Algebra and Discrete Mathematics Number 2. (2009). pp. 11 – 26 © Journal "Algebra and Discrete Mathematics"

Classification of irreducible non-dense modules for $A_2^{(2)}$

Thomas Bunke

Communicated by V. M. Futorny

ABSTRACT. We obtain a classification of the supports of irreducible $A_2^{(2)}$ -modules. In particular, we get a classification of all non-dense irreducible $A_2^{(2)}$ -modules with at least one finite-dimensional weight subspace.

Introduction

Let \mathfrak{g} be an affine Kac-Moody algebra with Cartan subalgebra \mathfrak{h} , root system Δ and center $\mathbb{C}c$. A \mathfrak{g} -module V is called a *weight* if $V = \bigoplus_{\lambda \in \mathfrak{h}^*} V_{\lambda}$, $V_{\lambda} = \{v \in V \mid hv = \lambda (h) v \text{ for all } h \in \mathfrak{h}^*\}$. If V is an irreducible weight \mathfrak{g} -module then c acts on V as a scalar, called *level* of V. For a weight \mathfrak{g} -module V, the support is the set $supp(V) = \{\lambda \in \mathfrak{h}^* \mid V_{\lambda} \neq 0\}$. The root lattice Q is the free abelian group over Δ . If V is irreducible then $supp(V) \subset \lambda + Q$ for some $\lambda \in \mathfrak{h}^*$. An irreducible weight \mathfrak{g} -module V is called *non-dense*, if $supp(V) \subsetneq \lambda + Q$,

This work contains the classification of irreducible non-dense modules for the Kac-Moody algebra $A_2^{(2)}$ with at least one finite-dimensional weight subspace. The classification of non-dense irreducible $A_1^{(1)}$ -modules with a finite-dimensional weight subspace has been done by V. Futorny

The author is grateful for the guidance by Vyacheslav Futorny and the financial support by DAAD

²⁰⁰⁰ Mathematics Subject Classification: 17B67; 17B65.

Key words and phrases: affine Kac-Moody algebra, weight module, support, irreducible module.

[5]. The classification problem is also solved for all affine Kac-Moody algebras for non-zero level modules with all finite-dimensional weight subspaces (V. Futorny and A. Tsylke [4]). In these cases an irreducible module is either a quotient of a classical Verma module, or of a generalized Verma module, or of a loop module (induced from a Heisenberg subalgebra). That this will hold for irreducible non-dense modules of any affine Kac-Moody algebras has been conjectured by V. Futorny [5]. With this work we confirm the conjecture for non-dense irreducible $A_2^{(2)}$ -modules with a finite-dimensional weight subspace.

We also obtain a classification of all possible supports for irreducible $A_2^{(2)}$ -modules. The proof is elementary and involves only the combinatorics of the root system employing heavily the assumption of a "hole" in the weight lattice $\lambda + Q$, precisely the condition of non-density. This will always result in the "upper", "lower" or the "right" half of the weight lattice $\lambda + Q$ having all (or all but one) zero weight spaces (up to equivalence under the affine Weyl group). Upper and right half refer to the two non-equivalent classes of partitions. It is well known that these are the only ones [5].

If we omit the requirement of a finite-dimensional weight subspace then we do not get a complete classification. In this case we have a classification upto the classification of irreducible graded (with respect to the natural \mathbb{Z} -grading) modules over the Heisenberg subalgebra with non-zero level and all infinite-dimensional components. Nevertheless the classification of all supports provides a characterization of irreducible $A_2^{(2)}$ -modules.

The proof is structured in form of a binary tree where each leaf corresponds to the construction of a so-called *primitive* element. This by definition is a vector v with the following property: Let \mathcal{P} be a parabolic subalgebra with Levi decomposition $\mathcal{P} = \mathcal{P}_0 \oplus \mathcal{P}_+$. If we take \mathcal{P} the corresponding parabolics of a classical Verma module, a generalized Verma, or a loop module then v is annihilated by one of the corresponding \mathcal{P}_+ (here \mathcal{P} is just a Borel subalgebra in the case of a classical Verma module). This primitive vector thus generates an irreducible quotient of a classical Verma module, a generalized Verma module or a loop module respectively [1, 2].

The paper is structured as follows:

In section 2 we review the realization of the twisted Kac-Moody algebra $A_2^{(2)}$ and the construction of its root system. Section 3 and 4 gives the definition of generalized Verma modules and loop modules, respectively. In section 5 the category $\tilde{\mathcal{O}}$ for not necessarily finite-dimensional weight modules is introduced following V. Chari [8] and V. Futorny [3]. In section 6 we proof the main result and section 7 states the classification of supports for irreducible $A_2^{(2)}$ -modules.

1. Preliminaries

Let $A_2^{(2)}$ be the Kac-Moody algebra defined by generators and relations due to the generalized Cartan matrix $(A_{ij})_{i,j=0,1} = \begin{pmatrix} 2 & -1 \\ -4 & 2 \end{pmatrix}$. Let $\Pi = \{\alpha_0, \alpha_1\}$ and $\Pi^{\vee} = \{h_0, h_1\}$ be linear independent subsets of the 2-dimensional vector space \mathfrak{h}^* and its dual \mathfrak{h} respectively, such that $\alpha_j (h_i) = A_{ij}$. Now $A_2^{(2)}$ is generated by e_0, e_1, f_0, f_1 due to the relations

$$[e_i f_i] = \delta_{ij} h_i$$

$$[he_i] = \alpha_i (h) e_i$$

$$[hf_i] = -\alpha_i (h) f_i, \ h \in \mathfrak{h}, i = 0, 1$$
(1)

As $\dim \mathfrak{h}^* = \dim \mathfrak{h} = 2n - rk A = 3$ there are elements δ and d completing Π and Π^{\vee} to be bases of \mathfrak{h}^* and \mathfrak{h} , respectively. Furthermore $A_2^{(2)}$ permits a nontrivial 1-dimensional ideal spanned by the central element $c = 2h_0 + h_1$. One can define non-degenerate symmetric invariant bilinear \mathbb{C} -valued form $\langle \cdot | \cdot \rangle$ on \mathfrak{h} which can be uniquely extended to a bilinear form $\langle \cdot | \cdot \rangle$ on \mathfrak{g} . The standard invariant form on $A_2^{(2)}$ is given by

$$\langle h_0, h_0 \rangle = 2, \ \langle h_0, h_1 \rangle = -2, \ \langle h_0, d \rangle = \frac{1}{2}, \ \langle h_1, h_1 \rangle = 2,$$

all other brackets vanishing.

Realization. Let \mathfrak{g}^0 a simple Lie algebra. Let σ be a non-twisted graph automorphism of the Dynkin graph of simple roots Δ . σ is also an automorphism of \mathfrak{g}^0 by $\sigma : \mathfrak{g}^0_{\beta} \mapsto \mathfrak{g}^0_{\sigma(\beta)}, \beta \in \Delta$. When σ has order 2, then \mathfrak{g}^0 decomposes as a module as the set of fix points of σ and the eigenelements to the eigenvalue -1

$$\mathfrak{g}^{0} = \left(\mathfrak{g}^{0}\right)^{\sigma} \oplus \left(\mathfrak{g}^{0}\right)_{-1}$$

The example $\sigma(E_{\alpha+\beta}) = \sigma([E_{\alpha}E_{\beta}]) = [E_{\beta}E_{\alpha}] = -[E_{\alpha}E_{\beta}]$ illustrates, how the eigenvalue -1 occurs.

