Borel subalgebra in the case of a classical Verma mod-
ule). This primitive vector thus generates an irreducible quotient of a
classical Verma module, a generalized Verma module or a loop module
respectively [1, 2].

The paper is structured as follows:

In section 2 we review the realization of the twisted Kac-Moody alge-

bra A
(2)
2 and the construction of its root system. Section 3 and 4 gives the

definition of generalized Verma modules and loop modules, respectively.
In section 5 the category Õ for not necessarily finite-dimensional weight
modules is introduced following V. Chari [8] and V. Futorny [3]. In sec-
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tion 6 we proof the main result and section 7 states the classification of

supports for irreducible A
(2)
2 -modules.

1. Preliminaries

Let A
(2)
2 be the the Kac-Moody algebra defined by generators and rela-

tions due to the generalized Cartan matrix (Aij)i,j=0,1 =

(

2 −1
−4 2

)

.

Let Π = {�0, �1} and Π∨ = {ℎ0, ℎ1} be linear independent subsets of
the 2-dimensional vector space h∗ and its dual h respectively, such that

�j (ℎi) = Aij . Now A
(2)
2 is generated by e0, e1, f0, f1 due to the relations

[eifi] = �ijℎi

[ℎei] = �i (ℎ) ei (1)

[ℎfi] = −�i (ℎ) fi, ℎ ∈ h, i = 0, 1

As dim h∗ = dim h = 2n− rk A = 3 there are elements � and d com-

pleting Π and Π∨ to be bases of h∗ and h, respectively. Furthermore A
(2)
2

permits a nontrivial 1-dimensional ideal spanned by the central element
c = 2ℎ0+ℎ1. One can define non-degenerate symmetric invariant bilinear
ℂ-valued form ⟨⋅ ∣ ⋅⟩ on h which can be uniquely extended to a bilinear

form ⟨⋅ ∣ ⋅⟩ on g. The standard invariant form on A
(2)
2 is given by

⟨ℎ0, ℎ0⟩ = 2, ⟨ℎ0, ℎ1⟩ = −2, ⟨ℎ0, d⟩ =
1

2
, ⟨ℎ1, ℎ1⟩ = 2,

all other brackets vanishing.
Realization. Let g0 a simple Lie algebra. Let � be a non-twisted

graph automorphism of the Dynkin graph of simple roots Δ. � is also
an automorphism of g0 by � : g0� 7→ g0

�(�), � ∈ Δ. When � has order

2, then g0 decomposes as a module as the set of fix points of � and the
eigenelements to the eigenvalue −1

g0 =
(

g0
)�

⊕
(

g0
)

−1
.

The example � (E�+�) = � ([E�E�]) = [E�E�] = − [E�E�] illustrates,
how the eigenvalue −1 occurs.

Let g0 = A2 and L̂
(

g0
)

= ℂ
[

t, t−1
]

⊗ g0⊕ℂc⊕ℂd be the (extended)
loop algebra with extended Dynkin graph

Define � ∈ h∗ by � ∣h0⊕ℂc= 0 and � (d) = 1. Denote by E1 =
E�, E2 = E� , F1 = F�, F2 = F� the Chevalley generators of g0. Then

�̂0 = {�, �, �} is a basis for the root system Δ̂0 of L̂
(

g0
)

. Denote
� = �+ �, �0 = � − �. The �-orbits on Δ are given by a high and a low



14 Irreducible non-dense modules for A
(2)
2









J
J

JJ

�

�0

�

Figure 1: Extended Dynkin graph of A2.

2-element orbit (�0 + �, �0 + �) and (�, �), respectively. The fixpoints

are
(

Δ̂0
)�

= Δ(��) = ℤ�� ∩ Δ̂0 with respect to the basis �� = {�, �}.

