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Closure operators in the categories of modules

Part I (Weakly hereditary and idempotent operators)

A. I. Kashu

Abstract. In this work the closure operators of a category
of modules R-Mod are studied. Every closure operator C of R-Mod
defines two functions FC

1
and FC

2
, which in every module M distin-

guish the set of C-dense submodules FC

1
(M) and the set of C-closed

submodules FC

2
(M). By means of these functions three types of

closure operators are described: 1) weakly hereditary; 2) idempotent;
3) weakly hereditary and idempotent.

1. Introduction and preliminary facts

The subjects of this paper are deeply rooted in the theory of radicals
and torsions in modules ([1, 2, 3, 4, 5]). Every idempotent radical (tor-
sion) r of R-Mod defines a closure operator in the lattice of submodules
L(RM) of every module M ∈ R-Mod: if N ⊆ M , then the closure N̄ of
N in M is defined by N̄/N = r(M/N). This aspect was studied by the
author in the works [5, 6, 7], where the notion of radical closure of R-Mod
was introduced as a function which in every lattice L(RM) determines a
closure operator and it is compatible with the R-morphisms.

The more general notion of closure operator of a category was in-
vestigated, in particular, in the works [8, 9, 10], where the relations of
closure operators with some notions and constructions in categories and
in topology were shown.

2010 MSC: 16D90, 16S90, 06B23.
Key words and phrases: ring, module, lattice, preradical, closure operator,

lattice of submodules, dense submodule, closed submodule.



214 Closure operators in the categories of modules, I

The purpose of this work is the systematic investigation of the closure
operators in module categories: properties, main types, their characteri-
zation by various methods, relations with preradicals, operations, etc.

In Part I three important types of closure operators in R-Mod are
analyzed: weakly hereditary, idempotent and weakly hereditary idempo-
tent. Such closure operators C are described by the associated functions
FC

1 and FC
2 , which are defined by C-dense and C-closed submodules. In

the theory of radicals these facts correspond to the characterization of
idempotent preradicals and radicals by means of classes of torsion or
torsion-free modules ([1], [5]).

Let R be an arbitrary ring with unit. We denote by R-Mod the
category of unitary left R-modules. For every module M ∈ R-Mod the
lattice of submodules of M is denoted by L(RM). A preradical of R-Mod
is a subfunctor r of identity functor of R-Mod, i.e. for every M ∈ R-Mod
a submodule r(M) ⊆ M is defined such that f

(

r(M)
)

⊆ r(M ′) for any
R-morphism f : M → M ′. The preradical r of R-Mod defines two classes
of modules:

1) R(r) = {M ∈ R-Mod | r(M) = M} – the class of r-torsion modules;

2) P(r) = {M ∈ R-Mod | r(M) = 0} – the class of r-torsion-free modules.

The preradical r is called idempotent if r
(

r(M)
)

= r(M) for every
M ∈ R-Mod; r is called radical if r(M/r

(

M)
)

= 0 for every M ∈ R-Mod.
Any idempotent preradical r can be re-established by the class R(r) :
r(M) =

∑

{Nα ⊆ M | Nα ∈ R(r)}; similarly, any radical r can be restored
by the class P(r) : r(M) = ∩ {Nα ⊆ M | M/Nα ∈ P(r)} ([1], [5]).

We remind also that the class of all preradicals of R-Mod can be
transformed in a “big lattice” PR(∧, ∨) by the rules:

(
∧

α∈A

rα

)

(M) =
⋂

α∈A

rα(M),
(

∨

α∈A

rα

)

(M) =
∑

α∈A

rα(M).

The principal notion of this work is the following (see [8, 9, 10]):

Definition 1.1. A closure operator of R-Mod is a function C which
associates to every pair N ⊆ M , where N ∈ L(RM), a submodule of M
denoted by CM(N) such that the following conditions are satisfied:

(c1) N ⊆ CM(N);

(c2) if N ⊆ P , where N, P ∈ L(RM), then CM(N) ⊆ CM(P );

(c3) if f : M → M ′ is an R-morphism and N ⊆ M , then
f

(

CM(N)
)

⊆ CM′

(

f(N)
)

.
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The submodule CM(N) of M will be called the C-closure of N in M .
For CM(N) the module M is the superior term, and N is the inferior
term. The condition (c2) is the monotony in the inferior term, while the
monotony in the superior term follows from (c3):

(c′

2) if N ⊆ P ⊆ M, then CP(N) ⊆ CM(N).

Indeed, if f : P → M is the inclusion, then from (c3) we have
f

(

CP (N)
)

⊆ CM

(

f(N)
)

, i.e. CP (N) ⊆ CM(N).

