Closure operators in the categories of modules Part I (Weakly hereditary and idempotent operators)

A. I. Kashu

Abstract

In this work the closure operators of a category of modules R-Mod are studied. Every closure operator C of R-Mod defines two functions \mathcal{F}_{1}^{C} and \mathcal{F}_{2}^{C}, which in every module M distinguish the set of C-dense submodules $\mathcal{F}_{1}^{C}(M)$ and the set of C-closed submodules $\mathcal{F}_{2}^{C}(M)$. By means of these functions three types of closure operators are described: 1) weakly hereditary; 2) idempotent; $3)$ weakly hereditary and idempotent.

1. Introduction and preliminary facts

The subjects of this paper are deeply rooted in the theory of radicals and torsions in modules ($[1,2,3,4,5]$). Every idempotent radical (torsion) r of R-Mod defines a closure operator in the lattice of submodules $\mathbb{L}\left({ }_{R} M\right)$ of every module $M \in R$-Mod: if $N \subseteq M$, then the closure \bar{N} of N in M is defined by $\bar{N} / N=r(M / N)$. This aspect was studied by the author in the works $[5,6,7]$, where the notion of radical closure of R-Mod was introduced as a function which in every lattice $\mathbb{L}\left({ }_{R} M\right)$ determines a closure operator and it is compatible with the R-morphisms.

The more general notion of closure operator of a category was investigated, in particular, in the works $[8,9,10]$, where the relations of closure operators with some notions and constructions in categories and in topology were shown.

[^0]The purpose of this work is the systematic investigation of the closure operators in module categories: properties, main types, their characterization by various methods, relations with preradicals, operations, etc.

In Part I three important types of closure operators in R-Mod are analyzed: weakly hereditary, idempotent and weakly hereditary idempotent. Such closure operators C are described by the associated functions \mathcal{F}_{1}^{C} and \mathcal{F}_{2}^{C}, which are defined by C-dense and C-closed submodules. In the theory of radicals these facts correspond to the characterization of idempotent preradicals and radicals by means of classes of torsion or torsion-free modules ([1], [5]).

Let R be an arbitrary ring with unit. We denote by R-Mod the category of unitary left R-modules. For every module $M \in R$-Mod the lattice of submodules of M is denoted by $\mathbb{L}\left({ }_{R} M\right)$. A preradical of R-Mod is a subfunctor r of identity functor of R-Mod, i.e. for every $M \in R$-Mod a submodule $r(M) \subseteq M$ is defined such that $f(r(M)) \subseteq r\left(M^{\prime}\right)$ for any R-morphism $f: M \rightarrow M^{\prime}$. The preradical r of R-Mod defines two classes of modules:

1) $\mathcal{R}(r)=\{M \in R$-Mod $\mid r(M)=M\}$ - the class of r-torsion modules;
2) $\mathcal{P}(r)=\{M \in R$-Mod $\mid r(M)=0\}$ - the class of r-torsion-free modules.

The preradical r is called idempotent if $r(r(M))=r(M)$ for every $M \in R$-Mod; r is called radical if $r(M / r(M))=0$ for every $M \in R$-Mod. Any idempotent preradical r can be re-established by the class $\mathcal{R}(r)$: $r(M)=\sum\left\{N_{\alpha} \subseteq M \mid N_{\alpha} \in \mathcal{R}(r)\right\}$; similarly, any radical r can be restored by the class $\mathcal{P}(r): r(M)=\cap\left\{N_{\alpha} \subseteq M \mid M / N_{\alpha} \in \mathcal{P}(r)\right\}$ ([1], [5]).

We remind also that the class of all preradicals of R-Mod can be transformed in a "big lattice" $\mathbb{P R}(\wedge, \vee)$ by the rules:

$$
\left(\bigwedge_{\alpha \in \mathfrak{A}} r_{\alpha}\right)(M)=\bigcap_{\alpha \in \mathfrak{A}} r_{\alpha}(M), \quad\left(\bigvee_{\alpha \in \mathfrak{A}} r_{\alpha}\right)(M)=\sum_{\alpha \in \mathfrak{A}} r_{\alpha}(M) .
$$

The principal notion of this work is the following (see $[8,9,10]$):
Definition 1.1. A closure operator of R-Mod is a function C which associates to every pair $N \subseteq M$, where $N \in \mathbb{L}\left({ }_{R} M\right)$, a submodule of M denoted by $C_{M}(N)$ such that the following conditions are satisfied:
(c $\left.\mathrm{c}_{1}\right) \quad N \subseteq C_{M}(N)$;
$\left(\mathrm{c}_{2}\right) \quad$ if $N \subseteq P$, where $N, P \in \mathbb{L}\left({ }_{R} M\right)$, then $C_{M}(N) \subseteq C_{M}(P)$;
$\left(\mathrm{c}_{3}\right)$ if $f: M \rightarrow M^{\prime}$ is an R-morphism and $N \subseteq M$, then $f\left(C_{M}(N)\right) \subseteq C_{M^{\prime}}(f(N))$.

The submodule $C_{M}(N)$ of M will be called the C-closure of N in M. For $C_{M}(N)$ the module M is the superior term, and N is the inferior term. The condition $\left(\mathrm{c}_{2}\right)$ is the monotony in the inferior term, while the monotony in the superior term follows from (c_{3}):

$$
\begin{equation*}
\text { if } \mathrm{N} \subseteq \mathrm{P} \subseteq \mathrm{M}, \text { then } \mathrm{C}_{\mathrm{P}}(\mathrm{~N}) \subseteq \mathrm{C}_{\mathrm{M}}(\mathrm{~N}) \tag{2}
\end{equation*}
$$

Indeed, if $f: P \rightarrow M$ is the inclusion, then from $\left(c_{3}\right)$ we have $f\left(C_{P}(N)\right) \subseteq C_{M}(f(N))$, i.e. $C_{P}(N) \subseteq C_{M}(N)$.

We denote by $\mathbb{C}(\mathbb{O}$ the class of all closure operators of R-Mod. The partial order in $\mathbb{C O}$ is defined by:

$$
C \leq D \Leftrightarrow C_{M}(N) \subseteq D_{M}(N) \text { for every } N \subseteq M
$$

Moreover, as in the case of preradicals the class $\mathbb{C} \mathbb{O}$ can be considered as a "big lattice" by the rules:

$$
\left(\bigwedge_{\alpha \in \mathfrak{A}} C_{\alpha}\right)_{M}(N)=\bigcap_{\alpha \in \mathfrak{A}}\left(C_{\alpha}\right)_{M}(N), \quad\left(\bigvee_{\alpha \in \mathfrak{A}} C_{\alpha}\right)_{M}(N)=\sum_{\alpha \in \mathfrak{A}}\left(C_{\alpha}\right)_{M}(N)
$$

for every family $\left\{C_{\alpha} \mid \alpha \in \mathfrak{A}\right\} \subseteq \mathbb{C}(\mathbb{D}$ and every pair $N \subseteq M$.
Further, in the class $\mathbb{C}(\mathbb{O}$ of closure operators of R-Mod two operations are introduced ([8, 9, 10]):

1) the product $C \cdot D$, where $C, D \in \mathbb{C} \mathbb{O}$, is defined by

$$
(C \cdot D)_{M}(N)=C_{M}\left(D_{M}(N)\right) \text { for every } \quad N \subseteq M
$$

2) the coproduct $C \# D$ is defined by

$$
(C \nRightarrow D)_{M}(N)=C_{D_{M}(N)}(N) \text { for every } N \subseteq M
$$

The most important types of closure operators are the following.
Definition 1.2. The closure operator C of R-Mod is called:
a) weakly hereditary if $C_{M}(N)=C_{C_{M}(N)}(N)$ for every $N \subseteq M$;
b) idempotent if $C_{M}(N)=C_{M}\left(C_{M}(N)\right)$ for every $N \subseteq M$.