The twisted graph automorphism � of this loop algebra is defined by
the maps tk ⊗E1 7→ (−1)k tk ⊗E2, t

k ⊗E2 7→ (−1)k tk ⊗E1 and tk ⊗E�
to (−1)k+1 tk ⊗ E�. The generators of

(

g0
)�

are given by

E1 + E2, F1 + F2, H�, H1 +H2,

where H� = [E�F�]. And the generators of
(

g0
)

−1
are given by

E1 − E2, F1 − F2, E�, F�, H1 −H2.

g = A
(2)
2 is realized as the fixed point set L̂

(

g0
)�

. Consider therefore the

bracket in L̂
(

g0
)

= A
(1)
2 , given by

[

tk ⊗ a+ �c+ �d, tl ⊗ a′ + �′c+ �′d
]

= tk+l ⊗ [a, b] + tl ⊗ l�a′ − tk ⊗ k�′a+ k�k+l,0
〈

a, a′
〉

c

a, a′ ∈ g0, �, �′, �, �′ ∈ ℂ, k, l ∈ ℤ. The weight spaces with respect to

ĥ are defined as V� =
{

v ∈ V ∣ ℎ ⋅ v = � (ℎ) v for all ℎ ∈ ĥ
}

. Eventually,

the all one-dimensional weight spaces of g
(

Ã2

)�

are generated by

e
(1)
2k� =t

2k ⊗ (H1 +H2)

e
(2)
2k� =t

2k ⊗H� + c

e(2k+1)� =t
2k+1 ⊗ (H1 −H2)

e�1+2k� =t
2k ⊗ (E1 + E2)

e�1+(2k+1)� =t
2k+1 ⊗ (E1 − E2)

e2�1+(2k+1)� =t
2k+1 ⊗ E�

e−�1+k� =t
2k ⊗ (F1 + F2)

e−�1+(2k+1)� =t
2k+1 ⊗ (F1 − F2) .
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e−2�1+(2k+1)� =t
2k+1 ⊗ F�.

This gives us the complete root system. The set of simple roots are
the disjoint union of short real roots Δre,s, long real roots Δre,l and
imaginary roots Δim, given by {±�1 + ℤ�}, {±2�1 + (2ℤ+ 1) �} and
{k� ∣ k ∈ ℤ∖ {0}} respectively.

��
@@

�0 �1

Figure 2: Dynkin graph of A
(2)
2

The (affine) Weyl group of g is an affine reflection group generated
by W = ⟨t�, s⟩, fulfilling the relations s2 = 1, st�s

−1 = ts(�) = t−� and

tk� = tk�, k ∈ ℤ∖ {0}, where s = s1 is the fundamental reflection at �1,
acting on the root lattice Q (�), � = {�1, � − �1} by

s (m�1 + n�) =−m�1 + n�,

tk� (m�1 + n�) =m�1 + (n− k) �, m, k, n ∈ ℤ.

Lemma 1.1 (Relations). The commutators are given by

(i)
[

e
(1)
k� , e

(1)
m�

]

= 2k�k+m,0c

(ii)
[

e
(1)
k� , e±�+m�

]

= ±e±�+(k+m)�

(iii)
[

e
(2)
2k�, e±�+m�

]

= ±e±�+(2k+m)�

(iv)
[

e
(2)
2k�, e

(2)
2m�

]

= 4k�k+m,0c

(v)
[

e
(1)
m�, e

(2)
2k�

]

= 2k�2k+m,0c

(vi) [e�+k�, e−�+m�] =

⎧

⎨

⎩

(

e
(1)
0⋅� + 2kc

)

if m = −k

e
(1)
(k+m)� if m ∕= −k

(vii) [e�+k�, e�+m�] =

{

e2�+(k+m)� if k even and m odd

0 if k +m even

(viii) [e2�+k�, e−2�+m�] =

⎧

⎨

⎩

(

e
(2)
0⋅� + 2kc

)

if m = −k odd

e
(2)
(k+m)� if m ∕= −k both odd
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(ix)
[

e
(1,2)
2k� , e±2�+m�

]

= ±2e2�+(m+2k)�

(x)
[

e
(1)
k� , e±2�+m�

]

= 0

(xi)
[

e±�+k�, e∓2�+(2l+1)�

]

= −e∓�+(2l+k+1)�

(xii) [e±�+k� + �d, e��+l�] = l�e��+l� +
1

2
k�k+l,0c, � = ±0, 1, 2

Proof. Compute for example (iii):

[

e
(2)
2k�, e±�+m�

]

=
[[

e2�+(2k−i)�, e−2�+i�

]

, e�+m�
]

for an odd i

=
[

e2�+(2k−i)�, [e−2�+i�, e�+m�]
]

=
[

e2�+(2k−i)�, e−�+(i+m)�

]

= e�+(2k+m)�.

Thus e
(1)
2k� = e

(2)
2k� = e2k� and the universal enveloping algebra U (g) is

generated by {e�, e−�, e�, e−�}.