We denote by CO the class of all closure operators of R-Mod. The
partial order in CO is defined by:

C ≤ D ⇔ CM(N) ⊆ DM(N) for every N ⊆ M.

Moreover, as in the case of preradicals the class CO can be considered as
a “big lattice” by the rules:

(
∧

α∈A

Cα

)

M
(N) =

⋂

α∈A

(Cα)
M

(N),
(

∨

α∈A

Cα

)

M
(N) =

∑

α∈A

(Cα)
M

(N),

for every family {Cα | α ∈ A} ⊆ CO and every pair N ⊆ M .

Further, in the class CO of closure operators of R-Mod two operations
are introduced ([8, 9, 10]):

1) the product C · D, where C, D ∈ CO, is defined by

(C · D)M(N) = CM

(

DM(N)
)

for every N ⊆ M ;

2) the coproduct C # D is defined by

(C # D)M(N) = CD
M

(N)(N) for every N ⊆ M.

The most important types of closure operators are the following.

Definition 1.2. The closure operator C of R-Mod is called:

a) weakly hereditary if CM(N) = CC
M

(N)(N) for every N ⊆ M ;

b) idempotent if CM(N) = CM

(

CM(N)
)

for every N ⊆ M .

Remark. If C is an idempotent closure operator of R-Mod, then for
any M ∈ R-Mod the function CM(−) is a closure operator of the lattice
L(RM).
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The construction is well known by which to every closure operator C of
R-Mod “the nearest” weakly hereditary or idempotent closure operator is
associated. It is realized by the product and coproduct of closure operators
and consists in the following ([8]).

Let C ∈ CO. We define the ascending chain of closure operators
Cα by:

C1 = C, Cα+1 = C · Cα and Cβ = ∨ {Cα | α < β}

for every ordinal α and every limit ordinal β. Then C∗ = ∨ {Cα} is
an idempotent closure operator such that for every idempotent closure
operator D ≥ C we have D ≥ C∗. The closure operator C∗ is called the
idempotent hull of C.

Dually, for C ∈ CO we can consider the descending chain Cα of closure
operators defined by:

C1 = C, Cα+1 = C # Cα and Cβ = ∧ {Cα | α < β}.

Then C∗ = ∧ {Cα} is a weakly hereditary closure operator of R-Mod such
that for every weakly hereditary closure operator D ≤ C we have D ≤ C∗.
The closure operator C∗ is called the weakly hereditary core of C.

The main role in the further investigations is played by the following
two types of submodules defined by a closure operator C of R-Mod.

Definition 1.3. Let C ∈ CO. The submodule N ∈ L(RM) is called:

a) C-dense in M if CM(N) = M ;

b) C-closed in M if CM(N) = N .

For C ∈ CO and M ∈ R-Mod we denote:

FC
1 (M)={N ⊆ M | CM(N)=M} – the set of C-dense submodules of M ;

FC
2 (M)={N ⊆ M | CM(N)=N} – the set of C-closed submodules of M .

It is obvious that FC
1 (M) ∩ FC

2 (M) = {M}.

In that way any closure operator C ∈ CO defines two functions FC
1 and

FC
2 , which associate to every module M the sets of submodules FC

1 (M)
and FC

2 (M). In continuation we will prove that if C ∈ CO is weakly
hereditary, then it can be re-established by the function FC

1 ; similarly, if
C is idempotent, then it is completely determined by the function FC

2 .
These facts permit to describe the named types of closure operators by
the functions of indicated form.
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2. Weakly hereditary closure operators

Let C ∈ CO. For every module M ∈ R-Mod we consider the set of
C-dense submodules:

F
C

1 (M) = {N ⊆ M | CM(N) = M},

and the function FC
1 which in every module M separates the set of

submodules FC
1 (M). It is obvious that the mapping C 7−→ FC

1 is monotone:
if C ≤ D, then FC

1 ≤ FD
1 .

Now for convenience we consider an abstracts function F which deter-
mine for every M ∈ R-Mod a non-empty set of submodules F(M) of M
such that it is compatible with isomorphisms and M ∈ F(M). We will
use the following conditions (properties) of F:

1) If N ∈ F(Mα), Mα ⊆ M (α ∈ A), then N ∈ F
(

∑

α∈A

Mα

)

;

2) If N ⊆ P ⊆ M and N ∈ F(P ), then for every K ⊆ M we have
N + K ∈ F(P + K);

3) If f : M → M ′ is an R-morphism and N ∈ F(M), then
f(N) ∈ F

(

f(M)
)

;

4) If N ⊆ P ⊆ M and N ∈ F(M), then P ∈ F(M).