Let $\mathfrak{g}^0 = A_2$ and $\hat{\mathfrak{L}}(\mathfrak{g}^0) = \mathbb{C}[t, t^{-1}] \otimes \mathfrak{g}^0 \oplus \mathbb{C}c \oplus \mathbb{C}d$ be the (extended) loop algebra with extended Dynkin graph

Define $\delta \in \mathfrak{h}^*$ by $\delta \mid_{\mathfrak{h}^0 \oplus \mathbb{C}c} = 0$ and $\delta(d) = 1$. Denote by $E_1 = E_{\alpha}, E_2 = E_{\beta}, F_1 = F_{\alpha}, F_2 = F_{\beta}$ the Chevalley generators of \mathfrak{g}^0 . Then $\hat{\pi}^0 = \{\alpha, \beta, \delta\}$ is a basis for the root system $\hat{\Delta}^0$ of $\hat{\mathfrak{L}}(\mathfrak{g}^0)$. Denote $\theta = \alpha + \beta, \alpha_0 = \delta - \theta$. The σ -orbits on Δ are given by a high and a low

Figure 1: Extended Dynkin graph of A_2 .

2-element orbit $(\alpha_0 + \alpha, \alpha_0 + \beta)$ and (α, β) , respectively. The fixpoints are $(\hat{\Delta}^0)^{\sigma} = \Delta(\pi^{\sigma}) = \mathbb{Z}\pi^{\sigma} \cap \hat{\Delta}^0$ with respect to the basis $\pi^{\sigma} = \{\theta, \delta\}$.

The twisted graph automorphism τ of this loop algebra is defined by the maps $t^k \otimes E_1 \mapsto (-1)^k t^k \otimes E_2, t^k \otimes E_2 \mapsto (-1)^k t^k \otimes E_1$ and $t^k \otimes E_{\theta}$ to $(-1)^{k+1} t^k \otimes E_{\theta}$. The generators of $(\mathfrak{g}^0)^{\sigma}$ are given by

$$E_1 + E_2, \quad F_1 + F_2, \quad H_{\theta}, \quad H_1 + H_2,$$

where $H_{\theta} = [E_{\theta}F_{\theta}]$. And the generators of $(\mathfrak{g}^0)_{-1}$ are given by

$$E_1 - E_2, \quad F_1 - F_2, \quad E_{\theta}, \quad F_{\theta}, \quad H_1 - H_2.$$

 $\mathfrak{g} = A_2^{(2)}$ is realized as the fixed point set $\hat{\mathfrak{L}}(\mathfrak{g}^0)^{\tau}$. Consider therefore the bracket in $\hat{\mathfrak{L}}(\mathfrak{g}^0) = A_2^{(1)}$, given by

$$\begin{bmatrix} t^{k} \otimes a + \lambda c + \mu d, t^{l} \otimes a' + \lambda' c + \mu' d \end{bmatrix}$$

= $t^{k+l} \otimes [a, b] + t^{l} \otimes l\mu a' - t^{k} \otimes k\mu' a + k\delta_{k+l,0} \langle a, a' \rangle c$

 $a, a' \in \mathfrak{g}^0, \lambda, \lambda', \mu, \mu' \in \mathbb{C}, k, l \in \mathbb{Z}$. The weight spaces with respect to $\hat{\mathfrak{h}}$ are defined as $V_{\lambda} = \left\{ v \in V \mid h \cdot v = \lambda(h) v \text{ for all } h \in \hat{\mathfrak{h}} \right\}$. Eventually, the all one-dimensional weight spaces of $\mathfrak{g}\left(\tilde{A}_2\right)^{\tau}$ are generated by

$$\begin{aligned} e_{2k\delta}^{(1)} =& t^{2k} \otimes (H_1 + H_2) \\ e_{2k\delta}^{(2)} =& t^{2k} \otimes H_{\theta} + c \\ e_{(2k+1)\delta} =& t^{2k+1} \otimes (H_1 - H_2) \\ e_{\alpha_1 + 2k\delta} =& t^{2k} \otimes (E_1 + E_2) \\ e_{\alpha_1 + (2k+1)\delta} =& t^{2k+1} \otimes (E_1 - E_2) \\ e_{2\alpha_1 + (2k+1)\delta} =& t^{2k+1} \otimes E_{\theta} \\ e_{-\alpha_1 + k\delta} =& t^{2k} \otimes (F_1 + F_2) \\ e_{-\alpha_1 + (2k+1)\delta} =& t^{2k+1} \otimes (F_1 - F_2) . \end{aligned}$$

$$e_{-2\alpha_1+(2k+1)\delta} = t^{2k+1} \otimes F_{\theta}.$$

This gives us the complete root system. The set of simple roots are the disjoint union of short real roots $\Delta^{re,s}$, long real roots $\Delta^{re,l}$ and imaginary roots Δ^{im} , given by $\{\pm \alpha_1 + \mathbb{Z}\delta\}$, $\{\pm 2\alpha_1 + (2\mathbb{Z} + 1)\delta\}$ and $\{k\delta \mid k \in \mathbb{Z} \setminus \{0\}\}$ respectively.

Figure 2: Dynkin graph of $A_2^{(2)}$

The (affine) Weyl group of \mathfrak{g} is an affine reflection group generated by $W = \langle t_{\theta}, s \rangle$, fulfilling the relations $s^2 = 1$, $st_{\theta}s^{-1} = t_{s(\theta)} = t_{-\theta}$ and $t_{\theta}^k = t_{k\theta}, k \in \mathbb{Z} \setminus \{0\}$, where $s = s_1$ is the fundamental reflection at α_1 , acting on the root lattice $Q(\pi), \pi = \{\alpha_1, \delta - \alpha_1\}$ by

$$s(m\alpha_1 + n\delta) = -m\alpha_1 + n\delta,$$

$$t^k_{\theta}(m\alpha_1 + n\delta) = m\alpha_1 + (n-k)\,\delta, \ m, k, n \in \mathbb{Z}.$$

Lemma 1.1 (Relations). The commutators are given by

$$\begin{array}{ll} (i) & \left[e_{k\delta}^{(1)}, e_{m\delta}^{(1)}\right] = 2k\delta_{k+m,0}c \\ (ii) & \left[e_{k\delta}^{(1)}, e_{\pm\alpha+m\delta}\right] = \pm e_{\pm\alpha+(k+m)\delta} \\ (iii) & \left[e_{2k\delta}^{(2)}, e_{\pm\alpha+m\delta}\right] = \pm e_{\pm\alpha+(2k+m)\delta} \\ (iv) & \left[e_{2k\delta}^{(2)}, e_{2m\delta}^{(2)}\right] = 4k\delta_{k+m,0}c \\ (v) & \left[e_{m\delta}^{(1)}, e_{2k\delta}^{(2)}\right] = 2k\delta_{2k+m,0}c \\ (vi) & \left[e_{\alpha+k\delta}, e_{-\alpha+m\delta}\right] = \begin{cases} \left(e_{0.\delta}^{(1)} + 2kc\right) & \text{if } m = -k \\ e_{(k+m)\delta}^{(1)} & \text{if } m \neq -k \end{cases} \\ (vii) & \left[e_{\alpha+k\delta}, e_{\alpha+m\delta}\right] = \begin{cases} \left(e_{2\alpha+(k+m)\delta} & \text{if } k \text{ even and } m \text{ odd} \\ 0 & \text{if } k + m \text{ even} \end{cases} \\ (viii) & \left[e_{2\alpha+k\delta}, e_{-2\alpha+m\delta}\right] = \begin{cases} \left(e_{0.\delta}^{(2)} + 2kc\right) & \text{if } m = -k \text{ odd} \\ e_{(k+m)\delta}^{(2)} & \text{if } m \neq -k \text{ odd} \end{cases} \\ e_{(k+m)\delta}^{(2)} & \text{if } m \neq -k \text{ both odd} \end{cases}$$

$$(ix) \qquad \left[e_{2k\delta}^{(1,2)}, e_{\pm 2\alpha+m\delta}\right] = \pm 2e_{2\alpha+(m+2k)\delta}$$