2. Generalized Verma modules

Fix � = �1 ∈ Δre and denote g�+k� = tk⊗g�, k ∈ ℤ and gn� = tn⊗ℂℎ�,
n ∈ ℤ∖ {0}. If � ∈ Δre,l all even or all odd graded components vanish.
Consider a subalgebra g (�) ⊂ g generated by g� and g−�. Then g (�) ∼=
sl2.

Consider the universal enveloping algebra U (g (�)). Its center is gen-
erated by the Casimir element z� = (ℎ� + 1)2 + 4e−�e�. Remember
h = h0 ⊕ ℂc⊕ ℂd. Define

T� = S (h)⊗ ℂ [z�] .

Fix � ∈ h∗. Consider the 1-dimensional T�-module ℂv�, with the
action

(

ℎ⊗ zk�
)

v� = ℎ (�) kv� and define the h+ g (�)-module

V (�, ) = U (g (�) + h) ⊗
T�

ℂv�.

It has a unique irreducible quotient, say V�, .

Proposition 2.1 ([3]). If V is an irreducible weight H + g(�)-module
then V ∼= V�, for some � ∈ h∗  ∈ ℂ.

Let � ∈ h∗,  ∈ ℂ. Denote

N±
� =

∑

'∈Δ+∖{�}

g±', E±
� = (h+ g (�))⊕N±

� .
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Consider V�, as E±
� -module with trivial action of N±

� and construct the
g-module

M±
� (�, ) = U (g) ⊗

U(E±
� )
V�, .

The module M±
� (�, ) is called a generalized Verma module following

[3]. It has a unique irreducible quotient L±
� (�, ). Notice that V�, does

not have to be finite-dimensional.

Corollary 2.2 ([3]). Let V be an irreducible weight g-module and 0 ∕=
v ∈ V� such that N±

� v = 0, then V ∼= L±
� (�, ) for some  ∈ ℂ.

3. Loop modules

Consider the Heisenberg subalgebra G =
∑

�,n ∕=0 gn� ⊕ ℂc ⊂ g, where
gn� = 0 for odd n. Set G± =

∑

�,n>0 g±n�. Let a ∈ ℂ∗ and ℂva be
the the 1-dimensional G± ⊕ ℂc-module for which G±va = 0, cva = ava.
Consider the G-module

M± (a) = U (G) ⊗
U(G±⊕ℂc)

ℂva.

It carries a natural ℤ-grading with the i-th component �
(

U (G±)−i
)

va.

Define another family of modules, so-called loop modules as in [8].
Let p : U (G) → U (G) /U (G) c be the canonical projection. For r > 0,
consider the ℤ-graded ring Lr = ℂ [t−r, tr]. Denote by Pr the set of
graded ring epimorphisms Λ : U (G) /U (G) c→ Lr with Λ (1) = 1. Define
a G-module structure on Lr by:

ek�t
sr = Λ(g (ek�)) t

sr = t(k+s)r, k ∈ ℤ∖ {0} , ctrs = 0, s ∈ ℤ.

Denote this G-module by Lr,Λ. Define Λ0 the trivial homomorphism
onto ℂ with Λ0 (1) = 1, then L0,Λ0 is the trivial module.

Proposition 3.1. (i) [8] Every irreducible ℤ-graded G-module of level
zero is isomorphic to Lr,Λ for some r ≥ 0, Λ ∈ Pr up to a shifting of
gradation,

(ii) [3] Every irreducible ℤ-graded G-module of level a ∈ ℂ∗ with at
least one finite-dimensional component is isomorphic to M± (a) up to a
shifting of gradation.

If � ∈ Δre,s denote ns� =
∑

n∈ℤ g�+n� and n� = ns�⊕
∑

i∈ℤ g2�+(2i+1)�.

If � ∈ Δre,l then there exist � ∈ Δre,s and k ∈ ℤ such that � = 2� + k�.
Denote n� = ns� ⊕

∑

n∈ℤ g2�+(2n+1)�. The definition of n� depends only
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on � ∈ Δ+ or � ∈ Δ−. Write n+ or n− in these cases, respectively. In
either case g = n−� ⊕ (h+G)⊕ n�. Set

(h+G)⊕ n� = b

Let V be a ℤ-graded G-module of level a ∈ ℂ and � ∈ h∗ with � (c) = a.
Define a b-module structure on V by the action ℎvi = (�+ i�) (ℎ) vi,
n�vi = 0 for all ℎ ∈ h, vi ∈ Vi, i ∈ ℤ.