Remark. The implication 2) ⇒ 4) is obvious, since if N ⊆ P ⊆ M and
N ∈ F(M), then by 2) N + P ∈ F(M + P ), i.e. P ∈ F(M).

Proposition 2.1. Let C be an arbitrary closure operator of R-Mod. Then
the associated function FC

1 satisfies the conditions 1), 2) and 3).

Proof. 1) Let N ∈ FC
1 (Mα), Mα ⊆ M, α ∈ A. Then CMα(N) = Mα

for every α ∈ A and by the monotony (c′

2) we have CMα(N) ⊆ C∑

α∈A

Mα
(N).

Therefore Mα ⊆ C ∑

α∈A

Mα
(N) for every α ∈ A and

∑

α∈A

Mα ⊆ C ∑

α∈A

Mα
(N),

i.e.
∑

α∈A

Mα = C ∑

α∈A

Mα
(N) and N ∈ FC

1

(
∑

α∈A

Mα

)

.

2) Let N ⊆ P ⊆ M and N ∈ FC
1 (P ). Then CP (N) = P and for

every K ⊆ M we have CP (N) + K = P + K. From the monotony of
C in both terms it follows that CP (N) + K ⊆ CP +K(N + K), therefore
P + K ⊆ CP +K(N + K), i.e. P + K = CP +K(N + K) and N + K ∈
FC

1 (P + K).
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3) Let f : M → M ′ be an arbitrary R-morphism and N ∈ FC
1 (M),

i.e. CM(N) = M . From (c3) it follows that f
(

CM(N)
)

⊆ Cf(M)

(

f(N)
)

and so f(M) ⊆ Cf(M)

(

f(N)
)

, i.e. f(M) = Cf(M)

(

f(N)
)

and f(N) ∈
FC

1

(

f(M)
)

.

Further we will study the inverse transition: from the abstract function
F of R-Mod to a closure operator of CO. For that we introduce the
following notation: if F is an abstract function of R-Mod, let CF be the
operator defined by the rule

(CF)M(N) =
∑

{Mα ⊆ M | N ⊆ Mα, N ∈ F(Mα)} (2.1)

for every N ⊆ M . Since N ∈ F(N), the definition is correct.
It is easy to see that the mapping F 7−→ CF is monotone: if F′ ≤ F′′,

then CF
′

≤ CF
′′

.

Proposition 2.2. Let F be an abstract function of R-Mod, which satisfies
the conditions 1), 2) and 3). Then the operator CF defined by the rule
(2.1) is a closure operator of R-Mod.

Proof. (c1) By definition N ⊆ (CF)M(N), since N ⊆ Mα for every α ∈ A.

(c2) Let N ⊆ P ⊆ M . Then (CF)M(N) is defined by (2.1) and

(CF)M(P ) =
∑

{Lα ⊆ M | P ⊆ Lα, P ∈ F(Lα)}.

Since N ∈ F(Mα) (α ∈ A) by condition 2) of F we obtain N + P ∈
F(Mα + P ), i.e. P ∈ F(Mα + P ). Denoting Lα = Mα + P we
have Mα ⊆ Lα and P ∈ F(Lα). Therefore

∑

α∈A

Mα ⊆
∑

α∈A

Lα, i.e.

(CF)M(N) ⊆ (CF)M(P ).

(c3) If f : M → M ′ is an R-morphism and N ⊆ M , then from the
condition 3) of F we have:

f
(

(CF)M(N)
)

= f
(

∑

α∈A

Mα

)

=
∑

α∈A

f(Mα).

Since N ∈ F(Mα) (α ∈ A), by condition 3) of F we obtain f(N) ∈
F

(

f(Mα)
)

. By definition

(CF)M′

(

f(N)
)

=
∑

{Lα ⊆ M ′ | f(N) ⊆ Lα, f(N) ∈ F(Lα)},

therefore f(Mα) coincides with some Lα, so f(Mα) ⊆
∑

α∈A

Lα for every

α ∈ A. This means that
∑

α∈A

f(Mα) ⊆
∑

α∈A

Lα, i.e. f
(

(CF)M(N)
)

⊆

(CF)M′

(

f(N)
)

.
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Proposition 2.3. Let F be an abstract function of R-Mod which satisfies
the conditions 1), 2) and 3). Then the associated closure operator CF

(Proposition 2.2) is weakly hereditary and the corresponding function FCF

1

coincides with F (i.e. F = FCF

1 ).

Proof. The submodule (CF)M(N) is defined by (2.1) and

(CF) ∑

α∈A

Mα
(N) =

∑

{Lα ⊆
∑

α∈A

Mα | N ⊆ Lα, N ∈ F(Lα)}.