(x)
$$\left[e_{k\delta}^{(1)}, e_{\pm 2\alpha + m\delta}\right] = 0$$

$$(xi) \qquad \left[e_{\pm\alpha+k\delta}, e_{\mp 2\alpha+(2l+1)\delta}\right] = -e_{\mp\alpha+(2l+k+1)\delta}$$

(xii)
$$[e_{\pm\alpha+k\delta} + \mu d, e_{\kappa\alpha+l\delta}] = l\mu e_{\kappa\alpha+l\delta} + \frac{1}{2}k\delta_{k+l,0}c, \ \kappa = \pm 0, 1, 2$$

Proof. Compute for example (*iii*):

$$\begin{bmatrix} e_{2k\delta}^{(2)}, e_{\pm\alpha+m\delta} \end{bmatrix} = \begin{bmatrix} \left[e_{2\alpha+(2k-i)\delta}, e_{-2\alpha+i\delta} \right], e_{\alpha+m\delta} \end{bmatrix} \text{ for an odd } i$$
$$= \begin{bmatrix} e_{2\alpha+(2k-i)\delta}, \left[e_{-2\alpha+i\delta}, e_{\alpha+m\delta} \right] \end{bmatrix}$$
$$= \begin{bmatrix} e_{2\alpha+(2k-i)\delta}, e_{-\alpha+(i+m)\delta} \end{bmatrix} = e_{\alpha+(2k+m)\delta}.$$

Thus $e_{2k\delta}^{(1)} = e_{2k\delta}^{(2)} = e_{2k\delta}$ and the universal enveloping algebra $\mathcal{U}(\mathfrak{g})$ is generated by $\{e_{\delta}, e_{-\delta}, e_{\alpha}, e_{-\alpha}\}$.

2. Generalized Verma modules

Fix $\alpha = \alpha_1 \in \Delta^{re}$ and denote $\mathfrak{g}_{\alpha+k\delta} = t^k \otimes \mathfrak{g}_{\alpha}$, $k \in \mathbb{Z}$ and $\mathfrak{g}_{n\delta} = t^n \otimes \mathbb{C}h_{\alpha}$, $n \in \mathbb{Z} \setminus \{0\}$. If $\alpha \in \Delta^{re,l}$ all even or all odd graded components vanish. Consider a subalgebra $\mathfrak{g}(\alpha) \subset \mathfrak{g}$ generated by \mathfrak{g}_{α} and $\mathfrak{g}_{-\alpha}$. Then $\mathfrak{g}(\alpha) \cong \mathfrak{sl}_2$.

Consider the universal enveloping algebra $\mathcal{U}(\mathfrak{g}(\alpha))$. Its center is generated by the Casimir element $z_{\alpha} = (h_{\alpha}+1)^2 + 4e_{-\alpha}e_{\alpha}$. Remember $\mathfrak{h} = \mathfrak{h}^0 \oplus \mathbb{C}c \oplus \mathbb{C}d$. Define

$$T_{\alpha} = S(\mathfrak{h}) \otimes \mathbb{C}[z_{\alpha}].$$

Fix $\lambda \in \mathfrak{h}^*$. Consider the 1-dimensional T_{α} -module $\mathbb{C}v_{\lambda,\gamma}$ with the action $(h \otimes z_{\alpha}^k) v_{\lambda} = h(\lambda) \gamma^k v_{\lambda}$ and define the $\mathfrak{h} + \mathfrak{g}(\alpha)$ -module

$$V(\lambda,\gamma) = \mathcal{U}(\mathfrak{g}(\alpha) + \mathfrak{h}) \underset{T_{\alpha}}{\otimes} \mathbb{C}v_{\lambda}.$$

It has a unique irreducible quotient, say $V_{\lambda,\gamma}$.

Proposition 2.1 ([3]). If V is an irreducible weight $H + \mathfrak{g}(\alpha)$ -module then $V \cong V_{\lambda,\gamma}$ for some $\lambda \in \mathfrak{h}^* \ \gamma \in \mathbb{C}$.

Let $\lambda \in \mathfrak{h}^*, \gamma \in \mathbb{C}$. Denote

$$\mathcal{N}_{\alpha}^{\pm} = \sum_{\varphi \in \Delta_{+} \setminus \{\alpha\}} \mathfrak{g}_{\pm\varphi}, \quad E_{\alpha}^{\pm} = (\mathfrak{h} + \mathfrak{g}(\alpha)) \oplus \mathcal{N}_{\alpha}^{\pm}.$$

Consider $V_{\lambda,\gamma}$ as E_{α}^{\pm} -module with trivial action of $\mathcal{N}_{\alpha}^{\pm}$ and construct the \mathfrak{g} -module

$$M^{\pm}_{\alpha}(\lambda,\gamma) = \mathcal{U}\left(\mathfrak{g}\right) \underset{\mathcal{U}\left(E^{\pm}_{\alpha}\right)}{\otimes} V_{\lambda,\gamma}.$$

The module $M_{\alpha}^{\pm}(\lambda,\gamma)$ is called a *generalized Verma module* following [3]. It has a unique irreducible quotient $L_{\alpha}^{\pm}(\lambda,\gamma)$. Notice that $V_{\lambda,\gamma}$ does not have to be finite-dimensional.

Corollary 2.2 ([3]). Let V be an irreducible weight \mathfrak{g} -module and $0 \neq v \in V_{\lambda}$ such that $\mathcal{N}_{\alpha}^{\pm}v = 0$, then $V \cong L_{\alpha}^{\pm}(\lambda, \gamma)$ for some $\gamma \in \mathbb{C}$.

3. Loop modules

Consider the Heisenberg subalgebra $G = \sum_{\kappa,n\neq 0} \mathfrak{g}_{n\delta} \oplus \mathbb{C}c \subset \mathfrak{g}$, where $\mathfrak{g}_{n\delta} = 0$ for odd n. Set $G_{\pm} = \sum_{\kappa,n>0} \mathfrak{g}_{\pm n\delta}$. Let $a \in \mathbb{C}^*$ and $\mathbb{C}v_a$ be the the 1-dimensional $G_{\pm} \oplus \mathbb{C}c$ -module for which $G_{\pm}v_a = 0$, $cv_a = av_a$. Consider the *G*-module

$$M^{\pm}(a) = \mathcal{U}(G) \underset{\mathcal{U}(G_{\pm} \oplus \mathbb{C}c)}{\otimes} \mathbb{C}v_a.$$

It carries a natural \mathbb{Z} -grading with the *i*-th component $\sigma \left(\mathcal{U} \left(G_{\pm} \right)_{-i} \right) v_a$.