Consider the g-module

M� (�, V ) = U (g) ⊗
U(b)

V.

Proposition 3.2. (i) M� (�, V ) is S (n−�)-free.
(ii) M� (�, V ) has a unique irreducible quotient L� (�, V ).

4. The category Õ for A
(2)
2

If g is a twisted affine Kac-Moody algebra, � a basis for its root lattice
then we define the category Õ = Õ (g) of weight g-modules as follows.

Definition 4.1 ([7]). A g-module M lies in Õ if and only if
(i) M is a weight module, i.e.

M =
⊕

�∈h∗

M�, and

(ii) there exist finitely many elements �1, . . . , �k ∈ h∗ such that supp (M) ⊂
D̃ (�1) ∪ ⋅ ⋅ ⋅ ∪ D̃ (�k), where

D̃ (�i) =
{

� ∈ h∗ ∣ �i − � ∈ Q+ ∪Δim
}

, Q+ =
∑

�∈�

ℤ+�

and supp (M) = {� ∈ h∗ ∣M� ∕= 0} as usually.

Õ is closed under the operations of taking submodules, quotients and
finite direct sums.
Let g be again A

(2)
2 and � ∈ �, then D̃ (�i) =

{�i + k�+ n� ∣ k ≤ 0, n ∈ ℤ} and D̃ (�1) ∪ ⋅ ⋅ ⋅ ∪ D̃ (�k) = D̃ (�j) for j
such that (�j ∣ �) is maximal. So V ∈ Õ if and only if there exists
an N ∈ ℤ such that supp (V ) ⊂ {k�+ n� ∣ k ≤ N,n ∈ ℤ}. As in [3],
Proposition 3.2 leads to the description of the classes of isomorphisms of
irreducible modules in Õ.

Proposition 4.2. [[3]] Let Ṽ be an irreducible object in Õ. Then there
exist � ∈ h∗ and an irreducible G-module V such that Ṽ ∼= L� (�, V ).



T. Bunke 19

Theorem 4.3 ([7]). Let Ṽ be an irreducible object in Õ.
(i) If Ṽ is of level zero then Ṽ ∼= L� (�, Lr,Λ) for some � ∈ h∗,

� (c) = 0, Λ ∈ Pr.
(ii) If Ṽ is of level a ∈ ℂ∗ and dim Ṽ� < ∞ for at least one � ∈

supp(Ṽ ) then then Ṽ ∼= L� (�,M
± (a)) for some � ∈ h∗, � (c) = a.

Remark 4.4. By [7] the level zero modules are the only irreducible in-
tegrable ones in Õ.

5. Classification of non-dense g-modules

In this section we prove the main result. The major part is the content of
a Lemma which proves the result assuming the whole in the root lattice
at �+k�, k ∈ ℤ+. The proof is structured in form of a binary tree where
in each leaf we construct a vector that generates an irreducible quotient.

The result is an analog to the A
(1)
1 -case treated in [3].

Definition 5.1. An irreducible weight g-module V is called dense if
supp(V ) = �+Q for some � ∈ h∗ and non-dense otherwise.

Now we can state the main theorem.

Theorem 5.2. If Ṽ is an irreducible non-dense g-module then either
Ṽ ∼= L+

� (�, ) or Ṽ ∼= L−
� (�, ) or Ṽ ∼= L� (�, V ) for some � ∈ Δre,

� ∈ h∗, � (c) = a,  ∈ ℂ and some irreducible G-module V .

The rest of the section is devoted to the proof the Theorem.

Definition 5.3. A subset P ⊂ Δ is called closed if �1, �2 ∈ P , �1+�2 ∈
Δ imply �1 + �2 ∈ P . It is called partition if in addition P ∩ −P = ∅

and P ∪ −P = Δ. Two partitions are called equivalent if they lie on the
same W × {±1} orbit.

Denote by ℤ≥s the set {s, s+ 1, . . . } by ℤ+ the set of positive inte-
gers. From ([5] Chapt. 2) we derive that there exist to non-equivalent
partitions of the rootsystem of g, in particular P1 = Δ+ and P0 =
{

�+ ℤ� ∣ � ∈ Δ0
+

}

∪ ℤ+�. They are called real (or classical) and imagi-
nary, respectively.