Remark. If C is an idempotent closure operator of R-Mod, then for any $M \in R$-Mod the function $C_{M}(-)$ is a closure operator of the lattice $\mathbb{L}\left({ }_{R} M\right)$.

The construction is well known by which to every closure operator C of R-Mod "the nearest" weakly hereditary or idempotent closure operator is associated. It is realized by the product and coproduct of closure operators and consists in the following ([8]).

Let $C \in \mathbb{C}(1)$ We define the ascending chain of closure operators C^{α} by:

$$
C^{1}=C, \quad C^{\alpha+1}=C \cdot C^{\alpha} \quad \text { and } C^{\beta}=\vee\left\{C^{\alpha} \mid \alpha<\beta\right\}
$$

for every ordinal α and every limit ordinal β. Then $C^{*}=\vee\left\{C^{\alpha}\right\}$ is an idempotent closure operator such that for every idempotent closure operator $D \geq C$ we have $D \geq C^{*}$. The closure operator C^{*} is called the idempotent hull of C.

Dually, for $C \in \mathbb{C}\left(\mathbb{O}\right.$ we can consider the descending chain C_{α} of closure operators defined by:

$$
C_{1}=C, \quad C_{\alpha+1}=C \# C^{\alpha} \quad \text { and } C_{\beta}=\wedge\left\{C_{\alpha} \mid \alpha<\beta\right\}
$$

Then $C_{*}=\wedge\left\{C_{\alpha}\right\}$ is a weakly hereditary closure operator of R-Mod such that for every weakly hereditary closure operator $D \leq C$ we have $D \leq C_{*}$. The closure operator C_{*} is called the weakly hereditary core of C.

The main role in the further investigations is played by the following two types of submodules defined by a closure operator C of R-Mod.

Definition 1.3. Let $C \in \mathbb{C} \mathbb{O}$. The submodule $N \in \mathbb{L}\left({ }_{R} M\right)$ is called:
a) C-dense in M if $C_{M}(N)=M$;
b) C-closed in M if $C_{M}(N)=N$.

For $C \in \mathbb{C O}$ and $M \in R$-Mod we denote:
$\mathcal{F}_{1}^{C}(M)=\left\{N \subseteq M \mid C_{M}(N)=M\right\}$ - the set of C-dense submodules of M;
$\mathcal{F}_{2}^{C}(M)=\left\{N \subseteq M \mid C_{M}(N)=N\right\}$ - the set of C-closed submodules of M.
It is obvious that $\mathcal{F}_{1}^{C}(M) \cap \mathcal{F}_{2}^{C}(M)=\{M\}$.
In that way any closure operator $C \in \mathbb{C} \mathbb{C}$ defines two functions \mathcal{F}_{1}^{C} and \mathcal{F}_{2}^{C}, which associate to every module M the sets of submodules $\mathcal{F}_{1}^{C}(M)$ and $\mathcal{F}_{2}^{C}(M)$. In continuation we will prove that if $C \in \mathbb{C}(\mathbb{O}$ is weakly hereditary, then it can be re-established by the function \mathcal{F}_{1}^{C}; similarly, if C is idempotent, then it is completely determined by the function \mathcal{F}_{2}^{C}. These facts permit to describe the named types of closure operators by the functions of indicated form.

2. Weakly hereditary closure operators

Let $C \in \mathbb{C} \mathbb{O}$. For every module $M \in R$-Mod we consider the set of C-dense submodules:

$$
\mathcal{F}_{1}^{C}(M)=\left\{N \subseteq M \mid C_{M}(N)=M\right\}
$$

and the function \mathcal{F}_{1}^{C} which in every module M separates the set of submodules $\mathcal{F}_{1}^{C}(M)$. It is obvious that the mapping $C \longmapsto \mathcal{F}_{1}^{C}$ is monotone: if $C \leq D$, then $\mathcal{F}_{1}^{C} \leq \mathcal{F}_{1}^{D}$.

Now for convenience we consider an abstracts function \mathcal{F} which determine for every $M \in R$-Mod a non-empty set of submodules $\mathcal{F}(M)$ of M such that it is compatible with isomorphisms and $M \in \mathcal{F}(M)$. We will use the following conditions (properties) of \mathcal{F} :

1) If $N \in \mathcal{F}\left(M_{\alpha}\right), M_{\alpha} \subseteq M(\alpha \in \mathfrak{A})$, then $N \in \mathcal{F}\left(\sum_{\alpha \in \mathfrak{A}} M_{\alpha}\right)$;
2) If $N \subseteq P \subseteq M$ and $N \in \mathcal{F}(P)$, then for every $K \subseteq M$ we have $N+K \in \mathcal{F}(P+K) ;$
3) If $f: M \rightarrow M^{\prime}$ is an R-morphism and $N \in \mathcal{F}(M)$, then $f(N) \in \mathcal{F}(f(M)) ;$
4) If $N \subseteq P \subseteq M$ and $N \in \mathcal{F}(M)$, then $P \in \mathcal{F}(M)$.

Remark. The implication 2) $\Rightarrow 4$) is obvious, since if $N \subseteq P \subseteq M$ and $N \in \mathcal{F}(M)$, then by 2$) N+P \in \mathcal{F}(M+P)$, i.e. $P \in \mathcal{F}(M)$.

Proposition 2.1. Let C be an arbitrary closure operator of R-Mod. Then the associated function \mathcal{F}_{1}^{C} satisfies the conditions 1), 2) and 3).

Proof. 1) Let $N \in \mathcal{F}_{1}^{C}\left(M_{\alpha}\right), M_{\alpha} \subseteq M, \alpha \in \mathfrak{A}$. Then $C_{M_{\alpha}}(N)=M_{\alpha}$ for every $\alpha \in \mathfrak{A}$ and by the monotony $\left(c_{2}^{\prime}\right)$ we have $C_{M_{\alpha}}(N) \subseteq C_{\sum_{\alpha \in \mathfrak{A}} M_{\alpha}}(N)$. Therefore $M_{\alpha} \subseteq C \sum_{\alpha \in \mathfrak{A}} M_{\alpha}(N)$ for every $\alpha \in \mathfrak{A}$ and $\sum_{\alpha \in \mathfrak{A}} M_{\alpha} \subseteq C \sum_{\alpha \in \mathfrak{A}} M_{\alpha}(N)$, i.e. $\sum_{\alpha \in \mathfrak{A}} M_{\alpha}=C \sum_{\alpha \in \mathfrak{A}} M_{\alpha}(N)$ and $N \in \mathcal{F}_{1}^{C}\left(\sum_{\alpha \in \mathfrak{A}} M_{\alpha}\right)$.
2) Let $N \subseteq P \subseteq M$ and $N \in \mathcal{F}_{1}^{C}(P)$. Then $C_{P}(N)=P$ and for every $K \subseteq M$ we have $C_{P}(N)+K=P+K$. From the monotony of C in both terms it follows that $C_{P}(N)+K \subseteq C_{P+K}(N+K)$, therefore $P+K \subseteq C_{P+K}(N+K)$, i.e. $P+K=C_{P+K}(N+K)$ and $N+K \in$ $\mathcal{F}_{1}^{C}(P+K)$.

3）Let $f: M \rightarrow M^{\prime}$ be an arbitrary R－morphism and $N \in \mathcal{F}_{1}^{C}(M)$ ， i．e．$C_{M}(N)=M$ ．From $\left(c_{3}\right)$ it follows that $f\left(C_{M}(N)\right) \subseteq C_{f(M)}(f(N))$ and so $f(M) \subseteq C_{f(M)}(f(N))$ ，i．e．$f(M)=C_{f(M)}(f(N))$ and $f(N) \in$ $\mathcal{F}_{1}^{C}(f(M))$.