From the condition 1) of F and from the relations N ∈ F(Mα) (α ∈ A)
it follows that N ∈ F

(
∑

α∈A

Mα

)

. Therefore
∑

α∈A

Mα coincides with some

Lα from the definition of (CF) ∑

α∈A

Mα
(N), so

∑

α∈A

Mα ⊆
∑

α∈A

Lα. This

means that (CF)M(N) ⊆ (CF)(CF)
M

(N)(N) and by monotony

(CF)M(N)=(CF)(CF)
M

(N)(N), i.e. CF is weakly hereditary.

Now we will prove that F = FCF

1 . The relation F ≤ FCF

1 is true always
and follows from the definitions: if N ∈ F(M), then from (2.1) it is clear
that (CF)M(N) = M , i.e. N ∈ FCF

1 (M).

The inverse relation FCF

1 ≤ F follows from the property 1) of F: if
N ∈ FCF

1 (M), then (CF)M(N) = M , i.e.
∑

α∈A

Mα = M , and from 1) we

have N ∈ F
(

∑

α∈A

Mα

)

, i.e. N ∈ F(M).

In continuation the consecutive use of the mappings C 7−→ FC
1 and

F 7−→ CF we will consider. If C ∈ CO, then by Proposition 2.1 FC
1 is a

function with the properties 1), 2) and 3). Therefore by Proposition 2.2
the function FC

1 determines the closure operator CF
C
1 . We denote

C∗ = CF
C
1 .

Proposition 2.4. For every closure operator C ∈ CO we have:

a) C∗ ≤ C;

b) C∗ is weakly hereditary;

c) C∗ is the greatest weakly hereditary closure operator which is con-
tained in C.

Proof. a) By definition

(C∗)M(N) =
∑

{Mα ⊆ M | N ⊆ Mα, N ∈ FC
1 (Mα)}.
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Since FC
1 satisfies the property 1) (Proposition 2.1), from the relations

N ∈ FC
1 (Mα) (α ∈ A) it follows that N ∈ FC

1

(
∑

α∈A

Mα

)

. Therefore

C ∑

α∈A

Mα
(N) =

∑

α∈A

Mα and by monotony C ∑

α∈A

Mα
(N) ⊆ CM(N), i.e.

∑

α∈A

Mα ⊆ CM(N). So (C∗)M(N) ⊆ CM(N) for every N ⊆ M , i.e.

C∗ ≤ C.

b) Since FC
1 satisfies the conditions 1), 2) and 3) (Proposition 2.1),

the closure operator C∗ = CF
C
1 is weakly hereditary by Proposition 2.3.

c) Let D be a weakly hereditary closure operator and D ≤ C. We must
verify that D ≤ C∗, where C∗ = CF

C
1 . By definition (C∗)M(N) =

∑

α∈A

Mα,

where N ⊆ Mα and N ∈ FC
1 (Mα). Since D is weakly hereditary and

D ≤ C, we obtain:

DM(N) = DDM (N)(N) ⊆ CDM (N)(N) ⊆ DM(N),

therefore CDM (N)(N) = DM(N), i.e. N ∈ FC
1

(

DM(N)
)

. So DM(N) is one
of Mα from the definition of (C∗)M(N), therefore DM(N) ⊆

∑

α∈A

Mα =

(C∗)M(N) for every N ⊆ M . This means that D ≤ C∗.

Corollary 2.5. The closure operator C ∈ CO is weakly hereditary if and
only if C = C∗, where C∗ = CF

C
1 . �

In Section 1 we indicated the method of construction of a weakly
hereditary core C∗ of an arbitrary closure operator C ∈ CO. From the
previous results it follows that there is another way of construction of
this closure operator: it can be obtained by the rule C∗ = CF

C
1 .

The main result of this section is the following

Theorem 2.6. The mappings C 7−→ FC
1 and F 7−→ CF define a monotone

bijection between the weakly hereditary closure operators C of a category
R-Mod and the abstract functions F of this category which satisfy the
conditions 1), 2) and 3).

Proof. If C is a weakly hereditary closure operator of R-Mod,
then C = CF

C
1 (Corollary 2.5). On the other hand, if F is an abstract

function of R-Mod with the properties 1), 2) and 3), then F = FC
F

1

(Proposition 2.3).

Further we will call the abstract functions F of R-Mod with the
properties 1), 2) and 3) the functions of type F1.
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3. Idempotent closure operators

The results of this section in some sense are dual to the statements
of Section 2. We will show the characterization of idempotent closure
operators C of R-Mod by the function FC

2 associated to C, which in every
module M ∈ R-Mod separates the set of C-closed submodules:

F
C

2 (M) = {N ∈ L(RM) | CM(N) = N}.