Lemma 5.4. Let P be a partition, P ∋ �, P re = P ∩ Δre, P± = P ∩
Δ±,� ∈ Δre.

If ∣P re ∩ {� + ℤ≥0�}∣ <∞ or ∣P re ∩ {−� + ℤ≥0�}∣ <∞ then

P re = {'+ ℤ�} ∪ {2'+ (2ℤ+ 1) �}

for some ' ∈ Δre,s else P re = Δ+ (�̃) for some basis �̃ of Δ.
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Proof. Recall that there exist exactly two non-equivalent classes of par-
titions, those equivalent to Δre

+ (�) and to
{

�+ ℤ� ∣ � ∈ Δ0
+

}

∪Δim
+ re-

spectively. Now with [5] Propostion 2.3 (ii) the statement follows.

Corollary 5.5. Let Γ ⊂ Δ be a partition containg �. If
∣

∣Δre
+ ∩ Γ

∣

∣ =
∣

∣Δre
− ∩ Γ

∣

∣ = ∞, then there exists an n ∈ ℤ such that Γ = Δ+ (�̃) for
�̃ = {'′, � − '′}, '′ = '+ n�, explicitely

Δ+ (�̃) = {'+ ℤ≥n�} ∪ {−'+ ℤ≥−n+1�} ∪ {2'+ (2ℤ≥n + 1) �}∪

∪ {−2'+ (2ℤ≥−n+1 − 1) �} ∪ ℤ+�.

Proof. Recall the action of the affine Weyl group and apply it to the
Lemma.

Definition 5.6. Let a be a subalgebra of g. A non-zero element v of a
g-module V is called a-primitive if av = 0. A non-zero element v of a g-
module V is called primitive iff N+

' v = 0, N−
' v = 0 or n'v = 0 for some

' ∈ Δre, i.e. iff it is N+
' -primitive or N−

' -primitive or n'-primitive.
Denote N (v) ⊂ Δ the set of roots  such that e v = 0.

Remark 5.7. (i) Primitive vectors were originally called admissible. For
' ∈ Δre, a n'-primitive element v ∈ V is also called singular.

(ii) If some v ∈ V is N+-primitive then it is obviously already N+
' -

primitive.

(iii) On order to classify g-modules we have to look for primitive
elements. Each of those generate irreducible quotient in terms of Ṽ ∼=
L±
� (�, ), or Ṽ ∼= L� (�, V ) as in Corollary 2.2 and the proof of Proposi-

tion 4.2, respectively.

Lemma 5.8. If the g-module V contains a non-zero vector v ∈ V� such
that e'v = 0 for some ' ∈ Δre and �+k� /∈ supp (V ) for some k ∈ ℤ∖ {0}
then V contains a primitive vector.

Proof. We will assume that k > 0. The case k < 0 can be considered
analogously. We prove the Lemma by induction on k. Let k = 1.

1. In the first step assume that ' ∈ Δre,s, so e'v = 0.

As � + � /∈ supp (V ) we have e�v = 0 and e'+m�v = 0 for all m ≥
0 (by induction on m: e'+(m+1)�v = [e�, e'+m�] v = 0 by induction
assumption). If e'−n�v = 0 for all n > 0 then ns'v = 0. Because of

[e'+k�, e'+m�] = e2'+(k+m)�, also nl'v =
∑

i∈ℤ g2'+i�v = 0 and v is
primitive.

1.1. If e−'+n�v = 0 for all n < 0 then n−'v = 0.
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1.2. Thus we can assume e−'+n�v ∕= 0 for some n ∈ ℤ. If n < 0 then
v is already N+-primitive. If n = 0 we have immediately N+

−2'+�v = 0
as in Corollary 5.5.

1.2.1. If el�v ∕= 0 for some l ∈ ℤ+ then set vl� = el�v for the least of
such l. By hypothesis e−(l−1)�vl� ∈ V�+� = 0 and also
e'−k�vl� =

[

e−(l−1)�, e'−k+(l−1)�

]

vl� = 0 for all k ≤ l− 1 and thus for all
k ∈ ℤ. We thus derived n'v = 0.