Define another family of modules, so-called loop modules as in [8]. Let $p: \mathcal{U}(G) \to \mathcal{U}(G) / \mathcal{U}(G) c$ be the canonical projection. For r > 0, consider the \mathbb{Z} -graded ring $L_r = \mathbb{C}[t^{-r}, t^r]$. Denote by P_r the set of graded ring epimorphisms $\Lambda : \mathcal{U}(G) / \mathcal{U}(G) c \to L_r$ with $\Lambda(1) = 1$. Define a *G*-module structure on L_r by:

$$e_{k\delta}t^{sr} = \Lambda\left(g\left(e_{k\delta}\right)\right)t^{sr} = t^{(k+s)r}, \ k \in \mathbb{Z} \setminus \{0\}, \ ct^{rs} = 0, \ s \in \mathbb{Z}.$$

Denote this G-module by $L_{r,\Lambda}$. Define Λ_0 the trivial homomorphism onto \mathbb{C} with $\Lambda_0(1) = 1$, then L_{0,Λ_0} is the trivial module.

Proposition 3.1. (i) [8] Every irreducible \mathbb{Z} -graded G-module of level zero is isomorphic to $L_{r,\Lambda}$ for some $r \geq 0$, $\Lambda \in P_r$ up to a shifting of gradation,

(ii) [3] Every irreducible \mathbb{Z} -graded G-module of level $a \in \mathbb{C}^*$ with at least one finite-dimensional component is isomorphic to $M^{\pm}(a)$ up to a shifting of gradation.

If $\alpha \in \Delta^{re,s}$ denote $\mathfrak{n}_{\alpha}^{s} = \sum_{n \in \mathbb{Z}} \mathfrak{g}_{\alpha+n\delta}$ and $\mathfrak{n}_{\alpha} = \mathfrak{n}_{\alpha}^{s} \oplus \sum_{i \in \mathbb{Z}} \mathfrak{g}_{2\alpha+(2i+1)\delta}$. If $\alpha \in \Delta^{re,l}$ then there exist $\beta \in \Delta^{re,s}$ and $k \in \mathbb{Z}$ such that $\alpha = 2\beta + k\delta$. Denote $\mathfrak{n}_{\alpha} = \mathfrak{n}_{\beta}^{s} \oplus \sum_{n \in \mathbb{Z}} \mathfrak{g}_{2\beta+(2n+1)\delta}$. The definition of \mathfrak{n}_{α} depends only on $\alpha \in \Delta_+$ or $\alpha \in \Delta_-$. Write \mathfrak{n}_+ or \mathfrak{n}_- in these cases, respectively. In either case $\mathfrak{g} = \mathfrak{n}_{-\alpha} \oplus (\mathfrak{h} + G) \oplus \mathfrak{n}_{\alpha}$. Set

$$(\mathfrak{h}+G)\oplus\mathfrak{n}_{\alpha}=\mathfrak{b}$$

Let V be a \mathbb{Z} -graded G-module of level $a \in \mathbb{C}$ and $\lambda \in \mathfrak{h}^*$ with $\lambda(c) = a$. Define a \mathfrak{b} -module structure on V by the action $hv_i = (\lambda + i\delta)(h)v_i$, $\mathfrak{n}_{\alpha}v_i = 0$ for all $h \in \mathfrak{h}, v_i \in V_i, i \in \mathbb{Z}$.

Consider the \mathfrak{g} -module

$$M_{\alpha}\left(\lambda,V\right) = \mathcal{U}\left(\mathfrak{g}\right) \underset{\mathcal{U}(\mathfrak{b})}{\otimes} V.$$

Proposition 3.2. (i) $M_{\alpha}(\lambda, V)$ is $S(\mathfrak{n}_{-\alpha})$ -free.

(ii) $M_{\alpha}(\lambda, V)$ has a unique irreducible quotient $L_{\alpha}(\lambda, V)$.

4. The category $\tilde{\mathcal{O}}$ for $A_2^{(2)}$

If \mathfrak{g} is a twisted affine Kac-Moody algebra, π a basis for its root lattice then we define the category $\tilde{\mathcal{O}} = \tilde{\mathcal{O}}(\mathfrak{g})$ of weight \mathfrak{g} -modules as follows.

Definition 4.1 ([7]). A \mathfrak{g} -module M lies in $\tilde{\mathcal{O}}$ if and only if

(i) M is a weight module, i.e.

$$M = \bigoplus_{\lambda \in \mathfrak{h}^*} M_{\lambda}, and$$

(ii) there exist finitely many elements $\lambda_1, \ldots, \lambda_k \in \mathfrak{h}^*$ such that $supp(M) \subset \tilde{D}(\lambda_1) \cup \cdots \cup \tilde{D}(\lambda_k)$, where

$$\tilde{D}(\lambda_{i}) = \left\{ \mu \in \mathfrak{h}^{*} \mid \lambda_{i} - \mu \in Q_{+} \cup \Delta^{im} \right\}, \ Q_{+} = \sum_{\alpha \in \pi} \mathbb{Z}_{+} \alpha$$

and $supp(M) = \{\lambda \in \mathfrak{h}^* \mid M_\lambda \neq 0\}$ as usually.

 ${\mathcal O}$ is closed under the operations of taking submodules, quotients and finite direct sums.

Let \mathfrak{g} be again $A_2^{(2)}$ and $\alpha \in \pi$, then $\tilde{D}(\lambda_i) = \{\lambda_i + k\alpha + n\delta \mid k \leq 0, n \in \mathbb{Z}\}$ and $\tilde{D}(\lambda_1) \cup \cdots \cup \tilde{D}(\lambda_k) = \tilde{D}(\lambda_j)$ for j such that $(\lambda_j \mid \alpha)$ is maximal. So $V \in \tilde{\mathcal{O}}$ if and only if there exists an $N \in \mathbb{Z}$ such that $supp(V) \subset \{k\alpha + n\delta \mid k \leq N, n \in \mathbb{Z}\}$. As in [3], Proposition 3.2 leads to the description of the classes of isomorphisms of irreducible modules in $\tilde{\mathcal{O}}$.

Proposition 4.2. [[3]] Let \tilde{V} be an irreducible object in $\tilde{\mathcal{O}}$. Then there exist $\lambda \in \mathfrak{h}^*$ and an irreducible *G*-module *V* such that $\tilde{V} \cong L_{\alpha}(\lambda, V)$.

Theorem 4.3 ([7]). Let \tilde{V} be an irreducible object in $\tilde{\mathcal{O}}$.

(i) If \tilde{V} is of level zero then $\tilde{V} \cong L_{\alpha}(\lambda, L_{r,\Lambda})$ for some $\lambda \in \mathfrak{h}^*$, $\lambda(c) = 0, \Lambda \in P_r$.

(ii) If \tilde{V} is of level $a \in \mathbb{C}^*$ and $\dim \tilde{V}_{\mu} < \infty$ for at least one $\mu \in supp(\tilde{V})$ then then $\tilde{V} \cong L_{\alpha}(\lambda, M^{\pm}(a))$ for some $\lambda \in \mathfrak{h}^*, \lambda(c) = a$.

Remark 4.4. By [7] the level zero modules are the only irreducible integrable ones in $\tilde{\mathcal{O}}$.

5. Classification of non-dense g-modules

In this section we prove the main result. The major part is the content of a Lemma which proves the result assuming the whole in the root lattice at $\lambda + k\delta$, $k \in \mathbb{Z}_+$. The proof is structured in form of a binary tree where in each leaf we construct a vector that generates an irreducible quotient. The result is an analog to the $A_1^{(1)}$ -case treated in [3].