It is easy to observe that the mapping C 7−→ FC
2 is antimonotone: if

C ≤ D, then FC
2 ≥ FD

2 .
As in the previous case, for convenience we firstly formulate some

conditions (properties) of an abstract function F of R-Mod (they are dual
to the conditions 1) – 4) of Section 2):

1∗) If Nα ∈ F(M), Nα ⊆ M (α ∈ A), then
⋂

α∈A

Nα ∈ F(M);

2∗) If N ⊆ P ⊆ M and N ∈ F(P ), then for every submodule K ⊆ M
the relation N ∩ K ∈ F(P ∩ K) is true;

3∗) If g : M → M ′ is an R-morphism and N ′ ∈ F
(

g(M)
)

, then
g−1(N ′) ∈ F(M);

4∗) If N ⊆ P ⊆ M and N ∈ F(M), then N ∈ F(P ).

The implication 2∗) ⇒ 4∗) is obvious: if N ⊆ P ⊆ M and N ∈ F(M),
then by 2∗) we have N ∩ P ∈ F(M ∩ P ), i.e. N ∈ F(P ).

Proposition 3.1. Let C be an arbitrary closure operator of R-Mod. Then
the associated function FC

2 satisfies the conditions 1∗), 2∗) and 3∗).

Proof. 1∗) Let Nα ∈ FC
2 (M), Nα ⊆ M, α ∈ A. Then CM(Nα) = Nα

for every α ∈ A and by monotony the inclusion
⋂

α∈A

Nα ⊆ Nα implies

CM

(
⋂

α∈A

Nα

)

⊆ CM(Nα) = Nα for every α ∈ A. Therefore CM

(
⋂

α∈A

Nα

)

⊆
⋂

α∈A

Nα, i.e. CM

(
⋂

α∈A

Nα

)

=
⋂

α∈A

Nα and
⋂

α∈A

Nα ∈ FC
2 (M).

2∗) Let N ⊆ P ⊆ M and N ∈ FC
2 (P ), i.e. CP (N) = N . Then for every

submodule K ⊆ M from the monotony it follows that
CP ∩K(N ∩ K) ⊆ CP (N) = N . On the other hand, the monotony im-
plies CP ∩K(N ∩K) ⊆ CK(N ∩K) ⊆ K. Therefore CP ∩K(N ∩K) ⊆ N ∩K,
i.e. CP ∩K(N ∩ K) = N ∩ K and N ∩ K ∈ FC

2 (P ∩ K).

3∗) Let g : M → M ′ be an R-morphism and N ′ ∈ FC
2

(

g(M)
)

,
i.e. Cg(M)(N

′) = N ′. Using the condition (c3) and the relation N ′ =
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g
(

g−1(N)
)

, we obtain:

g
(

CM

(

g−1(N ′)
)

)

⊆ Cg(M)

(

g
(

g−1(N ′)
)

)

= Cg(M)(N
′) = N ′.

Therefore CM

(

g−1(N ′)
)

⊆ g−1(N ′), i.e. CM

(

g−1(N ′)
)

= g−1(N ′) and
g−1(N ′) ∈ FC

2 (M).

Following the scheme of the previous case, now we will show the inverse
transition from an abstract function F of R-Mod to a closure operator of
R-Mod. For that we define the operator CF by the rule:

(CF)M(N) = ∩ {Nα ∈ L(RM) | N ⊆ Nα, Nα ∈ F(M)} (3.1)

for every N ⊆ M . Since M ∈ F(M), the definition is correct.
We remark that the mapping F 7−→ CF is antimonotone: if F′ ≤ F′′,

then CF
′ ≥ CF

′′ .

Proposition 3.2. Let F be an abstract function of R-Mod which satisfies
the conditions 1∗), 2∗) and 3∗). Then the associated operator CF defined
by the rule (3.1) is a closure operator of R-Mod.

Proof. (c1) Since N ⊆ Nα for every α ∈ A, we have N ⊆ (CF)M(N).

(c2) Let N ⊆ P ⊆ M . The submodule (CF)M(N) is defined by (3.1)
and (CF)

M
(P ) = ∩ {Pα ⊆ M | P ⊆ Pα, Pα ∈ F(M)}. So we have

N ⊆ P ⊆ Pα and Pα ∈ F(M), therefore Pα is some Nα from the def-
inition of (CF)M(N). This means that

⋂

α∈A

Nα ⊆ Pα for every α ∈ A and so

⋂

α∈A

Nα ⊆
⋂

α∈A

Pα, i.e. (CF)M(N) ⊆ (CF)M(P ).