Further we will study the inverse transition：from the abstract function \mathcal{F} of R－Mod to a closure operator of $\mathbb{C} \mathbb{O}$ ．For that we introduce the following notation：if \mathcal{F} is an abstract function of $R-\operatorname{Mod}$ ，let $C^{\mathcal{F}}$ be the operator defined by the rule

$$
\begin{equation*}
\left(C^{\mathcal{F}}\right)_{M}(N)=\sum\left\{M_{\alpha} \subseteq M \mid N \subseteq M_{\alpha}, \quad N \in \mathcal{F}\left(M_{\alpha}\right)\right\} \tag{2.1}
\end{equation*}
$$

for every $N \subseteq M$ ．Since $N \in \mathcal{F}(N)$ ，the definition is correct．
It is easy to see that the mapping $\mathcal{F} \longmapsto C^{\mathcal{F}}$ is monotone：if $\mathcal{F}^{\prime} \leq \mathcal{F}^{\prime \prime}$ ， then $C^{于^{\prime}} \leq C^{于^{\prime \prime}}$ ．

Proposition 2．2．Let \mathcal{F} be an abstract function of R－Mod，which satisfies the conditions 1），2）and 3）．Then the operator $C^{\text {于 }}$ defined by the rule （2．1）is a closure operator of R－Mod．

Proof．（c c_{1} ）By definition $N \subseteq\left(C^{\mathcal{F}}\right)_{M}(N)$ ，since $N \subseteq M_{\alpha}$ for every $\alpha \in \mathfrak{A}$ ．
$\left(\mathrm{c}_{2}\right)$ Let $N \subseteq P \subseteq M$ ．Then $\left(C^{\mathcal{T}}\right)_{M}(N)$ is defined by（2．1）and

$$
\left(C^{\mathcal{F}}\right)_{M}(P)=\sum\left\{L_{\alpha} \subseteq M \mid P \subseteq L_{\alpha}, \quad P \in \mathcal{F}\left(L_{\alpha}\right)\right\} .
$$

Since $N \in \mathcal{F}\left(M_{\alpha}\right) \quad(\alpha \in \mathfrak{A})$ by condition 2$)$ of \mathcal{F} we obtain $N+P \in$ $\mathcal{F}\left(M_{\alpha}+P\right)$ ，i．e．$P \in \mathcal{F}\left(M_{\alpha}+P\right)$ ．Denoting $L_{\alpha}=M_{\alpha}+P$ we have $M_{\alpha} \subseteq L_{\alpha}$ and $P \in \mathcal{F}\left(L_{\alpha}\right)$ ．Therefore $\sum_{\alpha \in \mathfrak{A}} M_{\alpha} \subseteq \sum_{\alpha \in \mathfrak{A}} L_{\alpha}$ ，i．e． $\left(C^{\mathcal{F}}\right)_{M}(N) \subseteq\left(C^{\mathcal{F}}\right)_{M}(P)$.
（c3）If $f: M \rightarrow M^{\prime}$ is an R－morphism and $N \subseteq M$ ，then from the condition 3）of \mathcal{F} we have：

$$
f\left(\left(C^{\mathcal{F}}\right)_{M}(N)\right)=f\left(\sum_{\alpha \in \mathfrak{A}} M_{\alpha}\right)=\sum_{\alpha \in \mathfrak{A}} f\left(M_{\alpha}\right) .
$$

Since $N \in \mathcal{F}\left(M_{\alpha}\right) \quad(\alpha \in \mathfrak{A})$ ，by condition 3）of \mathcal{F} we obtain $f(N) \in$ $\mathcal{F}\left(f\left(M_{\alpha}\right)\right)$ ．By definition

$$
\left(C^{\mathcal{F}}\right)_{M^{\prime}}(f(N))=\sum\left\{L_{\alpha} \subseteq M^{\prime} \mid f(N) \subseteq L_{\alpha}, \quad f(N) \in \mathcal{F}\left(L_{\alpha}\right)\right\}
$$

therefore $f\left(M_{\alpha}\right)$ coincides with some L_{α} ，so $f\left(M_{\alpha}\right) \subseteq \sum_{\alpha \in \mathfrak{A}} L_{\alpha}$ for every $\alpha \in \mathfrak{A}$ ．This means that $\sum_{\alpha \in \mathfrak{A}} f\left(M_{\alpha}\right) \subseteq \sum_{\alpha \in \mathfrak{A}} L_{\alpha}$ ，i．e．$f\left(\left(C^{\mathcal{F}}\right)_{M}(N)\right) \subseteq$ $\left(C^{\mathcal{F}}\right)_{M^{\prime}}(f(N))$.

Proposition 2.3. Let \mathcal{F} be an abstract function of R-Mod which satisfies the conditions 1), 2) and 3). Then the associated closure operator $C^{\mathcal{F}}$ (Proposition 2.2) is weakly hereditary and the corresponding function $\mathcal{F}_{1}^{\mathcal{C}^{\mathcal{F}}}$ coincides with \mathcal{F} (i.e. $\mathcal{F}=\mathcal{F}_{1}^{C^{\mathcal{F}}}$).

Proof. The submodule $\left(C^{\mathcal{F}}\right)_{M}(N)$ is defined by (2.1) and

$$
\left(C^{\mathcal{F}}\right)_{\alpha \in \mathfrak{A}} M_{\alpha}(N)=\sum\left\{L_{\alpha} \subseteq \sum_{\alpha \in \mathfrak{A}} M_{\alpha} \mid N \subseteq L_{\alpha}, \quad N \in \mathcal{F}\left(L_{\alpha}\right)\right\}
$$

From the condition 1) of \mathcal{F} and from the relations $N \in \mathcal{F}\left(M_{\alpha}\right)(\alpha \in \mathfrak{A})$ it follows that $N \in \mathcal{F}\left(\sum_{\alpha \in \mathfrak{A}} M_{\alpha}\right)$. Therefore $\sum_{\alpha \in \mathfrak{A}} M_{\alpha}$ coincides with some L_{α} from the definition of $\left(C^{\mathcal{F}}\right)_{\sum_{\alpha \in \mathfrak{A}} M_{\alpha}}(N)$, so $\sum_{\alpha \in \mathfrak{A}} M_{\alpha} \subseteq \sum_{\alpha \in \mathfrak{A}} L_{\alpha}$. This means that $\left(C^{\mathcal{F}}\right)_{M}(N) \subseteq\left(C^{\mathcal{F}}\right)_{\left(C^{\mathcal{F}}\right)_{M}(N)}(N)$ and by monotony $\left(C^{\mathcal{F}}\right)_{M}(N)=\left(C^{\mathcal{F}}\right)_{\left(C^{\mathcal{F}}\right)_{M}(N)}(N)$, i.e. $C^{\mathcal{F}}$ is weakly hereditary.

Now we will prove that $\mathcal{F}=\mathcal{F}_{1}^{C^{\mathcal{F}}}$. The relation $\mathcal{F} \leq \mathcal{F}_{1}^{G^{\mathcal{F}}}$ is true always and follows from the definitions: if $N \in \mathcal{F}(M)$, then from (2.1) it is clear that $\left(C^{\mathcal{F}}\right)_{M}(N)=M$, i.e. $N \in \mathcal{F}_{1}^{C^{\mathcal{F}}}(M)$.

The inverse relation $\mathcal{F}_{1}^{\mathcal{F}} \leq \mathcal{F}$ follows from the property 1) of \mathcal{F} : if $N \in \mathcal{F}_{1}^{C^{\mathcal{F}}}(M)$, then $\left(C^{\mathcal{F}}\right)_{M}(N)=M$, i.e. $\sum_{\alpha \in \mathfrak{A}} M_{\alpha}=M$, and from 1) we have $N \in \mathcal{F}\left(\sum_{\alpha \in \mathfrak{A}} M_{\alpha}\right)$, i.e. $N \in \mathcal{F}(M)$.