Definition 5.1. An irreducible weight \mathfrak{g} -module V is called dense if $supp(V) = \lambda + Q$ for some $\lambda \in \mathfrak{h}^*$ and non-dense otherwise.

Now we can state the main theorem.

Theorem 5.2. If \tilde{V} is an irreducible non-dense \mathfrak{g} -module then either $\tilde{V} \cong L^+_{\alpha}(\lambda, \gamma)$ or $\tilde{V} \cong L^-_{\alpha}(\lambda, \gamma)$ or $\tilde{V} \cong L_{\alpha}(\lambda, V)$ for some $\alpha \in \Delta^{re}$, $\lambda \in \mathfrak{h}^*, \lambda (c) = a, \gamma \in \mathbb{C}$ and some irreducible *G*-module *V*.

The rest of the section is devoted to the proof the Theorem.

Definition 5.3. A subset $P \subset \Delta$ is called closed if $\beta_1, \beta_2 \in P$, $\beta_1 + \beta_2 \in \Delta$ imply $\beta_1 + \beta_2 \in P$. It is called partition if in addition $P \cap -P = \emptyset$ and $P \cup -P = \Delta$. Two partitions are called equivalent if they lie on the same $W \times \{\pm 1\}$ orbit.

Denote by $\mathbb{Z}_{\geq s}$ the set $\{s, s + 1, ...\}$ by \mathbb{Z}_+ the set of positive integers. From ([5] Chapt. 2) we derive that there exist to non-equivalent partitions of the rootsystem of \mathfrak{g} , in particular $P_1 = \Delta_+$ and $P_0 = \{\alpha + \mathbb{Z}\delta \mid \alpha \in \Delta^0_+\} \cup \mathbb{Z}_+\delta$. They are called real (or classical) and imaginary, respectively.

Lemma 5.4. Let P be a partition, $P \ni \delta$, $P^{re} = P \cap \Delta^{re}$, $P_{\pm} = P \cap \Delta_{\pm}, \beta \in \Delta^{re}$. If $|P^{re} \cap \{\beta + \mathbb{Z}_{\geq 0}\delta\}| < \infty$ or $|P^{re} \cap \{-\beta + \mathbb{Z}_{\geq 0}\delta\}| < \infty$ then $P^{re} = \{\varphi + \mathbb{Z}\delta\} \cup \{2\varphi + (2\mathbb{Z} + 1)\delta\}$

for some $\varphi \in \Delta^{re,s}$ else $P^{re} = \Delta_+(\tilde{\pi})$ for some basis $\tilde{\pi}$ of Δ .

Proof. Recall that there exist exactly two non-equivalent classes of partitions, those equivalent to $\Delta^{re}_+(\pi)$ and to $\{\alpha + \mathbb{Z}\delta \mid \alpha \in \Delta^0_+\} \cup \Delta^{im}_+$ respectively. Now with [5] Proposition 2.3 (*ii*) the statement follows.

Corollary 5.5. Let $\Gamma \subset \Delta$ be a partition contains δ . If $|\Delta^{re}_{+} \cap \Gamma| = |\Delta^{re}_{-} \cap \Gamma| = \infty$, then there exists an $n \in \mathbb{Z}$ such that $\Gamma = \Delta_{+}(\tilde{\pi})$ for $\tilde{\pi} = \{\varphi', \delta - \varphi'\}, \varphi' = \varphi + n\delta$, explicitly

$$\Delta_{+}(\tilde{\pi}) = \{\varphi + \mathbb{Z}_{\geq n}\delta\} \cup \{-\varphi + \mathbb{Z}_{\geq -n+1}\delta\} \cup \{2\varphi + (2\mathbb{Z}_{\geq n}+1)\delta\} \cup \cup \{-2\varphi + (2\mathbb{Z}_{\geq -n+1}-1)\delta\} \cup \mathbb{Z}_{+}\delta.$$

Proof. Recall the action of the affine Weyl group and apply it to the Lemma. \Box

Definition 5.6. Let \mathfrak{a} be a subalgebra of \mathfrak{g} . A non-zero element v of a \mathfrak{g} -module V is called \mathfrak{a} -primitive if $\mathfrak{a}v = 0$. A non-zero element v of a \mathfrak{g} -module V is called primitive iff $\mathcal{N}_{\varphi}^+ v = 0$, $\mathcal{N}_{\varphi}^- v = 0$ or $\mathfrak{n}_{\varphi} v = 0$ for some $\varphi \in \Delta^{re}$, i.e. iff it is \mathcal{N}_{φ}^+ -primitive or \mathcal{N}_{φ}^- -primitive or \mathfrak{n}_{φ} -primitive. Denote $N(v) \subset \Delta$ the set of roots ψ such that $e_{\psi}v = 0$.

Remark 5.7. (i) Primitive vectors were originally called admissible. For $\varphi \in \Delta^{re}$, a \mathfrak{n}_{φ} -primitive element $v \in V$ is also called *singular*.

(*ii*) If some $v \in V$ is \mathcal{N}_+ -primitive then it is obviously already \mathcal{N}_{φ}^+ -primitive.

(*iii*) On order to classify \mathfrak{g} -modules we have to look for primitive elements. Each of those generate irreducible quotient in terms of $\tilde{V} \cong L^{\pm}_{\alpha}(\lambda, \gamma)$, or $\tilde{V} \cong L_{\alpha}(\lambda, V)$ as in Corollary 2.2 and the proof of Proposition 4.2, respectively.

Lemma 5.8. If the \mathfrak{g} -module V contains a non-zero vector $v \in V_{\lambda}$ such that $e_{\varphi}v = 0$ for some $\varphi \in \Delta^{re}$ and $\lambda + k\delta \notin supp(V)$ for some $k \in \mathbb{Z} \setminus \{0\}$ then V contains a primitive vector.

Proof. We will assume that k > 0. The case k < 0 can be considered analogously. We prove the Lemma by induction on k. Let k = 1.

1. In the first step assume that $\varphi \in \Delta^{re,s}$, so $e_{\varphi}v = 0$.

As $\lambda + \delta \notin supp(V)$ we have $e_{\delta}v = 0$ and $e_{\varphi+m\delta}v = 0$ for all $m \geq 0$ (by induction on m: $e_{\varphi+(m+1)\delta}v = [e_{\delta}, e_{\varphi+m\delta}]v = 0$ by induction assumption). If $e_{\varphi-n\delta}v = 0$ for all n > 0 then $\mathfrak{n}_{\varphi}^{s}v = 0$. Because of $[e_{\varphi+k\delta}, e_{\varphi+m\delta}] = e_{2\varphi+(k+m)\delta}$, also $\mathfrak{n}_{\varphi}^{l}v = \sum_{i\in\mathbb{Z}}\mathfrak{g}_{2\varphi+i\delta}v = 0$ and v is primitive.

1.1. If $e_{-\varphi+n\delta}v = 0$ for all n < 0 then $\mathfrak{n}_{-\varphi}v = 0$.

1.2. Thus we can assume $e_{-\varphi+n\delta}v \neq 0$ for some $n \in \mathbb{Z}$. If n < 0 then v is already \mathcal{N}_+ -primitive. If n = 0 we have immediately $\mathcal{N}^+_{-2\varphi+\delta}v = 0$ as in Corollary 5.5.