(c3) Let f : M → M ′ be an R-morphism and N ⊆ M . Then (CF)M(N)
is defined by (3.1) and

(CF)M′

(

f(N)
)

=
⋂

{N ′

α ⊆ M ′ | f(N) ⊆ N ′

α, N ′

α ∈ F(M ′)}.

By the property 3∗) of F, from N ′

α ∈ F(M ′) (α ∈ A) it follows
that f−1(N ′

α) ∈ F(M), where N ′

α ⊇ f(N), therefore f−1(N ′

α) ⊇
f−1

(

f(N)
)

⊇ N . This means that f−1(N ′

α) is some Nα from the
definition of (CF)M(N), so

⋂

α∈A

Nα ⊆ f−1(N ′

α) for every α ∈ A.

Therefore
⋂

α∈A

Nα ⊆
⋂

{f−1(N ′

α) | f(N) ⊆ N ′

α, N ′

α ∈ F(M ′)}. Using this

relation we obtain:

f
(

(CF)M(N)
)

= f
(

⋂

α∈A

Nα

)

⊆ f
(

⋂

α∈A

f−1(N ′

α)
)

⊆
⋂

α∈A

f
(

f−1(N ′

α)
)

=

=
⋂

α∈A

(N ′

α

⋂

Im f) ⊆
⋂

α∈A

N ′

α = (CF)M′

(

f(N)
)

.
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Proposition 3.3. Let F be an abstract function of R-Mod which satisfies
the conditions 1∗), 2∗) and 3∗). Then the associated closure operator
CF (Proposition 3.2) is idempotent and the corresponding function F

C
F

2 ,
defined by

F
C
F

2 (M) = {N ⊆ M | (CF)M(N) = N}

coincides with F (i.e. F = F
C
F

2 ).

Proof. For a function F with 1∗), 2∗) and 3∗) the submodule (CF)M(N)
is defined by (3.1) and

(CF)M [(CF)M(N)] = ∩ {Lα ⊆ M | (CF)M(N) ⊆ Lα, Lα ∈ F(M)}.

From the property 1∗) of F and Nα ∈ F(M) (α ∈ A) it follows that
⋂

α∈A

Nα ∈ F(M). Therefore
⋂

α∈A

Nα is some Lα, so
⋂

α∈A

Lα ⊆
⋂

α∈A

Nα. This

means that (CF)M [(CF)M(N)] ⊆ (CF)M(N), the inverse inclusion being
trivial, therefore CF is idempotent.

Further we prove that F = F
C
F

2 . The relation F ≤ FC
F follows from

the construction: if N ∈ F(M), then N is some Nα from the definition of
(CF)M(N), therefore

⋂

α∈A

Nα = N , i.e. (CF)M(N) = N and N ∈ F
C
F

2 (M).

The inverse relation F
C
F

2 ≤ F follows from the property 1∗) of F: if

N ∈ F
C
F

2 (M), then ∩ {Nα ⊆ M | N ⊆ Nα, Nα ∈ F(M)} = N and by 1∗)

from Nα ∈ F(M) (α ∈ A) we have
⋂

α∈A

Nα ∈ F(M), so N ∈ F(M).

Now we will consider the combination of the mappings C 7−→ FC
2

and F 7−→ CF which were defined by the rules: FC
2 (M) =

{N ⊆ M | CM(N) = N} and (CF)M(N) = ∩ {Nα ⊆ M | N ⊆ Nα,
Nα ∈ F(M)}. If C is an arbitrary closure operator of R-Mod, then FC

2

is a function with the properties 1∗), 2∗) and 3∗) (Proposition 3.1). In its
turn the function FC

2 defines the closure operator C
F

C
2

(Proposition 3.2).
We denote C∗ = C

F
C
2

.

Proposition 3.4. For every closure operator C of R-Mod we have:

a) C∗ ≥ C;

b) C∗ is an idempotent closure operator ;

c) C∗ is the least idempotent closure operator containing C.

Proof. a) By definition

(C∗)M(N) = ∩ {Nα ⊆ M | N ⊆ Nα, Nα ∈ F
C

2 (M)}.
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By property 1∗) of FC
2 we have

⋂

α∈A

Nα ∈ FC
2 (M), i.e. CM

(
⋂

α∈A

Nα

)

=

⋂

α∈A

Nα. By monotony the inclusion N ⊆
⋂

α∈A

Nα implies CM(N) ⊆

CM

(
⋂

α∈A

Nα

)

=
⋂

α∈A

Nα. This means that CM(N) ⊆ (C∗)M(N) for every

N ⊆ M , i.e. C ≤ C∗.

b) The function FC
2 satisfies the properties 1∗), 2∗) and 3∗) (Proposi-

tion 3.1), therefore by Proposition 3.3 the operator C∗ = C
F

C
2

is idempo-
tent.

c) Let D be an idempotent closure operator of R-Mod and D ≥ C.
We will verify that C∗ ≤ D. By definition:

(C∗)M(N) =
(

C
F

C
2

)

M
(N) = ∩ {Nα ⊆ M | N ⊆ Nα, Nα ∈ F

C

2 (M)}.