In continuation the consecutive use of the mappings $C \longmapsto \mathcal{F}_{1}^{C}$ and $\mathcal{F} \longmapsto C^{\mathcal{F}}$ we will consider. If $C \in \mathbb{C} \mathbb{O}$, then by Proposition $2.1 \mathcal{F}_{1}^{C}$ is a function with the properties 1), 2) and 3). Therefore by Proposition 2.2 the function \mathcal{F}_{1}^{C} determines the closure operator $C^{\mathcal{F}^{C}}$. We denote $C_{*}=C^{9_{1}^{C}}$.

Proposition 2.4. For every closure operator $C \in \mathbb{C}(\mathbb{D}$ we have:
a) $C_{*} \leq C$;
b) C_{*} is weakly hereditary;
c) C_{*} is the greatest weakly hereditary closure operator which is contained in C.

Proof. a) By definition

$$
\left(C_{*}\right)_{M}(N)=\sum\left\{M_{\alpha} \subseteq M \mid N \subseteq M_{\alpha}, \quad N \in \mathcal{F}_{1}^{C}\left(M_{\alpha}\right)\right\}
$$

Since \mathcal{F}_{1}^{C} satisfies the property 1) (Proposition 2.1), from the relations $N \in \mathcal{F}_{1}^{C}\left(M_{\alpha}\right) \quad(\alpha \in \mathfrak{A})$ it follows that $N \in \mathcal{F}_{1}^{C}\left(\sum_{\alpha \in \mathfrak{A}} M_{\alpha}\right)$. Therefore $C_{\sum_{\alpha \in \mathfrak{A}} M_{\alpha}}(N)=\sum_{\alpha \in \mathfrak{A}} M_{\alpha}$ and by monotony $C_{\sum_{\alpha \in \mathfrak{A}} M_{\alpha}}(N) \subseteq C_{M}(N)$, i.e. $\sum_{\alpha \in \mathfrak{A}} M_{\alpha} \subseteq C_{M}(N)$. So $\left(C_{*}\right)_{M}(N) \subseteq C_{M}(N)$ for every $N \subseteq M$, i.e. $C_{*} \leq C$.
b) Since \mathcal{F}_{1}^{C} satisfies the conditions 1), 2) and 3) (Proposition 2.1), the closure operator $C_{*}=C^{\mathcal{F}_{1}^{C}}$ is weakly hereditary by Proposition 2.3.
c) Let D be a weakly hereditary closure operator and $D \leq C$. We must verify that $D \leq C_{*}$, where $C_{*}=C^{于_{1}^{C}}$. By definition $\left(C_{*}\right)_{M}(N)=\sum_{\alpha \in \mathfrak{A}} M_{\alpha}$, where $N \subseteq M_{\alpha}$ and $N \in \mathcal{F}_{1}^{C}\left(M_{\alpha}\right)$. Since D is weakly hereditary and $D \leq C$, we obtain:

$$
D_{M}(N)=D_{D_{M}(N)}(N) \subseteq C_{D_{M}(N)}(N) \subseteq D_{M}(N),
$$

therefore $C_{D_{M}(N)}(N)=D_{M}(N)$, i.e. $N \in \mathcal{F}_{1}^{C}\left(D_{M}(N)\right)$. So $D_{M}(N)$ is one of M_{α} from the definition of $\left(C_{*}\right)_{M}(N)$, therefore $D_{M}(N) \subseteq \sum_{\alpha \in \mathfrak{A}} M_{\alpha}=$ $\left(C_{*}\right)_{M}(N)$ for every $N \subseteq M$. This means that $D \leq C_{*}$.

Corollary 2.5. The closure operator $C \in \mathbb{C}(\mathbb{O}$ is weakly hereditary if and only if $C=C_{*}$, where $C_{*}=C^{9_{1}^{C}}$.

In Section 1 we indicated the method of construction of a weakly hereditary core C_{*} of an arbitrary closure operator $C \in \mathbb{C}(\mathbb{D}$. From the previous results it follows that there is another way of construction of this closure operator: it can be obtained by the rule $C_{*}=C_{1}^{\mathcal{f}_{1}^{C}}$.

The main result of this section is the following
Theorem 2.6. The mappings $C \longmapsto \mathcal{F}_{1}^{C}$ and $\mathcal{F} \longmapsto C^{\mathcal{F}}$ define a monotone bijection between the weakly hereditary closure operators C of a category R-Mod and the abstract functions \mathcal{F} of this category which satisfy the conditions 1), 2) and 3).

Proof. If C is a weakly hereditary closure operator of R-Mod, then $C=C_{1}^{\mathcal{F}_{1}^{C}}$ (Corollary 2.5). On the other hand, if \mathcal{F} is an abstract function of R-Mod with the properties 1), 2) and 3), then $\mathcal{F}=\mathcal{F}_{1}^{C^{\mathcal{G}}}$ (Proposition 2.3).

Further we will call the abstract functions \mathcal{F} of R-Mod with the properties 1), 2) and 3) the functions of type \mathcal{F}_{1}.

3. Idempotent closure operators

The results of this section in some sense are dual to the statements of Section 2. We will show the characterization of idempotent closure operators C of R-Mod by the function \mathcal{F}_{2}^{C} associated to C, which in every module $M \in R$-Mod separates the set of C-closed submodules:

$$
\mathcal{F}_{2}^{C}(M)=\left\{N \in \mathbb{L}\left({ }_{R} M\right) \mid C_{M}(N)=N\right\}
$$

It is easy to observe that the mapping $C \longmapsto \mathcal{F}_{2}^{C}$ is antimonotone: if $C \leq D$, then $\mathcal{F}_{2}^{C} \geq \mathcal{F}_{2}^{D}$.

As in the previous case, for convenience we firstly formulate some conditions (properties) of an abstract function \mathcal{F} of R - Mod (they are dual to the conditions 1) -4) of Section 2):
$\left.1^{*}\right)$ If $N_{\alpha} \in \mathcal{F}(M), N_{\alpha} \subseteq M(\alpha \in \mathfrak{A})$, then $\bigcap_{\alpha \in \mathfrak{A}} N_{\alpha} \in \mathcal{F}(M)$;
$\left.2^{*}\right)$ If $N \subseteq P \subseteq M$ and $N \in \mathcal{F}(P)$, then for every submodule $K \subseteq M$ the relation $N \cap K \in \mathcal{F}(P \cap K)$ is true;
$\left.3^{*}\right)$ If $g: M \rightarrow M^{\prime}$ is an R-morphism and $N^{\prime} \in \mathcal{F}(g(M))$, then $g^{-1}\left(N^{\prime}\right) \in \mathcal{F}(M) ;$
4^{*}) If $N \subseteq P \subseteq M$ and $N \in \mathcal{F}(M)$, then $N \in \mathcal{F}(P)$.
The implication $\left.2^{*}\right) \Rightarrow 4^{*}$) is obvious: if $N \subseteq P \subseteq M$ and $N \in \mathcal{F}(M)$, then by 2^{*}) we have $N \cap P \in \mathcal{F}(M \cap P)$, i.e. $N \in \mathcal{F}(P)$.

Proposition 3.1. Let C be an arbitrary closure operator of R-Mod. Then the associated function \mathcal{F}_{2}^{C} satisfies the conditions $\left.\left.1^{*}\right), 2^{*}\right)$ and $\left.3^{*}\right)$.