1.2.1. If $e_{l\delta}v \neq 0$ for some $l \in \mathbb{Z}_+$ then set $v_{l\delta} = e_{l\delta}v$ for the least of such l. By hypothesis $e_{-(l-1)\delta}v_{l\delta} \in V_{\lambda+\delta} = 0$ and also $e_{\varphi-k\delta}v_{l\delta} = \left[e_{-(l-1)\delta}, e_{\varphi-k+(l-1)\delta}\right]v_{l\delta} = 0$ for all $k \leq l-1$ and thus for all $k \in \mathbb{Z}$. We thus derived $\mathfrak{n}_{\varphi}v = 0$.

1.2.2. Thus we can assume $e_{l\delta}v = 0$ for all $l \in \mathbb{Z}_+$.

1.2.2.1. If possible choose n > 0 the greatest number such that $e_{-\varphi+n\delta}v \neq 0$ and set $v_{-\varphi+n\delta} = e_{-\varphi+n\delta}v$. By assumption $e_{\varphi-(n-1)\delta}v_{-\varphi+n\delta} \in V_{\lambda+\delta} = 0$. Therefore $\{\varphi + \mathbb{Z}_{\geq -n+1}\delta\} \cup \{-\varphi + \mathbb{Z}_{\geq n+1}\delta\} \subset N(v_{-\varphi+n\delta})$. Thus,

 $\{\varphi' + \mathbb{Z}_{\geq 2}\delta\} \cup \{-\varphi + \mathbb{Z}_{\geq 0}\delta\} \subset N(v_{-\varphi+n\delta}) \text{ for } \varphi' = \varphi - (n+1)\delta. \text{ If not already zero set } v_{n\delta} = e_{\varphi'-(n+1)\delta}v_{-\varphi'+(2n+1)\delta} \text{ (otherwise } v_{-\varphi'+(2n+1)\delta} \text{ is immediately } \mathcal{N}_+\text{-primitive}). \text{ Again, if possible set } v_{\varphi'} = e_{\varphi'-n\delta}v_{n\delta} \neq 0 \text{ (otherwise } v_{n\delta} \text{ is immediately } \mathcal{N}_+\text{-primitive}). \text{ But now, } e_{\varphi'+\delta}v_{\varphi'} \in V_{\lambda+\delta} = 0 \text{ by assumption and } v_{\varphi'} \text{ is } \mathcal{N}_{-2\varphi'+\delta}^+\text{-primitive for some } \varphi' \in \Delta^{re}.$

1.2.2.2. Thus we can assume that $e_{-\varphi+n\delta}v \neq 0$ for all $n \in \mathbb{Z}_+$. Choose an arbitrary n out of such and set $v_{-\varphi+n\delta} = e_{-\varphi+n\delta}v$. Then $e_{\varphi-(n-1)\delta}v_{-\varphi+n\delta} \in V_{\lambda+\delta} = 0$. Assume $e_{\varphi-l\delta}v_{-\varphi+n\delta} \neq 0$ for some $l \geq n$ and set

 $v_{(n-l)\delta} = e_{\varphi-l\delta}v_{-\varphi+n\delta}$ (otherwise $v_{-\varphi+n\delta}$ is \mathfrak{n}_{φ} -primitive) and we are in a situation analougously to case 1.2.2.1.

2. In the second step choose $\varphi = 2\alpha + \delta \in \Delta^{re,l}$ i.e. $e_{2\alpha+\delta}v = 0$ by assumption and $e_{\delta}v \in V_{\lambda+\delta} = 0$.

2.1. If $e_{-2\alpha+\delta}v = 0$ then $[e_{2\alpha+\delta}, e_{-2\alpha+\delta}]v = e_{2\delta}v = 0$ and $e_{\pm 2\alpha+m\delta}v = 0$ for all $m \in \mathbb{Z}_+$ thus $e_{\psi}v = 0$ for all $\psi \in \Delta^{re,l}_+$. We can assume that $e_{\alpha}v = 0$ (if $\tilde{v} = e_{\alpha}v \neq 0$, by assumption $e_{-\alpha+\delta}\tilde{v} = 0$, hence $[e_{2\alpha-\delta}e_{-\alpha+\delta}]\tilde{v} = e_{\alpha}\tilde{v} = 0$, contradiction) then $[e_{\alpha}, e_{-2\alpha+\delta}]v = e_{-\alpha+\delta}v = 0$ and $[e_{k\delta}, e_{\alpha}]v = e_{\alpha+k\delta}v = 0$ for all $k \in \mathbb{Z}_{\geq 0}$ thus $\mathcal{N}_+v = 0$ and v is primitive,

2.2. Otherwise, if $e_{-2\alpha+\delta}v \neq 0$ assume again that $e_{\alpha-k\delta}v \neq 0$ for some $k \in \mathbb{Z}_+$ and set $v_{\alpha-k\delta} = e_{\alpha-k\delta}v$. By assumption $e_{\alpha+(k+1)\delta}v_{-\alpha-k\delta} = 0$.

2.2.1. If $e_{-\alpha-k\delta}v_{-\alpha-k\delta} = 0$ then $N(v_{-\alpha-k\delta}) \cup \{-2\varphi' + \delta, 2\varphi' + \delta\}$ contains the partition $\Delta_+(\tilde{\pi}), \tilde{\pi} = \{\varphi', \delta - \varphi'\}, \varphi' = \alpha + k\delta$. Note that $e_{2\delta}v_{-\varphi'} = [e_{\varphi'+\delta}, e_{-\varphi'+\delta}] v_{-\varphi'} = 0$. Assume both of the $e_{\pm 2\varphi'+\delta}v_{-\varphi'}$ not to be zero and $e_{-\varphi'-l\delta}v_{-\varphi'} \neq 0$ for some $l \in \mathbb{Z}_+$ (otherwise we are done). Choose l to be minimal in that sense and set $v_{-2\varphi'-l\delta} = e_{-\varphi'-l\delta}v_{-\varphi'} \neq 0$, then $e_{2\varphi'+(l+1)\delta}v_{-\varphi'} \in V_{\lambda+\delta} = 0$ wich gives $\mathcal{N}^+_{-2\varphi'+\delta}v_{-2\varphi'-l\delta} = 0$ with respect to $\Delta_+(\pi''), \varphi'' = -\varphi' - (l-1)\delta$.

2.2.2. Else $v_{-2\varphi'} = e_{-\varphi'}v_{-\varphi'} \neq 0$. By assumption $e_{2\varphi'+\delta}v_{-2\varphi'} = 0$.

Now $N(v_{-2\varphi'}) \cup \{\varphi', \delta, -2\varphi' + \delta\} \cup \{-\varphi' + \mathbb{Z}_+ \delta\}$ contains the partition $\Delta_+(\tilde{\pi}), \ \tilde{\pi} = \{\varphi', \delta - \varphi'\}, \ \varphi' = \alpha + k\delta$. Assuming successively $v_{-\varphi'} = e_{\varphi'}v_{-2\varphi'} \neq 0$ (otherwise there is an l, minimal by choice, as in 2.2.1. etc.), $v_0 = e_{\varphi'}v_{-\varphi'} \neq 0, \ v_{\varphi'} = e_{\varphi'}v_0 \neq 0$ (now $e_{-\varphi'+\delta}v_{\varphi'} = e_{\delta}v_{\varphi'} = 0$), $v_{-\varphi'+\delta} = e_{-2\varphi'+\delta}v_{\varphi'} \neq 0$ we argued $e_{\varphi'}v_{-\varphi'+\delta} \in V_{\lambda+\delta} = 0$ down to zero and thus proved the basis of induction.