Since D is idempotent and D ≥ C we obtain:

DM(N) = DM

(

DM(N)
)

≥ CM

(

DM(N)
)

≥ DM(N),

therefore DM(N) = CM

(

DM(N)
)

, i.e. DM(N) ∈ FC
2 (M). So DM(N) is

some Nα from the definition of (C∗)M(N), therefore
⋂

α∈A

Nα ⊆ DM(N).

In this way (C∗)M(N) ⊆ DM(N) for every N ⊆ M , i.e. C∗ ≤ D.

Corollary 3.5. The closure operator C of R-Mod is idempotent if
and only if C = C∗. �

In Section 1 the method of construction of idempotent hull C∗ of an
arbitrary closure operator C of R-Mod was shown. From Proposition 3.4
another way to obtain the idempotent hull of C follows, namely C∗=C

F
C
2

.

Totalizing the results of this section we obtain

Theorem 3.6. The mappings C 7−→ FC
2 and F 7−→ CF define an anti-

monotone bijection between the idempotent closure operators C of R-Mod
and the abstract functions F of R-Mod, which satisfy the conditions 1∗),
2∗) and 3∗). �

The abstract functions F of R-Mod with the properties 1∗), 2∗) and 3∗)
will be called in continuation the functions of type F2.
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4. Weakly hereditary and idempotent closure operators

Using the previous results, now we will describe the closure operators
of R-Mod which simultaneously are weakly hereditary and idempotent
(in radical theory this corresponds to the characterization of idempotent
radicals by the classes of torsion or torsion-free modules).

Let C be a weakly hereditary and idempotent closure operation of
R-Mod. Then the operator C can be re-established both by the function
FC

1 (Theorem 2.6) and by the function FC
2 (Theorem 3.6). We will show

what property the abstract function F of R-Mod must satisfy so that the
associated closure operators CF and CF should be weakly hereditary and
idempotent. For that we consider the following condition of an abstract
function F of R-Mod:

5) = 5∗) If N ⊆ P ⊆ M, N ∈ F(P ) and P ∈ F(M), then N ∈ F(M).

This condition will be named the property of transitivity of F (it is
autodual).

Proposition 4.1. If C is an idempotent closure operator of R-Mod,
then the associated function FC

1 (where FC
1 (M) = {N ⊆ M | CM(N) =

M}) satisfies the property of transitivity 5).

Proof. Let N ⊆ P ⊆ M, N ∈ FC
1 (P ) and P ∈ FC

1 (M). Then CP (N) = P
and CM(P ) = M . By monotony from P ⊆ M it follows that CP (N) ⊆
CM(N), therefore P ⊆ CM(N). Since C is monotone and idempotent,
we obtain CM(P ) ⊆ CM

(

CM(N)
)

= CM(N), i.e. M ⊆ CM(N). So

CM(N) = M and N ∈ FC
1 (M).

Proposition 4.2. Let F be an abstract function of R-Mod of the type
F1 (i.e. with the conditions 1), 2), 3)) which satisfies the property of
transitivity 5). Then the associated closure operator CF defined by the
rule

(CF)M(N) =
∑

{Mα ⊆ M | N ⊆ Mα, N ∈ F(Mα)}

is idempotent.

Proof. If F is a function of the type F1, then CF is a closure operator
(Proposition 2.2). By definition

(CF)M [(CF)M(N)] =
∑

{Lα ⊆ M | (CF)M(N) ⊆ Lα, (CF)M(N) ∈ F(Lα)}.

From the definition of (CF)M(N) we have N ∈ F(Mα) (α ∈ A) and
by the property 1) of F we obtain N ∈ F

(
∑

α∈A

Mα

)

. Since we have
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also the relation
∑

α∈A

Mα ∈ F(Lα), by the transitivity of F we obtain

N ∈ F(Lα) for every α ∈ A. Using once again the condition 1) of
F, we have N ∈ F

(
∑

α∈A

Lα

)

. Therefore
∑

α∈A

Lα is some submodule Mα

from the definition of (CF)M(N), so
∑

α∈A

Lα ⊆
∑

α∈A

Mα. This means that

(CF)M [(CF)M(N)] ⊆ (CF)M(N), the inverse inclusion being trivial, so CF

is idempotent.