Proof. 1*) Let $N_{\alpha} \in \mathcal{F}_{2}^{C}(M), N_{\alpha} \subseteq M, \alpha \in \mathfrak{A}$. Then $C_{M}\left(N_{\alpha}\right)=N_{\alpha}$ for every $\alpha \in \mathfrak{A}$ and by monotony the inclusion $\bigcap_{\alpha \in \mathfrak{A}} N_{\alpha} \subseteq N_{\alpha}$ implies $C_{M}\left(\bigcap_{\alpha \in \mathfrak{A}} N_{\alpha}\right) \subseteq C_{M}\left(N_{\alpha}\right)=N_{\alpha}$ for every $\alpha \in \mathfrak{A}$. Therefore $C_{M}\left(\bigcap_{\alpha \in \mathfrak{A}} N_{\alpha}\right) \subseteq$ $\bigcap_{\alpha \in \mathfrak{A}} N_{\alpha}$, i.e. $C_{M}\left(\bigcap_{\alpha \in \mathfrak{A}} N_{\alpha}\right)=\bigcap_{\alpha \in \mathfrak{A}} N_{\alpha}$ and $\bigcap_{\alpha \in \mathfrak{A}} N_{\alpha} \in \mathcal{F}_{2}^{C}(M)$.
$\left.2^{*}\right)$ Let $N \subseteq P \subseteq M$ and $N \in \mathcal{F}_{2}^{C}(P)$, i.e. $C_{P}(N)=N$. Then for every submodule $K \subseteq M$ from the monotony it follows that $C_{P \cap K}(N \cap K) \subseteq C_{P}(N)=N$. On the other hand, the monotony implies $C_{P \cap K}(N \cap K) \subseteq C_{K}(N \cap K) \subseteq K$. Therefore $C_{P \cap K}(N \cap K) \subseteq N \cap K$, i.e. $C_{P \cap K}(N \cap K)=N \cap K$ and $N \cap K \in \mathcal{F}_{2}^{C}(P \cap K)$.
$\left.3^{*}\right)$ Let $g: M \rightarrow M^{\prime}$ be an R-morphism and $N^{\prime} \in \mathcal{F}_{2}^{C}(g(M))$, i.e. $C_{g(M)}\left(N^{\prime}\right)=N^{\prime}$. Using the condition $\left(c_{3}\right)$ and the relation $N^{\prime}=$
$g\left(g^{-1}(N)\right)$, we obtain:

$$
g\left(C_{M}\left(g^{-1}\left(N^{\prime}\right)\right)\right) \subseteq C_{g(M)}\left(g\left(g^{-1}\left(N^{\prime}\right)\right)\right)=C_{g(M)}\left(N^{\prime}\right)=N^{\prime}
$$

Therefore $C_{M}\left(g^{-1}\left(N^{\prime}\right)\right) \subseteq g^{-1}\left(N^{\prime}\right)$, i.e. $C_{M}\left(g^{-1}\left(N^{\prime}\right)\right)=g^{-1}\left(N^{\prime}\right)$ and $g^{-1}\left(N^{\prime}\right) \in \mathcal{F}_{2}^{C}(M)$.

Following the scheme of the previous case, now we will show the inverse transition from an abstract function \mathcal{F} of R-Mod to a closure operator of R-Mod. For that we define the operator C_{f} by the rule:

$$
\begin{equation*}
\left(C_{\mathcal{F}}\right)_{M}(N)=\cap\left\{N_{\alpha} \in \mathbb{L}\left({ }_{R} M\right) \mid N \subseteq N_{\alpha}, N_{\alpha} \in \mathcal{F}(M)\right\} \tag{3.1}
\end{equation*}
$$

for every $N \subseteq M$. Since $M \in \mathcal{F}(M)$, the definition is correct.
We remark that the mapping $\mathcal{F} \longmapsto C_{\mathcal{F}}$ is antimonotone: if $\mathcal{F}^{\prime} \leq \mathcal{F}^{\prime \prime}$, then $C_{\mathscr{于}^{\prime}} \geq C_{\text {チ }^{\prime \prime}}$.

Proposition 3.2. Let \mathcal{F} be an abstract function of R-Mod which satisfies the conditions $\left.1^{*}\right), 2^{*}$) and $\left.3^{*}\right)$. Then the associated operator $C_{\mathcal{F}}$ defined by the rule (3.1) is a closure operator of R-Mod.

Proof. (c_{1}) Since $N \subseteq N_{\alpha}$ for every $\alpha \in \mathfrak{A}$, we have $N \subseteq\left(C_{\mathcal{F}}\right)_{M}(N)$.
$\left(\mathrm{c}_{2}\right)$ Let $N \subseteq P \subseteq M$. The submodule $\left(C_{\mathcal{F}}\right)_{M}(N)$ is defined by (3.1) and $\left(C_{\mathcal{F}}\right)_{M}(P)=\cap\left\{P_{\alpha} \subseteq M \mid P \subseteq P_{\alpha}, P_{\alpha} \in \mathcal{F}(M)\right\}$. So we have $N \subseteq P \subseteq P_{\alpha}$ and $P_{\alpha} \in \mathcal{F}(M)$, therefore P_{α} is some N_{α} from the definition of $\left(C_{\mathcal{F}}\right)_{M}(N)$. This means that $\bigcap_{\alpha \in \mathfrak{A}} N_{\alpha} \subseteq P_{\alpha}$ for every $\alpha \in \mathfrak{A}$ and so $\bigcap_{\alpha \in \mathfrak{A}} N_{\alpha} \subseteq \bigcap_{\alpha \in \mathfrak{A}} P_{\alpha}$, i.e. $\left(C_{\mathcal{F}}\right)_{M}(N) \subseteq\left(C_{\mathscr{F}}\right)_{M}(P)$.
$\left(c_{3}\right)$ Let $f: M \rightarrow M^{\prime}$ be an R-morphism and $N \subseteq M$. Then $\left(C_{\mathcal{F}}\right)_{M}(N)$ is defined by (3.1) and

$$
\left(C_{\mathcal{F}}\right)_{M^{\prime}}(f(N))=\bigcap\left\{N_{\alpha}^{\prime} \subseteq M^{\prime} \mid f(N) \subseteq N_{\alpha}^{\prime}, N_{\alpha}^{\prime} \in \mathcal{F}\left(M^{\prime}\right)\right\}
$$

By the property $\left.3^{*}\right)$ of \mathcal{F}, from $N_{\alpha}^{\prime} \in \mathcal{F}\left(M^{\prime}\right)(\alpha \in \mathfrak{A})$ it follows that $f^{-1}\left(N_{\alpha}^{\prime}\right) \in \mathcal{F}(M)$, where $N_{\alpha}^{\prime} \supseteq f(N)$, therefore $f^{-1}\left(N_{\alpha}^{\prime}\right) \supseteq$ $f^{-1}(f(N)) \supseteq N$. This means that $f^{-1}\left(N_{\alpha}^{\prime}\right)$ is some N_{α} from the definition of $\left(C_{\mathcal{F}}\right)_{M}(N)$, so $\bigcap_{\alpha \in \mathfrak{A}} N_{\alpha} \subseteq f^{-1}\left(N_{\alpha}^{\prime}\right)$ for every $\alpha \in \mathfrak{A}$. Therefore $\bigcap_{\alpha \in \mathfrak{A}} N_{\alpha} \subseteq \bigcap\left\{f^{-1}\left(N_{\alpha}^{\prime}\right) \mid f(N) \subseteq N_{\alpha}^{\prime}, N_{\alpha}^{\prime} \in \mathcal{F}\left(M^{\prime}\right)\right\}$. Using this relation we obtain:

$$
\begin{gathered}
f\left(\left(C_{\mathcal{F}}\right)_{M}(N)\right)=f\left(\bigcap_{\alpha \in \mathfrak{A}} N_{\alpha}\right) \subseteq f\left(\bigcap_{\alpha \in \mathfrak{A}} f^{-1}\left(N_{\alpha}^{\prime}\right)\right) \subseteq \bigcap_{\alpha \in \mathfrak{A}} f\left(f^{-1}\left(N_{\alpha}^{\prime}\right)\right)= \\
=\bigcap_{\alpha \in \mathfrak{A}}\left(N_{\alpha}^{\prime} \bigcap \operatorname{Im} f\right) \subseteq \bigcap_{\alpha \in \mathfrak{A}} N_{\alpha}^{\prime}=\left(C_{\mathcal{F}}\right)_{M^{\prime}}(f(N))
\end{gathered}
$$