Assume now that the Lemma is proved for all k' = 1, ..., k - 1 and consider another tree of cases:

1. If there exists an $n \in \{1, ..., k-1\}$ such that $e_{i\delta}v = 0$ for all i = 0, ..., n-1 but $e_{n\delta}v \neq 0$. Set $v_{n\delta} = e_{n\delta}v$ and we can apply induction hypothesis.

2. Thus assume $e_{i\delta}v = 0$ for all i = 1, ..., k. Let $\varphi \in \Delta^{re}$ such that $e_{\varphi}v = 0$. We can also assume that $e_{-\varphi+l\delta}v \neq 0$ for some $l \in \mathbb{Z}_+$ (otherwise $\mathfrak{n}_{-\varphi}v = 0$ and we are done). Choosing the highest of such l, we have thus established $N(v) \supset \{\varphi + \mathbb{Z}_{\geq 0}\delta\} \cup \{\varphi + (2\mathbb{Z}_{\geq 0} + 1)\delta\} \cup \{-\varphi + \mathbb{Z}_{\geq l+1}\delta\} \cup \{-2\varphi + (2\mathbb{Z}_{\geq l+1} + 1)\delta\} \cup \mathbb{Z}_+\delta$. Assume also $\varphi - \delta \notin N(v)$ as otherwise, we reduce immediately to the case l' = l - 1.

2.1. If l = 0 like in Corollary 5.5 we obtain a partition for which $\mathcal{N}^+_{-2\omega+\delta}v = 0.$

2.2. For l > 0 we may define $v_{-\varphi+l\delta} = e_{-\varphi+l\delta}v \neq 0$. Still $e_{i\delta}v_{-\varphi+l\delta} = e_{-\varphi+(l+i)\delta}v + e_{-\varphi+l\delta}e_{i\delta}v = 0$ for all $i = 1, \ldots, k$ and $e_{-\varphi+i\delta}v_{-\varphi+l\delta} = e_{-2\varphi+(l+i)\delta}v + e_{-\varphi+l\delta}e_{-\varphi+i\delta}v = 0$ for i = l+2 (because i+l is even in this case) and thus for all $i \geq l+2$.

By assumption $e_{\varphi+(k-l)\delta}v_{-\varphi+l\delta} \in V_{\lambda+k\delta} = 0$. Thus if l > k choose the largest m < k - l such that $e_{\varphi+m\delta}v_{-\varphi+l\delta} \neq 0$ and denote this vector $v_{(m+l)\delta}$. If 0 < m+l < k then we are in the case of the induction hypothesis, else $m+l \leq 0$. So we can assume that $m \leq -l$. But this means $e_{\varphi-(l-1)\delta}v_{-\varphi+l\delta} = 0$ by choice of m. Set $\varphi' = \varphi - (l-1)\delta$ and we have $N\left(v_{-\varphi'+\delta}\right) \supset \{\varphi' + \mathbb{Z}_{\geq 0}\delta\} \cup \{\varphi' + (2\mathbb{Z}_{\geq 0} + 1)\delta\} \cup \{-\varphi' + \mathbb{Z}_{\geq 3}\delta\} \cup \{-2\varphi' + (2\mathbb{Z}_{\geq 3} + 1)\delta\} \cup \mathbb{Z}_{+}\delta.$

2.2.1. Assume $e_{\varphi'-(k-1)\delta}v_{-\varphi'+\delta} \neq 0$ and set $v_{-k\delta} = e_{\varphi'-k\delta}v_{-\varphi'+\delta}$ (otherwise clear). Note that it may only happen that $e_{i\delta}v_{-k'\delta} \neq 0$ for $i \leq 2$, because $[e_{\varphi'}, e_{-\varphi'+i\delta}] v_{-\varphi'+\delta} = e_{i\delta}v_{-\varphi'+\delta} = 0$ for all $i \geq 3$.

We proceed with a little iteration:

010 k' = k020 IF $e_{i\delta}v_{-k'\delta} \neq 0$ for some $i \in \{1, 2\}$ THEN set $v_{(i-k')\delta} = e_{i\delta}v_{-k'\delta}$ for the highest of such iELSE {PRINT" $v_{-k'\delta}$ " : STOP} 030 IF $(i - k') \geq 1$ &&(this can actually at most be equal 1 because the previous note) THEN {PRINT" $v_{(i-k')\delta}$ fulfills the condition of induction hypothesis" : STOP} ELSE {set k' = -(i - k') : GOTO 020} 040 END

It is easy to see, that the iteration always terminates. Assume the program returns $v_{-k'\delta}$. Note that $k' \in \{0, \ldots, k\}$. Set $j = k - k' \in \{0, \ldots, k\}$. In order to annihilate the missing vector, we have to climb up. We do this by means of the following loop:

```
110 WHILE -k' \neq -1

IF e_{-\varphi'+2\delta}v_{-k'\delta} \neq 0

THEN set v_{-\varphi'-(k'-2)\delta} = e_{-\varphi'+2\delta}v_{-k'\delta}

ELSE {PRINT"v_{-k'\delta}":

STOP} &&(call this ,,singular case I")

IF e_{\varphi'-\delta}v_{-\varphi'-(k'-2)\delta} \neq 0

THEN set v_{-(k'-1)\delta} = e_{\varphi'-\delta}v_{-\varphi'-(k'-2)\delta}: k' = k' - 1

ELSE {PRINT"v_{-\varphi'-(k'-2)\delta}":

STOP} &&(call this ,,singular case II")

WHILEEND

120 PRINT"v_{\delta} fulfills the condition of induction hypothesis"

130 END
```

In both of the singular cases we end up in the following situation $N(w_{k'}) \supset \{\psi + \mathbb{Z}_{\geq 0}\delta\} \cup \{\psi + (2\mathbb{Z}_{\geq 0} + 1)\delta\} \cup \{-\psi + \mathbb{Z}_{\geq 2}\delta\} \cup \{-2\psi + (2\mathbb{Z}_{\geq 2} + 1)\delta\} \cup$ $\mathbb{Z}_{+}\delta$ for some $\psi \in \Delta^{re}$ and one of the vectors $v_{-k'\delta}$ and $v_{-\varphi'-(k'-2)\delta}$. Note that $-k' \leq 0$. We proceed with another loop for $v_{-k'\delta}$ (singular case I). Singular case II $(v_{-\varphi'-(k'-2)\delta})$ goes analogously.

```
210 WHILE -k' \neq 1 or 2
          IF e_{-\omega'+\delta}v_{-k'\delta} \neq 0
              THEN set v_{-\varphi'-(k'-1)\delta} = e_{-\varphi'+\delta}v_{-k'\delta}
              ELSE {PRINT" v_{-k'\delta}" :
                                          &&(call this ,,singular case A'')
                 STOP}
          IF e_{-\varphi'+\delta}v_{-\varphi'-(k'-1)\delta} \neq 0
             THEN set v_{-2\varphi'-(k'-2)\delta} = e_{-\varphi'+\delta}v_{-\varphi'-(k'-1)\delta}
              ELSE {PRINT"v_{-(k'-1)\delta}" :
                 STOP}
                                          &&(call this ,,singular case B'')
          IF e_{2\varphi'-\delta}v_{-2\varphi'-(k'-2)\delta} \neq 0
             THEN set v_{-(k'-1)\delta} = e_{2\varphi'-\delta}v_{-2\varphi'-(k'-2)\delta} and k' = k'-1
              ELSE {PRINT''v_{-2\phi'-(k'-2)\delta}'' :
                                          &&(call this ,singular case C")
                 STOP}
      WHILEEND
220 PRINT "ν-k'δ"
230 END
```