1.2.2. Thus we can assume el�v = 0 for all l ∈ ℤ+.

1.2.2.1. If possible choose n > 0 the greatest number such that
e−'+n�v ∕= 0 and set v−'+n� = e−'+n�v. By assumption e'−(n−1)�v−'+n� ∈
V�+� = 0. Therefore {'+ ℤ≥−n+1�} ∪ {−'+ ℤ≥n+1�} ⊂ N (v−'+n�).
Thus,
{'′ + ℤ≥2�} ∪ {−'+ ℤ≥0�} ⊂ N (v−'+n�) for '′ = ' − (n+ 1) �. If
not already zero set vn� = e'′−(n+1)�v−'′+(2n+1)� (otherwise v−'′+(2n+1)�

is immediately N+-primitive). Again, if possible set v'′ = e'′−n�vn� ∕=
0 (otherwise vn� is immediately N+-primitive). But now, e'′+�v'′ ∈
V�+� = 0 by assumption and v'′ is N+

−2'′+�-primitive for some '′ ∈ Δre.

1.2.2.2. Thus we can assume that e−'+n�v ∕= 0 for all n ∈ ℤ+.
Choose an arbitrary n out of such and set v−'+n� = e−'+n�v. Then
e'−(n−1)�v−'+n� ∈ V�+� = 0. Assume e'−l�v−'+n� ∕= 0 for some l ≥ n
and set
v(n−l)� = e'−l�v−'+n� (otherwise v−'+n� is n'-primitive) and we are
in a situation analougously to case 1.2.2.1.

2. In the second step choose ' = 2� + � ∈ Δre,l i.e. e2�+�v = 0 by
assumption and e�v ∈ V�+� = 0.

2.1. If e−2�+�v = 0 then [e2�+�, e−2�+�] v = e2�v = 0 and e±2�+m�v =

0 for all m ∈ ℤ+ thus e v = 0 for all  ∈ Δre,l
+ . We can assume

that e�v = 0 (if ṽ = e�v ∕= 0, by assumption e−�+� ṽ = 0, hence
[e2�−�e−�+�] ṽ = e�ṽ = 0, contradiction) then [e�, e−2�+�] v = e−�+�v =
0 and [ek�, e�] v = e�+k�v = 0 for all k ∈ ℤ≥0 thus N+v = 0 and v is
primitive,

2.2. Otherwise, if e−2�+�v ∕= 0 assume again that e�−k�v ∕= 0 for some
k ∈ ℤ+ and set v�−k� = e�−k�v. By assumption e�+(k+1)�v−�−k� = 0.

2.2.1. If e−�−k�v−�−k� = 0 then N (v−�−k�) ∪ {−2'′ + �, 2'′ + �}
contains the partition Δ+ (�̃), �̃ = {'′, � − '′}, '′ = � + k�. Note that
e2�v−'′ =

[

e'′+�, e−'′+�

]

v−'′ = 0. Assume both of the e±2'′+�v−'′ not
to be zero and e−'′−l�v−'′ ∕= 0 for some l ∈ ℤ+ (otherwise we are done).
Choose l to be minimal in that sense and set v−2'′−l� = e−'′−l�v−'′ ∕= 0,
then e2'′+(l+1)�v−'′ ∈ V�+� = 0 wich gives N+

−2'′+�v−2'′−l� = 0 with
respect to Δ+ (�′′), '′′ = −'′ − (l − 1) �.

2.2.2. Else v−2'′ = e−'′v−'′ ∕= 0. By assumption e2'′+�v−2'′ = 0.
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Now N
(

v−2'′

)

∪ {'′, �,−2'′ + �} ∪ {−'′ + ℤ+�} contains the partition
Δ+ (�̃), �̃ = {'′, � − '′}, '′ = � + k�. Assuming successively v−'′ =
e'′v−2'′ ∕= 0 (otherwise there is an l, minimal by choice, as in 2.2.1.
etc.), v0 = e'′v−'′ ∕= 0, v'′ = e'′v0 ∕= 0 (now e−'′+�v'′ = e�v'′ = 0),
v−'′+� = e−2'′+�v'′ ∕= 0 we argued e'′v−'′+� ∈ V�+� = 0 down to zero
and thus proved the basis of induction.

Assume now that the Lemma is proved for all k′ = 1, . . . , k − 1 and
consider another tree of cases:

1. If there exists an n ∈ {1, . . . , k − 1} such that ei�v = 0 for all
i = 0, . . . , n−1 but en�v ∕= 0. Set vn� = en�v and we can apply induction
hypothesis.