Proposition 3.3. Let \mathcal{F} be an abstract function of R-Mod which satisfies the conditions $\left.1^{*}\right), 2^{*}$) and 3^{*}). Then the associated closure operator $C_{\mathcal{F}}$ (Proposition 3.2) is idempotent and the corresponding function $\mathcal{F}_{2}^{C_{\mathcal{F}}}$, defined by

$$
\mathcal{F}_{2}^{C_{\mathcal{F}}}(M)=\left\{N \subseteq M \mid\left(C_{\mathfrak{F}}\right)_{M}(N)=N\right\}
$$

coincides with \mathcal{F} (i.e. $\mathcal{F}=\mathcal{F}_{2}^{C_{\mathcal{F}}}$).
Proof. For a function \mathcal{F} with $\left.\left.1^{*}\right), 2^{*}\right)$ and $\left.3^{*}\right)$ the submodule $\left(C_{\mathcal{F}}\right)_{M}(N)$ is defined by (3.1) and

$$
\left(C_{\mathcal{F}}\right)_{M}\left[\left(C_{\mathcal{F}}\right)_{M}(N)\right]=\cap\left\{L_{\alpha} \subseteq M \mid\left(C_{\mathcal{F}}\right)_{M}(N) \subseteq L_{\alpha}, L_{\alpha} \in \mathcal{F}(M)\right\}
$$

From the property $\left.1^{*}\right)$ of \mathcal{F} and $N_{\alpha} \in \mathcal{F}(M)(\alpha \in \mathfrak{A})$ it follows that $\bigcap_{\alpha \in \mathfrak{A}} N_{\alpha} \in \mathcal{F}(M)$. Therefore $\bigcap_{\alpha \in \mathfrak{A}} N_{\alpha}$ is some L_{α}, so $\bigcap_{\alpha \in \mathfrak{A}} L_{\alpha} \subseteq \bigcap_{\alpha \in \mathfrak{A}} N_{\alpha}$. This means that $\left(C_{\mathcal{F}}\right)_{M}\left[\left(C_{\mathcal{F}}\right)_{M}(N)\right] \subseteq\left(C_{\mathcal{F}}\right)_{M}(N)$, the inverse inclusion being trivial, therefore $C_{\text {于 }}$ is idempotent.

Further we prove that $\mathcal{F}=\mathcal{F}_{2}^{C_{\mathcal{F}}}$. The relation $\mathcal{F} \leq \mathcal{F}^{C_{\mathcal{F}}}$ follows from the construction: if $N \in \mathcal{F}(M)$, then N is some N_{α} from the definition of $\left(C_{\mathcal{F}}\right)_{M}(N)$, therefore $\bigcap_{\alpha \in \mathfrak{A}} N_{\alpha}=N$, i.e. $\left(C_{\mathcal{F}}\right)_{M}(N)=N$ and $N \in \mathcal{F}_{2}^{C_{\mathcal{F}}}(M)$.

The inverse relation $\mathcal{F}_{2}^{C_{\mathcal{F}}} \leq \mathcal{F}$ follows from the property 1^{*}) of \mathcal{F} : if $N \in \mathcal{F}_{2}^{C_{\mathcal{F}}}(M)$, then $\cap\left\{N_{\alpha} \subseteq M \mid N \subseteq N_{\alpha}, N_{\alpha} \in \mathcal{F}(M)\right\}=N$ and by $\left.1^{*}\right)$ from $N_{\alpha} \in \mathcal{F}(M)(\alpha \in \mathfrak{A})$ we have $\bigcap_{\alpha \in \mathfrak{A}} N_{\alpha} \in \mathcal{F}(M)$, so $N \in \mathcal{F}(M)$.

Now we will consider the combination of the mappings $C \longmapsto \mathcal{F}_{2}^{C}$ and $\mathcal{F} \longmapsto C_{\mathcal{F}} \quad$ which were defined by the rules: $\mathcal{F}_{2}^{C}(M)=$ $\left\{N \subseteq M \mid C_{M}(N)=N\right\} \quad$ and $\left(C_{\mathscr{F}}\right)_{M}(N)=\cap\left\{N_{\alpha} \subseteq M \mid N \subseteq N_{\alpha}\right.$, $\left.N_{\alpha} \in \mathcal{F}(M)\right\}$. If C is an arbitrary closure operator of R-Mod, then \mathcal{F}_{2}^{C} is a function with the properties $\left.1^{*}\right), 2^{*}$) and 3^{*}) (Proposition 3.1). In its turn the function \mathcal{F}_{2}^{C} defines the closure operator $C_{\mathscr{F}_{2}^{C}}$ (Proposition 3.2). We denote $C^{*}=C_{\mathcal{F}_{2}^{C}}$.
Proposition 3.4. For every closure operator C of R-Mod we have:
a) $C^{*} \geq C$;
b) C^{*} is an idempotent closure operator;
c) C^{*} is the least idempotent closure operator containing C.

Proof. a) By definition

$$
\left(C^{*}\right)_{M}(N)=\cap\left\{N_{\alpha} \subseteq M \mid N \subseteq N_{\alpha}, N_{\alpha} \in \mathcal{F}_{2}^{C}(M)\right\}
$$

By property $\left.1^{*}\right)$ of \mathcal{F}_{2}^{C} we have $\bigcap_{\alpha \in \mathfrak{A}} N_{\alpha} \in \mathcal{F}_{2}^{C}(M)$, i.e. $C_{M}\left(\bigcap_{\alpha \in \mathfrak{A}} N_{\alpha}\right)=$ $\bigcap_{\alpha \in \mathfrak{A}} N_{\alpha}$. By monotony the inclusion $N \subseteq \bigcap_{\alpha \in \mathfrak{A}} N_{\alpha}$ implies $C_{M}(N) \subseteq$ $C_{M}\left(\bigcap_{\alpha \in \mathfrak{A}} N_{\alpha}\right)=\bigcap_{\alpha \in \mathfrak{A}} N_{\alpha}$. This means that $C_{M}(N) \subseteq\left(C^{*}\right)_{M}(N)$ for every $N \subseteq M$, i.e. $C \leq C^{*}$.
b) The function \mathcal{F}_{2}^{C} satisfies the properties $\left.1^{*}\right), 2^{*}$) and 3^{*}) (Proposition 3.1), therefore by Proposition 3.3 the operator $C^{*}=C_{\mathcal{F}_{2}^{C}}$ is idempotent.
c) Let D be an idempotent closure operator of R - Mod and $D \geq C$. We will verify that $C^{*} \leq D$. By definition:

$$
\left(C^{*}\right)_{M}(N)=\left(C_{\mathcal{F}_{2}^{C}}\right)_{M}(N)=\cap\left\{N_{\alpha} \subseteq M \mid N \subseteq N_{\alpha}, N_{\alpha} \in \mathcal{F}_{2}^{C}(M)\right\}
$$

Since D is idempotent and $D \geq C$ we obtain:

$$
D_{M}(N)=D_{M}\left(D_{M}(N)\right) \geq C_{M}\left(D_{M}(N)\right) \geq D_{M}(N)
$$

therefore $D_{M}(N)=C_{M}\left(D_{M}(N)\right)$, i.e. $D_{M}(N) \in \mathcal{F}_{2}^{C}(M)$. So $D_{M}(N)$ is some N_{α} from the definition of $\left(C^{*}\right)_{M}(N)$, therefore $\bigcap_{\alpha \in \mathfrak{A}} N_{\alpha} \subseteq D_{M}(N)$. In this way $\left(C^{*}\right)_{M}(N) \subseteq D_{M}(N)$ for every $N \subseteq M$, i.e. $C^{*} \leq D$.