Corollary 4.3. The mappings C 7−→ FC
1 and F 7−→ CF define a monotone

bijection between the weakly hereditary and idempotent closure operators
of R-Mod and the abstract functions F of type F1

(

with the conditions 1),
2), 3)

)

of R-Mod with satisfy the property of transitivity 5).

Proof. By Theorem 2.6 the indicated mappings define a monotone bijec-
tion between the weakly hereditary closure operators C of R-Mod and
abstract functions F of type F1. In this bijection if C is idempotent, then
the function FC

1 is transitive (Proposition 4.1). On the other hand, if the
function F of type F1 is transitive, then the weakly hereditary closure
operator CF is idempotent (Proposition 4.2).

Thus the weakly hereditary and idempotent closure operators C of
R-Mod are completely described by the abstract functions F of R-Mod
which satisfy the conditions 1), 2), 3), 5).

Dually the characterization of weakly hereditary and idempotent
closure operation C of R-Mod by abstract functions F of type F2 can be
obtained.

Proposition 4.4. If C is a weakly hereditary closure operator
of R-Mod, then the associated function FC

2 , where FC
2 (M) =

{N ⊆ M | CM(N) = N}, satisfies the condition of transitivity 5) = 5∗).

Proof. Let N ⊆ P ⊆ M, N ∈ FC
2 (P ) and P ∈ FC

2 (M), where C is a
weakly hereditary closure operator of R-Mod. Then CP (N) = N and
CM(P ) = P . From N ⊆ M by monotony it follows that CM(N) ⊆
CM(P ) = P , i.e. CM(N) ⊆ P . Using the monotony once again, we obtain

CCM (N)(N) ⊆ CP (N) = N . Since C is weakly hereditary, we have

CCM (N)(N) = CM(N), therefore CM(N) ⊆ N , i.e. CM(N) = N and

N ∈ FC
2 (M). This proves that FC

2 is transitive.
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Proposition 4.5. If F is an abstract function of R-Mod of the type
F2

(

i.e. with the conditions 1∗), 2∗), 3∗)
)

which satisfies the transitivity
property 5∗), then the corresponding closure operator CF, defined by the
rule

(CF)M(N) = ∩ {Nα ⊆ M | N ⊆ Nα, Nα ∈ F(M)},

is weakly hereditary.

Proof. By definition

(CF)(C
F

)
M

(N)(N) = ∩
{

Lα ⊆ M | N ⊆ Lα ⊆ (CF)M(N),

Lα ⊆ F
(

(CF)M(N)
)}

.

From the definition of (CF)M(N) we have Nα ⊆ F(M) (α ∈ A) and by

condition 1∗) of F it follows that
⋂

α∈A

Nα ∈ F(M), i.e. (CF)M(N) ∈ F(M).

On the other hand, from the relations Lα ∈ F
(

(CF)M(N)
)

(α ∈ A) by

condition 1∗) of F we have
⋂

α∈A

Lα ∈ F
(

(CF)M(N)
)

. Using the transitivi-

ty in the situation
⋂

α∈A

Lα ⊆ (CF)M(N) ⊆ M , we obtain
⋂

α∈A

Lα ∈ F(M).

Therefore the submodule
⋂

α∈A

Lα is some Nα from the definition of

(CF)M(N), so
⋂

α∈A

Nα ⊆
⋂

α∈A

Lα. This means that (CF)M(N) ⊆

(CF)(CF)M (N)(N). The inverse inclusion follows from M ⊇ (CF)M(N).

This proves that CF is weakly hereditary.

From Propositions 4.4 and 4.5, using Theorem 3.6, we obtain

Corollary 4.6. The mappings C 7−→ FC
2 and F 7−→ CF define

an antimonotone bijection between the weakly hereditary and idempo-
tent closure operators C of R-Mod and the abstract functions F of R-Mod
which satisfy the conditions 1∗), 2∗), 3∗), 5∗) (i.e. the transitive functions
F of type F2). �

Combining Corollaries 4.3 and 4.6, is obvious the

Corollary 4.7. The mappings

F 7−→ CF 7−→ F2
CF

, F 7−→ CF 7−→ F1
C
F

define an antimonotone bijection between the transitive abstract functions
of type F1 and the transitive abstract functions of type F2. �
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Let C be a weakly hereditary and idempotent closure operator of
R-Mod. For any module M ∈ R-Mod we can indicate a direct way
to obtain the sets of submodules FC

1 (M) and FC
2 (M) one by another

([6], Proposition 2.3):

FC
1 (M) = {N ⊆ M | P /∈ FC

2 (M) for every P such that N ⊆ P $ M},

FC
2 (M) = {N ⊆ M | N /∈ FC

1 (P ) for every P such that N $ P ⊆ M}.
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