As in the previous loop, the program returns always a vector, say w. In the singular case A and B we have $-\varphi' + \delta \in N(w)$, thus $\mathcal{N}^+_{-2\varphi'+\delta}w =$

In the singular case C we have $2\varphi' - \delta \in N(w)$, thus $\mathcal{N}^+_{-2\varphi''+\delta}w = 0$ with respect to $\Delta_+(\{\varphi'', \delta - \varphi''\})$ for $\varphi'' = -\varphi' + \delta$ and thus a primitive vector, which proves the Lemma. \Box

Proposition 5.9. Let V be an irreducible non-dense \mathfrak{g} -module. Then V contains a primitive element.

Proof. Let $\lambda \in supp(V)$ and $\lambda + \varphi \notin supp(V)$ for some $\varphi \in \Delta$. Choose a non-zero vector $v \in V_{\lambda}$. Consider another tree of cases in order to construct a primitive element or provide the assumption of the Lemma above.

1. Assume $\varphi \in \Delta^{im}$, i.e. $\varphi = k\delta, k \in \mathbb{Z} \setminus \{0\}$.

1.1. If $e_{\alpha}v = 0$ for some $\alpha \in \Delta^{re,s}$ then the statement follows from the Lemma above,

1.2. else $e_{\alpha}v \neq 0$.

1.2.1. If $e_{-\alpha}v = 0$ then the statement follows from the Lemma.

1.2.2. else $v' = e_{-\alpha}v \neq 0$. As $\lambda + k\delta \notin supp(V)$ we have $\lambda' + \alpha + k\delta \notin supp(V)$ for $\lambda' = \lambda - \alpha$. Thus $e_{\alpha+k\delta}v' = 0$. Also $e_{\alpha+n\delta}v' = 0$ for all $n = k, 2k, 3k, \ldots$

1.2.2.1. If $e_{\alpha+l\delta}v'=0$ for all $l' \in \mathbb{Z}$ then v' is \mathfrak{n}_{α} -primitive,

1.2.2.2. else we may define $v'' = e_{\alpha+l'\delta}v' \neq 0$ for some $l' \in \mathbb{Z}$, $l' \neq k, 2k, 3k, \ldots$ Then $\lambda'' + (k - l') \delta \notin supp(V)$ for $\lambda'' = \lambda' + \alpha + l'\delta$

0.

but still $e_{-\alpha+n\delta}v'' = 0$ for any $n = k, 2k, 3k, \ldots$ and $-\alpha + k\delta \in \Delta^{re}$ what brings us in the situation of the Lemma.

2. Assume $\varphi \in \Delta^{re}$. Then we have $e_{\varphi}v \in V_{\lambda+\varphi} = 0$ by assumption.

2.1. If there exists $v' = e_{\varphi - n\delta}v \neq 0$ for some $n \in \mathbb{Z} \setminus \{0\}$ then $v' \in V_{\lambda'}$ for $\lambda' = \lambda + \varphi - n\delta$ and $V_{\lambda'+n\delta} = 0$. But these are the assumptions of case 1 in this proof.

2.2. If $e_{\varphi-n\delta}v = 0$ for all $n \in \mathbb{Z}$ then v is \mathfrak{n}_{φ} -primitive.

Now Theorem 5.2 follows from the Proposition, Corollary 2.2 and Proposition 4.2.

6. Classification of supports

Now we are able to classify all possible supports of irreducible \mathfrak{g} -modules. Denote $\mathbb{Z}_{+}\pi = \left\{ \sum_{x_i \in \pi} a_i x_i \neq 0 \mid a_i \in \mathbb{Z}_{\geq 0} \right\}$ for a set π .

Theorem 6.1. Let $\pi = \{\varphi, \delta - \varphi\}$ be a basis of the root lattice. The support of an irreducible g-module is of one (and only one) of the following equivalence classes (w.r.t. the affine Weyl group) for some $\lambda \in \mathfrak{h}^*$,

 $\begin{array}{ll} (i) \ S_{dense} &= \lambda + Q, \\ (ii) \ S_{Verma} &\subset \lambda \pm \mathbb{Z}_{+}\pi, \ for \ a \ highest \ or \ lowest \ weight \ module \\ (iii) \ S_{real}^{\pm} &= \lambda \pm \mathbb{Z}_{+}\pi \ (2 \ classes), \\ (iv) \ S_{real,\varphi}^{\pm} &= \lambda \pm \mathbb{Z}_{+}\pi + \mathbb{Z}\varphi \ (2 \ classes), \\ (v) \ S_{real,\alpha}^{(\pm,\pm)} &= \lambda \pm \mathbb{Z}_{+}\pi + \mathbb{Z}\alpha \ where \ \alpha = 2\varphi \pm \delta \ (4 \ classes), \\ (vi) \ S_{im}^{(\pm,\pm)} &= \lambda + \mathbb{Z}_{\pm}\delta \cup \{\mathbb{Z}_{\pm}\varphi + \mathbb{Z}\delta\} \ for \ \lambda(c) \neq 0 \ (4 \ classes), \\ (vi) \ S_{\lambda(c)=0} &= \{\lambda \pm \mathbb{Z}_{+}\varphi + \mathbb{Z}\delta\} \cup \{\lambda\}, \\ for \ \lambda(c) = 0 \ and \ L_{r,\Lambda} = L_{0,\Lambda_{0}}, \\ (viii) \ S_{trivial} &= \lambda, \ if \ \lambda(c) = \lambda \ (h) = 0. \end{array}$

Proof. Follows immediately from Proposition 5.9.

References

- [1] Kac, V., Infinite dimensional Lie algebras, 3rd Ed., Cambridge, 1990
- [2] Carter, R., Lie algebras of finite and affine type, Cambridge, 2005
- [3] Futorny, V., Irreducible non-dense A₁⁽¹⁾-modules, Pacific J. of Math. Vol. 172, No. 1, 83-97, 1996
- [4] Futorny, V., Tsylke, A., Irreducible non-zero level modules with finite- dimensional weight spaces for Affine Lie algebras, J. of Algebra 238, 426-441, 2001
- [5] Futorny, V., Representations of Affine Lie algebras, Queen's Papers in Pure and Applied Mathematics 106, v. 1, Kingston, 1997.

- [6] Futorny, V., Imaginary Verma modules for affine Lie algebras, Canad. Math. Bull., 37, 213-218, 1994
- [7] Chari, V., Pressley, A., Integrable Representations of Twisted Affine Lie Algebras, J. of Algebra 113, 438-46, 1986
- [8] Chari, V., Integrable Representations of Affine Lie Algebras, Invent. math. 85, 317-335, 1986

CONTACT INFORMATION

Thomas BunkeUniversidade de São Paulo, Instituto de
Matemática e Estatística, Rua do Matão
1010, 05508-090 São Paulo, Brasil
E-Mail: tbunke@ime.usp.br

Received by the editors: 06.04.2009 and in final form 06.04.2009.