Corollary 3.5. The closure operator C of R-Mod is idempotent if and only if $C=C^{*}$.

In Section 1 the method of construction of idempotent hull C^{*} of an arbitrary closure operator C of R-Mod was shown. From Proposition 3.4 another way to obtain the idempotent hull of C follows, namely $C^{*}=C_{\mathscr{F}_{2}^{C}}$.

Totalizing the results of this section we obtain
Theorem 3.6. The mappings $C \longmapsto \mathcal{F}_{2}^{C}$ and $\mathcal{F} \longmapsto C_{\mathcal{F}}$ define an antimonotone bijection between the idempotent closure operators C of R-Mod and the abstract functions \mathcal{F} of R-Mod, which satisfy the conditions 1^{*}), $\left.2^{*}\right)$ and $\left.3^{*}\right)$.

The abstract functions \mathcal{F} of R-Mod with the properties $\left.\left.1^{*}\right), 2^{*}\right)$ and 3^{*}) will be called in continuation the functions of type \mathcal{F}_{2}.

4. Weakly hereditary and idempotent closure operators

Using the previous results, now we will describe the closure operators of R-Mod which simultaneously are weakly hereditary and idempotent (in radical theory this corresponds to the characterization of idempotent radicals by the classes of torsion or torsion-free modules).

Let C be a weakly hereditary and idempotent closure operation of R-Mod. Then the operator C can be re-established both by the function \mathcal{F}_{1}^{C} (Theorem 2.6) and by the function \mathcal{F}_{2}^{C} (Theorem 3.6). We will show what property the abstract function \mathcal{F} of R-Mod must satisfy so that the associated closure operators $C^{\mathcal{F}}$ and $C_{\mathcal{F}}$ should be weakly hereditary and idempotent. For that we consider the following condition of an abstract function \mathcal{F} of R-Mod:
$5)=5^{*}$) If $N \subseteq P \subseteq M, N \in \mathcal{F}(P)$ and $P \in \mathcal{F}(M)$, then $N \in \mathcal{F}(M)$.
This condition will be named the property of transitivity of \mathcal{F} (it is autodual).

Proposition 4.1. If C is an idempotent closure operator of R-Mod, then the associated function \mathcal{F}_{1}^{C} (where $\mathcal{F}_{1}^{C}(M)=\left\{N \subseteq M \mid C_{M}(N)=\right.$ $M\}$) satisfies the property of transitivity 5).

Proof. Let $N \subseteq P \subseteq M, N \in \mathcal{F}_{1}^{C}(P)$ and $P \in \mathcal{F}_{1}^{C}(M)$. Then $C_{P}(N)=P$ and $C_{M}(P)=M$. By monotony from $P \subseteq M$ it follows that $C_{P}(N) \subseteq$ $C_{M}(N)$, therefore $P \subseteq C_{M}(N)$. Since C is monotone and idempotent, we obtain $C_{M}(P) \subseteq C_{M}\left(C_{M}(N)\right)=C_{M}(N)$, i.e. $M \subseteq C_{M}(N)$. So $C_{M}(N)=M$ and $N \in \mathcal{F}_{1}^{C}(M)$.

Proposition 4.2. Let \mathcal{F} be an abstract function of R-Mod of the type \mathcal{F}_{1} (i.e. with the conditions 1), 2), 3)) which satisfies the property of transitivity 5). Then the associated closure operator $C^{\mathcal{F}}$ defined by the rule

$$
\left(C^{\mathcal{F}}\right)_{M}(N)=\sum\left\{M_{\alpha} \subseteq M \mid N \subseteq M_{\alpha}, N \in \mathcal{F}\left(M_{\alpha}\right)\right\}
$$

is idempotent.
Proof. If \mathcal{F} is a function of the type \mathcal{F}_{1}, then $C^{\mathcal{F}}$ is a closure operator (Proposition 2.2). By definition
$\left(C^{\mathcal{F}}\right)_{M}\left[\left(C^{\mathcal{F}}\right)_{M}(N)\right]=\sum\left\{L_{\alpha} \subseteq M \mid\left(C^{\mathcal{F}}\right)_{M}(N) \subseteq L_{\alpha},\left(C^{\mathcal{F}}\right)_{M}(N) \in \mathcal{F}\left(L_{\alpha}\right)\right\}$.
From the definition of $\left(C^{\mathcal{F}}\right)_{M}(N)$ we have $N \in \mathcal{F}\left(M_{\alpha}\right)(\alpha \in \mathfrak{A})$ and by the property 1) of \mathcal{F} we obtain $N \in \mathcal{F}\left(\sum_{\alpha \in \mathfrak{A}} M_{\alpha}\right)$. Since we have
also the relation $\sum_{\alpha \in \mathfrak{A}} M_{\alpha} \in \mathcal{F}\left(L_{\alpha}\right)$, by the transitivity of \mathcal{F} we obtain $N \in \mathcal{F}\left(L_{\alpha}\right)$ for every $\alpha \in \mathfrak{A}$. Using once again the condition 1) of \mathcal{F}, we have $N \in \mathcal{F}\left(\sum_{\alpha \in \mathfrak{A}} L_{\alpha}\right)$. Therefore $\sum_{\alpha \in \mathfrak{A}} L_{\alpha}$ is some submodule M_{α} from the definition of $\left(C^{\mathcal{F}}\right)_{M}(N)$, so $\sum_{\alpha \in \mathfrak{A}} L_{\alpha} \subseteq \sum_{\alpha \in \mathfrak{A}} M_{\alpha}$. This means that $\left(C^{\mathcal{F}}\right)_{M}\left[\left(C^{\mathcal{F}}\right)_{M}(N)\right] \subseteq\left(C^{\mathcal{F}}\right)_{M}(N)$, the inverse inclusion being trivial, so $C^{\mathcal{F}}$ is idempotent.

Corollary 4.3. The mappings $C \longmapsto \mathcal{F}_{1}^{C}$ and $\mathcal{F} \longmapsto C^{\mathcal{F}}$ define a monotone bijection between the weakly hereditary and idempotent closure operators of R-Mod and the abstract functions \mathcal{F} of type \mathcal{F}_{1} (with the conditions 1), 2), 3)) of R-Mod with satisfy the property of transitivity 5).

Proof. By Theorem 2.6 the indicated mappings define a monotone bijection between the weakly hereditary closure operators C of R-Mod and abstract functions \mathcal{F} of type \mathcal{F}_{1}. In this bijection if C is idempotent, then the function \mathcal{F}_{1}^{C} is transitive (Proposition 4.1). On the other hand, if the function \mathcal{F} of type \mathcal{F}_{1} is transitive, then the weakly hereditary closure operator $C^{\mathcal{F}}$ is idempotent (Proposition 4.2).

Thus the weakly hereditary and idempotent closure operators C of R-Mod are completely described by the abstract functions \mathcal{F} of R-Mod which satisfy the conditions 1), 2), 3$), 5$).

Dually the characterization of weakly hereditary and idempotent closure operation C of R-Mod by abstract functions \mathcal{F} of type \mathcal{F}_{2} can be obtained.

Proposition 4.4. If C is a weakly hereditary closure operator of R-Mod, then the associated function \mathcal{F}_{2}^{C}, where $\mathcal{F}_{2}^{C}(M)=$ $\left\{N \subseteq M \mid C_{M}(N)=N\right\}$, satisfies the condition of transitivity 5$\left.)=5^{*}\right)$.