2. Thus assume ei�v = 0 for all i = 1, . . . , k. Let ' ∈ Δre such
that e'v = 0. We can also assume that e−'+l�v ∕= 0 for some l ∈ ℤ+

(otherwise n−'v = 0 and we are done). Choosing the highest of such l, we
have thus established N (v) ⊃ {'+ℤ≥0�} ∪ {'+ (2ℤ≥0 + 1) �} ∪ {−'+
ℤ≥l+1�} ∪ {−2'+ (2ℤ≥l+1 + 1) �} ∪ ℤ+�. Assume also '− � /∈ N (v) as
otherwise, we reduce immediately to the case l′ = l − 1.

2.1. If l = 0 like in Corollary 5.5 we obtain a partition for which
N+

−2'+�v = 0.

2.2. For l > 0 we may define v−'+l� = e−'+l�v ∕= 0. Still ei�v−'+l� =
e−'+(l+i)�v + e−'+l�ei�v = 0 for all i = 1, . . . , k and
e−'+i�v−'+l� = e−2'+(l+i)�v + e−'+l�e−'+i�v = 0 for i = l + 2 (because
i+ l is even in this case) and thus for all i ≥ l + 2.

By assumption e'+(k−l)�v−'+l� ∈ V�+k� = 0. Thus if l > k choose
the largest m < k − l such that e'+m�v−'+l� ∕= 0 and denote this vector
v(m+l)�. If 0 < m + l < k then we are in the case of the induction
hypothesis, else m + l ≤ 0. So we can assume that m ≤ −l. But this
means e'−(l−1)�v−'+l� = 0 by choice of m. Set '′ = '− (l − 1) � and we
have N

(

v−'′+�

)

⊃ {'′ + ℤ≥0�} ∪ {'′ + (2ℤ≥0 + 1) �} ∪ {−'′ + ℤ≥3�} ∪
{−2'′ + (2ℤ≥3 + 1) �} ∪ ℤ+�.

2.2.1. Assume e'′−(k−1)�v−'′+� ∕= 0 and set v−k� = e'′−k�v−'′+�

(otherwise clear). Note that it may only happen that ei�v−k′� ∕= 0 for
i ≤ 2, because
[

e'′ , e−'′+i�

]

v−'′+� = ei�v−'′+� = 0 for all i ≥ 3.

We proceed with a little iteration:
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010 k′ = k
020 IF ei�v−k′� ∕= 0 for some i ∈ {1, 2}

THEN set v(i−k′)� = ei�v−k′� for the highest of such i
ELSE {PRINT”v−k′�” :

STOP}

030 IF (i− k′) ≥ 1 &&(this can actually at most be equal 1 be-
cause the previous note)

THEN {PRINT”v(i−k′)� fulfills the condition of induction hy-
pothesis” :

STOP}

ELSE {set k′ = − (i− k′) : GOTO 020}

040 END

It is easy to see, that the iteration always terminates. Assume the
program returns v−k′�. Note that k′ ∈ {0, . . . , k}. Set j = k − k′ ∈
{0, . . . k}. In order to annihilate the missing vector, we have to climb up.
We do this by means of the following loop:

110 WHILE −k′ ∕= −1
IF e−'′+2�v−k′� ∕= 0

THEN set v−'′−(k′−2)� = e−'′+2�v−k′�
ELSE {PRINT”v−k′�” :

STOP} &&(call this „singular case I”)
IF e'′−�v−'′−(k′−2)� ∕= 0

THEN set v−(k′−1)� = e'′−�v−'′−(k′−2)� : k′ = k′ − 1
ELSE {PRINT”v−'′−(k′−2)�” :

STOP} && (call this „singular case II”)
WHILEEND

120 PRINT”v� fulfills the condition of induction hypothesis”
130 END

In both of the singular cases we end up in the following situation
N (wk′) ⊃ { +ℤ≥0�}∪{ + (2ℤ≥0 + 1) �}∪{− +ℤ≥2�}∪{−2 + (2ℤ≥2 + 1) �}∪
ℤ+� for some  ∈ Δre and one of the vectors v−k′� and v−'′−(k′−2)�. Note
that −k′ ≤ 0. We proceed with another loop for v−k′� (singular case I).
Singular case II

(

v−'′−(k′−2)�

)

goes analogously.
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210 WHILE −k′ ∕= 1 or 2
IF e−'′+�v−k′� ∕= 0

THEN set v−'′−(k′−1)� = e−'′+�v−k′�
ELSE {PRINT”v−k′�” :