Proof. Let $N \subseteq P \subseteq M, N \in \mathcal{F}_{2}^{C}(P)$ and $P \in \mathcal{F}_{2}^{C}(M)$, where C is a weakly hereditary closure operator of R-Mod. Then $C_{P}(N)=N$ and $C_{M}(P)=P$. From $N \subseteq M$ by monotony it follows that $C_{M}(N) \subseteq$ $C_{M}(P)=P$, i.e. $C_{M}(N) \subseteq P$. Using the monotony once again, we obtain $C_{C_{M}(N)}(N) \subseteq C_{P}(N)=N$. Since C is weakly hereditary, we have $C_{C_{M}(N)}(N)=C_{M}(N)$, therefore $C_{M}(N) \subseteq N$, i.e. $C_{M}(N)=N$ and $N \in \mathcal{F}_{2}^{C}(M)$. This proves that \mathcal{F}_{2}^{C} is transitive.

Proposition 4.5. If \mathcal{F} is an abstract function of R-Mod of the type $\mathcal{F}_{2}\left(\right.$ i.e. with the conditions $\left.\left.\left.1^{*}\right), 2^{*}\right), 3^{*}\right)$) which satisfies the transitivity property $\left.5^{*}\right)$, then the corresponding closure operator $C_{\mathcal{F}}$, defined by the rule

$$
\left(C_{\mathscr{F}}\right)_{M}(N)=\cap\left\{N_{\alpha} \subseteq M \mid N \subseteq N_{\alpha}, N_{\alpha} \in \mathcal{F}(M)\right\}
$$

is weakly hereditary.
Proof. By definition

$$
\begin{gathered}
\left(C_{\mathcal{F}}\right)_{\left(C_{\mathcal{F}}\right)_{M}(N)}(N)=\cap\left\{L_{\alpha} \subseteq M \mid N \subseteq L_{\alpha} \subseteq\left(C_{\mathcal{F}}\right)_{M}(N),\right. \\
\left.L_{\alpha} \subseteq \mathcal{F}\left(\left(C_{\mathcal{F}}\right)_{M}(N)\right)\right\} .
\end{gathered}
$$

From the definition of $\left(C_{\mathcal{F}}\right)_{M}(N)$ we have $N_{\alpha} \subseteq \mathcal{F}(M)(\alpha \in \mathfrak{A})$ and by condition 1^{*}) of \mathcal{F} it follows that $\bigcap_{\alpha \in \mathfrak{A}} N_{\alpha} \in \mathcal{F}(M)$, i.e. $\left(C_{\mathcal{F}}\right)_{M}(N) \in \mathcal{F}(M)$.

On the other hand, from the relations $L_{\alpha} \in \mathcal{F}\left(\left(C_{\mathcal{F}}\right)_{M}(N)\right)(\alpha \in \mathfrak{A})$ by condition 1^{*}) of \mathcal{F} we have $\bigcap_{\alpha \in \mathfrak{A}} L_{\alpha} \in \mathcal{F}\left(\left(C_{\mathscr{F}}\right)_{M}(N)\right)$. Using the transitivity in the situation $\bigcap_{\alpha \in \mathfrak{A}} L_{\alpha} \subseteq\left(C_{\mathcal{F}}\right)_{M}(N) \subseteq M$, we obtain $\bigcap_{\alpha \in \mathfrak{A}} L_{\alpha} \in \mathcal{F}(M)$. Therefore the submodule $\bigcap_{\alpha \in \mathfrak{A}} L_{\alpha}$ is some N_{α} from the definition of $\left(C_{\mathcal{F}}\right)_{M}(N)$, so $\bigcap_{\alpha \in \mathfrak{A}} N_{\alpha} \subseteq \bigcap_{\alpha \in \mathfrak{A}} L_{\alpha}$. This means that $\left(C_{\mathcal{F}}\right)_{M}(N) \subseteq$ $\left(C_{\mathcal{F}}\right)_{\left(C_{\mathcal{F}}\right)_{M}(N)}(N)$. The inverse inclusion follows from $M \supseteq\left(C_{\mathcal{F}}\right)_{M}(N)$. This proves that $C_{\mathcal{F}}$ is weakly hereditary.

From Propositions 4.4 and 4.5, using Theorem 3.6, we obtain
Corollary 4.6. The mappings $C \longmapsto \mathcal{F}_{2}^{C}$ and $\mathcal{F} \longmapsto C_{\mathcal{F}}$ define an antimonotone bijection between the weakly hereditary and idempotent closure operators C of R-Mod and the abstract functions \mathcal{F} of R-Mod which satisfy the conditions $\left.\left.\left.\left.1^{*}\right), 2^{*}\right), 3^{*}\right), 5^{*}\right)($ i.e. the transitive functions \mathcal{F} of type \mathcal{F}_{2}).

Combining Corollaries 4.3 and 4.6 , is obvious the
Corollary 4.7. The mappings

$$
\mathcal{F} \longmapsto C^{\mathcal{F}} \longmapsto \mathcal{F}_{2}^{C^{\mathcal{F}}}, \quad \mathcal{F} \longmapsto C_{\mathcal{F}} \longmapsto \mathcal{F}_{1}^{C_{\mathcal{F}}}
$$

define an antimonotone bijection between the transitive abstract functions of type \mathcal{F}_{1} and the transitive abstract functions of type \mathcal{F}_{2}.

Let C be a weakly hereditary and idempotent closure operator of R-Mod. For any module $M \in R$-Mod we can indicate a direct way to obtain the sets of submodules $\mathcal{F}_{1}^{C}(M)$ and $\mathcal{F}_{2}^{C}(M)$ one by another ([6], Proposition 2.3):
$\mathcal{F}_{1}^{C}(M)=\left\{N \subseteq M \mid P \notin \mathcal{F}_{2}^{C}(M)\right.$ for every P such that $\left.N \subseteq P \varsubsetneqq M\right\}$,
$\mathcal{F}_{2}^{C}(M)=\left\{N \subseteq M \mid N \notin \mathcal{F}_{1}^{C}(P)\right.$ for every P such that $\left.N \varsubsetneqq P \subseteq M\right\}$.

References

[1] L. Bican, T. Kepka, P. Nemec, Rings, modules and preradicals, Marcel Dekker, New York, 1982.
[2] A.P. Mišina, L.A. Skornjakov, Abelian groups and modules, A.M.S. Translations, series 2, v. 107, A.M.S., Providence, 1976.
[3] B. Stenström, Rings of quotients, Springer Verlag, 1975.
[4] J.S. Golan, Torsion theories, Longman Scientific and Technical, New York, 1976.
[5] A.I. Kashu, Radicals and torsions in modules, Kishinev, Ştiinţa, 1983 (in Russian).
[6] A.I. Kashu, Radical closures in categories of modules, Matem. issled. (Kishinev), v. V, No 4(18), 1970, pp. 91-104 (in Russian).
[7] A.I. Kashu, On some characterizations of torsions and stable radicals of modules, Matem. issled. (Kishinev), v. VIII, No 2(28), 1973, pp. 176-182 (in Russian).
[8] D. Dikranjan, E. Giuli, Factorizations, injectivity and compactness in categories of modules, Commun. in Algebra, v. 19, No 1, 1991, pp. 45-83.
[9] D. Dikranjan, E. Giuli, Closure operators I, Topology and its Applications, v. 27, 1987, pp. 129-143.
[10] D. Dikranjan, E. Giuli, W. Tholen, Closure operators II, Proc. Intern. Conf. on Categorical Topology, Prague, 1988 (World Scientific Publ., Singapore, 1989).

Contact information

A. I. Kashu | Institute of Mathematics and Computer | |
| :--- | :--- |
| | Science, Academy of Sciences of Moldova, |
| | 5 Academiei str., Chişinău, |
| | MD -2028 MOLDVA |
| | E-Mail: kashuai@math.md |

Received by the editors: 19.02.2013
and in final form 25.05.2013.

[^0]: 2010 MSC: 16D90, 16S90, 06B23.
 Key words and phrases: ring, module, lattice, preradical, closure operator, lattice of submodules, dense submodule, closed submodule.