STOP} &&(call this „singular case A”)
IF e−'′+�v−'′−(k′−1)� ∕= 0

THEN set v−2'′−(k′−2)� = e−'′+�v−'′−(k′−1)�

ELSE {PRINT”v−(k′−1)�” :

STOP} &&(call this „singular case B”)
IF e2'′−�v−2'′−(k′−2)� ∕= 0

THEN set v−(k′−1)� = e2'′−�v−2'′−(k′−2)� and k′ = k′ − 1
ELSE {PRINT”v−2'′−(k′−2)�” :

STOP} &&(call this „singular case C”)
WHILEEND

220 PRINT ”v−k′�”
230 END

As in the previous loop, the program returns always a vector, say w.

In the singular case A and B we have −'′+� ∈ N (w), thus N+
−2'′+�w =

0.

In the singular case C we have 2'′ − � ∈ N (w), thus N+
−2'′′+�w = 0

with respect to Δ+ ({'′′, � − '′′}) for '′′ = −'′ + � and thus a primitive
vector, which proves the Lemma.

Proposition 5.9. Let V be an irreducible non-dense g-module. Then V
contains a primitive element.

Proof. Let � ∈ supp (V ) and �+ ' /∈ supp (V ) for some ' ∈ Δ. Choose
a non-zero vector v ∈ V�. Consider another tree of cases in order to
construct a primitive element or provide the assumption of the Lemma
above.

1. Assume ' ∈ Δim, i.e. ' = k�, k ∈ ℤ∖ {0}.
1.1. If e�v = 0 for some � ∈ Δre,s then the statement follows from

the Lemma above,

1.2. else e�v ∕= 0.

1.2.1. If e−�v = 0 then the statement follows from the Lemma.

1.2.2. else v′ = e−�v ∕= 0. As �+k� /∈ supp(V ) we have �′+�+k� /∈
supp(V ) for �′ = � − �. Thus e�+k�v

′ = 0. Also e�+n�v
′ = 0 for all

n = k, 2k, 3k, . . . .

1.2.2.1. If e�+l�v
′ = 0 for all l′ ∈ ℤ then v′ is n�-primitive,

1.2.2.2. else we may define v′′ = e�+l′�v
′ ∕= 0 for some l′ ∈ ℤ,

l′ ∕= k, 2k, 3k, . . . . Then �′′ + (k − l′) � /∈ supp(V ) for �′′ = �′ + � + l′�
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but still e−�+n�v
′′ = 0 for any n = k, 2k, 3k, . . . . and −� + k� ∈ Δre

what brings us in the situation of the Lemma.
2. Assume ' ∈ Δre . Then we have e'v ∈ V�+' = 0 by assumption.
2.1. If there exists v′ = e'−n�v ∕= 0 for some n ∈ ℤ∖ {0} then v′ ∈ V�′

for �′ = � + ' − n� and V�′+n� = 0. But these are the assumptions of
case 1 in this proof.

2.2. If e'−n�v = 0 for all n ∈ ℤ then v is n'-primitive.

Now Theorem 5.2 follows from the Proposition, Corollary 2.2 and
Proposition 4.2.

6. Classification of supports

Now we are able to classify all possible supports of irreducible g-modules.
Denote ℤ+� =

{
∑

xi∈�
aixi ∕= 0 ∣ ai ∈ ℤ≥0

}

for a set �.

Theorem 6.1. Let � = {', � − '} be a basis of the root lattice. The
support of an irreducible g-module is of one (and only one) of the following
equivalence classes (w.r.t. the affine Weyl group) for some � ∈ h∗,

(i) Sdense =�+Q,

(ii) SV erma ⊂�± ℤ+�, for a highest or lowest weight module

(iii) S±
real =�± ℤ+� (2 classes),

(iv) S±
real,' =�± ℤ+� + ℤ' (2 classes),

(v) S
(±,±)
real,� =�± ℤ+� + ℤ� where � = 2'± � (4 classes),

(vi)S
(±,±)
im =�+ ℤ±� ∪ {ℤ±'+ ℤ�} for �(c) ∕= 0 (4 classes),

(vii)S�(c)=0 = {�± ℤ+'+ ℤ�} ∪ {�} ,

for � (c) = 0 and Lr,Λ = L0,Λ0 ,

(viii)Strivial =�, if � (c) = � (ℎ) = 0.

Proof. Follows immediately from Proposition 5.9.
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